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Abstract

This paper presents a challenge to the commu-
nity: Generative adversarial networks (GANs)
can perfectly align independent English word
embeddings induced using the same algo-
rithm, based on distributional information
alone; but fails to do so, for two different em-
beddings algorithms. Why is that? We believe
understanding why, is key to understand both
modern word embedding algorithms and the
limitations and instability dynamics of GANs.
This paper shows that (a) in all these cases,
where alignment fails, there exists a linear
transform between the two embeddings (so al-
gorithm biases do not lead to non-linear dif-
ferences), and (b) similar effects can not easily
be obtained by varying hyper-parameters. One
plausible suggestion based on our initial ex-
periments is that the differences in the induc-
tive biases of the embedding algorithms lead to
an optimization landscape that is riddled with
local optima, leading to a very small basin of
convergence, but we present this more as a
challenge paper than a technical contribution.

1 Introduction

This paper brings together two fascinating re-
search topics in natural language processing
(NLP), namely understanding the properties of
word embeddings (Mikolov et al., 2013; Mitchell
and Steedman, 2015; Mimno and Thompson,
2017) and unsupervised bilingual dictionary in-
duction (Conneau et al., 2018; Zhang et al., 2017;
Søgaard et al., 2018). In an effort to better under-
stand when unsupervised bilingual dictionary in-
duction is possible, we factored out linguistic dif-
ferences between languages, and studied English-
English alignability (by learning to align English
embeddings trained on different samples of the
English Wikipedia), when we came across a puz-
zling phenomena: English-English can be aligned
with almost 100% precision, if you use the same

embedding algorithms for the two samples, but
not at all (0% precision), if you use different em-
bedding algorithms. This results suggest that the
properties of word embeddings induced by differ-
ent algorithms challenge unsupervised bilingual
dictionary algorithms. Understanding why will
enable us to develop more stable adversarial learn-
ing algorithms and give us a better understanding
of how embedding algorithms differ.

Contributions We are, to the best of our knowl-
edge, the first to study unsupervised alignability of
pairs of English word embeddings. We show that
unsupervised alignment – specifically the MUSE
system (Conneau et al., 2018) – fails when the al-
gorithms used to induce the two embeddings dif-
fer, and that this is not because there is no linear
transformation between the two spaces. We fur-
ther show that poor initialization, as a result of
MUSE initially applying an identity transform to
two word embeddings far apart in space, is not
the sole reason the discriminator suffers from local
optima. Finally, we present an experiment show-
ing what the minimal corpus size is for unsuper-
vised alignment to succeed, in the absence of lin-
guistic differences.

2 Aligning embeddings

2.1 Unsupervised alignment using generative
adversarial networks

MUSE (Conneau et al., 2018) uses a vanilla gen-
erative adversarial network (GAN) with a linear
generator to learn alignments between embedding
spaces without supervision. In a two-player game,
a discriminator D aims to tell the two language
spaces apart, while a generator G aims to map
the source language into the target language space,
fooling the discriminator. While MUSE achieves
impressive results at times, MUSE is highly un-
stable, e.g., with different initializations precision
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scores vary between 0% and 45% for English-
Greek (Søgaard et al., 2018).

The parameters of a GAN with a linear gener-
ator are (Ω, w). They are obtained by solving the
following min-max problem:

min
Ω

max
w

E[log(Dw(X)) + log(1−Dw(gΩ(Z)))]

(1)
which reduces to

min
Ω

JS (PX | PΩ) (2)

Ω is initialized as the identity matrix I .
If G wins the game against an ideal discrimi-

nator on a very large number of samples, then F
(the source vector space) and ΩE (with E being
the target vector space) can be shown to be close
in Jensen-Shannon divergence, and thus the model
has learned the true distribution. This result, re-
ferring to the distributions of the data, pdata , and
the distribution, pg, G is sampling from, is from
Goodfellow et al. (2014): If G and D have enough
capacity, and at each step of training, the discrim-
inator is allowed to reach its optimum given G,
and pg is updated so as to improve the criterion

Ex∼pdata [logD∗
G(x)] + Ex∼pg [log(1−D∗

G(x))]

then pg converges to pdata .
This result relies on a number of assumptions

that do not hold in practice. Our generator, which
learns a linear transform Ω, has very limited ca-
pacity, for example, and we are updating Ω rather
than pg. In practice, therefore, during training, we
alternate between k steps of optimizing the dis-
criminator and one step of optimizing the genera-
tor. If the GAN-based alignment is not success-
ful, this can thus be a result of two things: Ei-
ther that G does not have enough capacity, or that
D is stuck in a local optimum. Our results in §3
show that the inability to align English-English in
the case of different word embedding algorithms
is not a result of limited capacity, but a result of
the GAN being trapped in one of the many local
optima of the loss function.

2.2 Supervised alignment using Procrustes
Analysis

Procrustes Analysis (Schönemann, 1966) has been
commonly used for supervised alignment of word
embeddings (Smith et al., 2017; Artetxe et al.,
2018). Here, the optimal alignment between

two embedding spaces is computed using singular
value decomposition of the aligned embeddings
in a seed dictionary. Conneau et al. (2018) use
Procrustes Analysis to refine an initial seed dic-
tionary learned by the generative adversarial net-
work without supervision. In our supervised ex-
periments, we use 5000 seed words as supervision
for learning the alignment between embeddings.

2.3 Geometry of embeddings

Below we summarize some previous findings
about the geometry of monolingual embeddings
(Mimno and Thompson, 2017), and add some
new observations. We discuss five embed-
ding algorithms: SVD on positive PMI matrices
(Hyperwords-SVD) (Levy et al., 2015), skip-gram
negative sampling applied to co-occurrence matri-
ces (Hyperwords-SGNS) (Levy et al., 2015), con-
tinuous bag-of-words (CBOW) (Mikolov et al.,
2013a), GloVe (Pennington et al., 2014), and Fast-
Text (Bojanowski et al., 2017). To analyze the ge-
ometry of our monolingual embeddings in space,
we report average inner product to mean vector;
see Mimno and Thompson (2017) for details.

Hyperwords-SVD have a small average in-
ner product (0.0032), suggesting they are well-
dispersed through space; like Hyperwords-SGNS
and standard SGNS (Mimno and Thompson,
2017), they do not exhibit a clear word frequency
bias. Hyperwords-SGNS vectors also have a
small average inner product (0.0002), in contrast
with standard SGNS vectors, which are narrowly
clustered in a single orthant (Mimno and Thomp-
son, 2017). In line with standard SGNS vectors,
the frequency of words has relatively little effect
on their inner product, with the exception of the
rare words, which have slightly less positive in-
ner products. CBOW vectors have a relatively
large average inner product (4.2985). The vectors
trained by GloVe show a clear relationship with
word frequency, with low-frequency words oppos-
ing the frequency-balanced mean vector. The em-
beddings are well-dispersed, with an average in-
ner product of 0.0002. Finally, FastText vectors
have a large, positive inner product with the mean
(0.2988), indicating that they are not evenly dis-
persed through the space, but pointing in roughly
the same direction. The FastText vectors exhibit
a frequency bias, much like what has been previ-
ously observed with GloVe vectors. The differ-
ences are the results of the inductive biases of the
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different embedding algorithms.

3 Experiments

This section presents our data, the hyper-
parameters of our embeddings, our experimental
protocols, and our results.

3.1 Data

In the following experiments we learn word
embeddings on samples of a publicly available
Wikipedia dump from March 2018.1 The data
is preprocessed using a publicly available pre-
processing script2, extracting text, removing non-
alphanumeric characters, converting digits to text,
and lowercasing the text.

3.2 Hyper-parameters

We train 300-dimensional word embeddings using
the algorithms’ recommended hyperparameter set-
tings, listed in the following:3 For Hyperwords-
SGNS, the window size is set to 2 and the subsam-
pling of frequent words and smoothing of the con-
text distribution are disabled. The minimal word
count for being in the vocabulary is 100. The
same applies for Hyperwords-SVD, and the ex-
ponent for weighting the eigenvalue matrix is 0.5.
For CBOW, the window size is set to 8, the num-
ber of negative samples is 25, and the subsampling
threshold for frequent words is 1e-4. For GloVe,
the window size is set to 15 and the cutoff param-
eter xmax to 10. Finally, for FastText, the window
size is 5, the number of negatives samples is 5 and
the sampling threshold is 0.0001.

3.3 Main experiments

We train word embeddings using the differ-
ent embedding algorithms listed in §3.2 on two
non-overlapping 10% samples of the English
Wikipedia dump (the samples contain 463,576 and
528,556 distinct words, with an overlap in vocab-
ulary of 351,858 words). We learn unsupervised
and supervised alignments for embeddings (as de-
scribed in §2) trained by different algorithms on
the same datasplits, and for embeddings trained
by the same algorithm on the two different datas-
plits. For the unsupervised alignments, we use the

1https://dumps.wikimedia.org/enwiki/
2http://mattmahoney.net/dc/textdata.

html
3We also ran experiments with one of the embedding al-

gorithms (FastText) to check if our results were robust across
hyper-parameter settings

default parameters of the MUSE system for the
adversarial training, i.e. a discriminator with 2
fully connected layers of 2048 units trained over
5 epochs, 1,000,000 iterations per epoch with 5
discriminator steps per iteration and a batch size
of 32.

We evaluate the alignments in terms of Preci-
sion@1 in the word translation retrieval task for
the 1500 test words used by Bojanowski et al.
(2017). The results are shown in Table 14. Our
main observations are: (a) MUSE learns perfect
alignments for embeddings learned by the same al-
gorithm on different data splits. (b) MUSE cannot
learn alignments for embeddings learned by differ-
ent algorithms on the same data splits, even if there
exists a linear transformation aligning both sets of
embeddings (the supervised algorithm learns per-
fect alignments). We also verify that MUSE can-
not learn to align embeddings from different algo-
rithms even when induced from the same sample.
As already mentioned, we also ran experiments
to check that the failure of MUSE to learn good
alignments was not a result of the differences in
hyper-parameter settings. §3.4 presents additional
experiments with normalization, for control; §3.5
addresses how much data is needed to align inde-
pendently induced embeddings from the same al-
gorithm. §4 discusses potential answers to why
MUSE fails when embeddings are induced using
different algorithms.

3.4 Experiments with normalization

The embeddings in the main experiments differ
in several ways; see §2. One possible explana-
tion for the inability of MUSE to align embed-
dings from different algorithms could be that the
two embeddings are so far apart in space that the
discriminator learns to discriminate between them
too quickly. Recall that Ω is initialized as the iden-
tity matrix I , which means that the generator ini-
tially presents the discriminator with the source
embedding as is. This is an effect that has of-
ten been observed with GANs (Arjovsky and Bot-
tou, 2017); could this also be the explanation for
our results? At a first glance, this seems a pos-
sible explanation. The inner products with the
mean differ significantly for the five embedding

4We report Precision at 1 scores but find that the pattern
is the same for Precision at 10, with perfect alignments for
embeddings from the same algorithm and 0 scores for align-
ments between embeddings from different algorithms in the
unsupervised experiments.

https://dumps.wikimedia.org/enwiki/
http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html
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Hyperwords-SGNS Hyperwords-SVD CBOW GloVe FastText

UNSUPERVISED

Hyperwords-SGNS 0.997

Hyperwords-SVD 0.000 0.992

CBOW 0.000 0.000 0.997

GloVe 0.000 0.000 0.000 0.997

FastText 0.000 0.000 0.000 0.000 0.997

SUPERVISED

Hyperwords-SVD 0.967

CBOW 0.990 0.989

GloVe 0.985 0.992 0.999

FastText 0.994 0.994 0.999 0.997

Table 1: Precision at 1 (P@1) for unsupervised GAN alignment with Procrustes refinement (top) and supervised
Procrustes analysis for the cases in which unsupervised alignment fails (bottom). Results clearly show that GANs
can align two independent embeddings induced by the same algorithm; but not embeddings aligned by different
ones. Supervised Procrustes analysis, on the other hand, perfectly aligns the embeddings in both cases.

algorithms (see §2). The only embeddings that
have roughly the same directionality are Hyper-
words and GloVe, and their centroids are very far
apart in cosine space. The cosine similarity of the
centroids of the two versions of Hyperwords is -
0.006, and the cosine similarity for Hyperwords-
SVD and GloVe is 0.019. However, poor initial-
ization as a result of applying the identity trans-
form to very distant word embeddings is not the
explanation for the poor performance of MUSE
in this set-up: Both sets of Hyperwords embed-
dings were normalized, but alignment still failed.
To verify this holds in general, i.e., that results are
not affected by normalization in general, we also
ran experiments with the remaining 14 embedding
pairs, normalizing and/or centering both embed-
dings. Results stayed the same: Precision at 1
scores of 0.

3.5 Learning curve
MUSE perfectly aligns independently induced
word embeddings induced by the same algorithm.
For FastText, it correctly aligns 99.7% of all words
in the evaluation lexicon with itself. Our samples
are 10% of a publicly available Wikipedia dump,
amounting to more than 400 million tokens per
sample. English-English alignment is an interest-
ing control experiment for unsupervised bilingual
dictionary induction, abstracting away from lin-
guistic differences, and we ran a series of exper-
iments to see how small samples MUSE can align
in the absence of linguistic differences. The learn-
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Figure 1: Unsupervised alignment quality for FastText
embeddings trained on samples of different sizes, eval-
uated on 878 words covered by all of the embeddings.
The x-axis is log-scaled.

ing curve is presented in Figure 1.

4 Discussion

We have shown that the fact that MUSE cannot
align two embedding spaces for English induced
by different algorithms (even if using the same
corpus), is not a result of there not being a linear
transformation, and not a result of (lack of) nor-
malization or trivial differences in model hyper-
parameters. The only explanation left seems to be
that the inductive biases of the different algorithms
lead to a loss landscape so riddled with local op-
tima that MUSE cannot possible escape them.

To support this hypothesis, compare the loss
curves for the MUSE runs aligning embeddings
induced with the same algorithms (black curves)
to the runs aligning embeddings induced with dif-
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Figure 2: Discriminator losses using the same algo-
rithm for source and target (black curves) or using dif-
ferent algorithms (grey curves).

ferent algorithms, in Figure 2. When the em-
beddings are induced by the same algorithm, we
clearly see the contours of a min-max game, sug-
gesting that the generator and discriminator chal-
lenge each other, both contributing to a good
alignment. When the embeddings are induced by
different algorithms, however, the discriminator
quickly drops, with the generator unable to push
the discriminator out of a local optimum. Under-
standing when biases induce highly non-convex
landscapes, and how to make adversarial training
less sensitive to such scenarios, remains an open
problem, which we think will be key to the success
of unsupervised machine translation and related
tasks.
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