
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 570–575
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

570

Cut to the Chase: A Context Zoom-in Network for
Reading Comprehension

Sathish Indurthi1 Seunghak Yu1,∗ Seohyun Back1 Heriberto Cuayáhuitl1,2
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Abstract

In recent years many deep neural networks
have been proposed to solve Reading Compre-
hension (RC) tasks. Most of these models suf-
fer from reasoning over long documents and
do not trivially generalize to cases where the
answer is not present as a span in a given doc-
ument. We present a novel neural-based ar-
chitecture that is capable of extracting relevant
regions based on a given question-document
pair and generating a well-formed answer. To
show the effectiveness of our architecture, we
conducted several experiments on the recently
proposed and challenging RC dataset ‘Nar-
rativeQA’. The proposed architecture outper-
forms state-of-the-art results (Tay et al., 2018)
by 12.62% (ROUGE-L) relative improvement.

1 Introduction

Building Artificial Intelligence (AI) algorithms to
teach machines to read and to comprehend text
is a long-standing challenge in Natural Language
Processing (NLP). A common strategy for assess-
ing these AI algorithms is by treating them as RC
tasks. This can be formulated as finding an an-
swer to a question given the document(s) as evi-
dence. Recently, many deep-learning based mod-
els (Seo et al., 2017; Xiong et al., 2017; Wang
et al., 2017; Shen et al., 2017; Clark and Gardner,
2017) have been proposed to solve RC tasks based
on the SQuAD (Rajpurkar et al., 2016) and Trivi-
aQA (Joshi et al., 2017) datasets, reaching human
level performance. A common approach in these
models is to score and/or extract candidate spans
conditioned on a given question-document pair.

Most of these models have limited applicability
to real problems for the following reasons. They
do not generalize well to scenarios where the an-
swer is not present as a span, or where several dis-
continuous parts of the document are required to

∗ To whom correspondence should be addressed.

form the answer. In addition, unlike humans, they
can not easily skip through irrelevant parts to com-
prehend long documents (Masson, 1983).

To address the issues above we develop a novel
context zoom-in network (ConZNet) for RC tasks,
which can skip through irrelevant parts of a doc-
ument and generate an answer using only the rel-
evant regions of text. The ConZNet architecture
consists of two phases. In the first phase we iden-
tify the relevant regions of text by employing a
reinforcement learning algorithm. These relevant
regions are not only useful to generate the answer,
but can also be presented to the user as support-
ing information along with the answer. The sec-
ond phase is based on an encoder-decoder archi-
tecture, which comprehends the identified regions
of text and generates the answer by using a resid-
ual self-attention network as encoder and a RNN-
based sequence generator along with a pointer net-
work (Vinyals et al., 2015) as the decoder. It has
the ability to generate better well-formed answers
not verbatim present in the document than span
prediction models.

Recently, there have been several attempts to
adopt condensing documents in RC tasks. Wang
et al. (2018) retrieve a relevant paragraph based
on the question and predict the answer span. Choi
et al. (2017) select sentence(s) to make a summary
of the entire document with a feed-forward net-
work and generate an answer based on the sum-
mary. Unlike existing approaches, our method has
the ability to select relevant regions of text not just
based on the question but also on how well regions
are related to each other. Moreover, our decoder
combines span prediction and sequence genera-
tion. This allows the decoder to copy words from
the relevant regions of text as well as to generate
words from a fixed vocabulary.

We evaluate our model using one of the chal-
lenging RC datasets, called ‘NarrativeQA’, which
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Figure 1: The proposed ConZNet architecture

was released recently by Kočiskỳ et al. (2017).
Experimental results show the usefulness of our
framework for RC tasks and we outperform state-
of-the-art results on this dataset.

2 Proposed Architecture

An overview of our architecture is shown in Figure
1, which consists of two phases. First, the identi-
fication of relevant regions of text is computed by
the Co-attention and Context Zoom layers as ex-
plained in Sections 2.1 and 2.2. Second, the com-
prehension of identified regions of text and out-
put generation is computed by Answer Genera-
tion block as explained in Section 2.3.

2.1 Co-attention layer
The words in the document, question and an-
swer are represented using pre-trained word em-
beddings (Pennington et al., 2014). These word-
based embeddings are concatenated with their cor-
responding char embeddings. The char embed-
dings are learned by feeding all the characters of a
word into a Convolutional Neural Network (CNN)
(Kim, 2014). We further encode the document and
question embeddings using a shared bi-directional
GRU (Cho et al., 2014) to get context-aware rep-
resentations.

We compute the co-attention between document
and question to get question-aware representations
for the document by using tri-linear attention as
proposed by Seo et al. (2017). Let di be the vector
representation for the document word i, qj be the
vector for the question word j, and ld and lq be the
lengths of the document and question respectively.
The tri-linear attention is calculated as

aij = wddi + wqqj + wdq(di � qj), (1)

where wd, wq, and wdq are learnable parameters
and � denotes the element-wise multiplication.

We compute the attended document word d̃i by
first computing λi = softmax(ai:) and followed
by d̃i =

∑lq
j=1 λijqj . Similarly, we compute a

question to document attention vector q̃ by first
computing b = softmax(max(ai:)) and followed
by q̃ =

∑ld
i=i dibi. Finally, di, d̃i, di � d̃i, d̃i � q̃

are concatenated to yield a query-aware contextual
representation for each word in the document.

2.2 Context Zoom Layer
This layer finds relevant regions of text. We use
reinforcement learning to do that, with the goal of
improving answer generation accuracy – see Sec-
tion 2.4.

The Split Context operation splits the attended
document vectors into sentences or fixed size
chunks (useful when sentence tokenization is not
available for a particular language). This results in
n text regions with each having length lk, where
ld =

∑n
k=1 lk. We then get the representations,

denoted as zk, for each text region by running a
BiGRU and concatenating the last states of the for-
ward and backward GRUs.

The text region representations, zk, encode how
well they are related to the question, and their sur-
rounding context. Generating an answer may de-
pend on multiple regions, and it is important for
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each text region to collect cues from other regions
which are outside of their surroundings. We can
compute this by using a Self-Attention layer. It is
a special case of co-attention where both operands
(di and qj) are the text fragment itself, computed
by setting aij = −∞ when i = j in Eq. 1.

These further self-attended text region represen-
tations, z̃k, are passed through a linear layer with
tanh activation and softmax layer as follows:

u = tanh(Wc[z̃1, · · · , z̃n] + bc), (2)

ψ = softmax(u), (3)

where ψ is the probability distribution of text re-
gions, which is the evidence used to generate the
answer. The policy of the reinforcement learner
is defined as π(r|u; θz) = ψr, where ψr is the
probability of a text region r (agent’s action) be-
ing selected, u is the environment state as defined
in Eq. 2, and θz are the learnable parameters. Dur-
ing the training time we sample text regions using
ψ, in inference time we follow greedy evaluation
by selecting most probable region(s).

2.3 Answer Generation
This component is implemented based on the
encoder-decoder architecture of (Sutskever et al.,
2014). The selected text regions from the Con-
text Zoom layer are given as input to the encoder,
where its output is given to the decoder in order to
generate the answer.

The encoder block uses residual connected self-
attention layer followed by a BiGRU. The se-
lected relevant text regions (∈ ψr) are first passed
through a separate BiGRU, then we apply a self-
attention mechanism similar to the Context Zoom
layer followed by a linear layer with ReLU activa-
tions. The encoder’s output consists of representa-
tions of the relevant text regions, denoted by ei.

The decoder block is based on an attention
mechanism (Bahdanau et al., 2015) and a copy
mechanism by using a pointer network similar to
(See et al., 2017). This allows the decoder to pre-
dict words from the relevant regions as well as
from the fixed vocabulary. At time step t, the de-
coder predicts the next word in the answer using
the attention distribution, context vector and cur-
rent word embedding. The attention distribution
and context vector are obtained as follows:

oti = vT tanh(Weei +Whht + bo), (4)

γt = softmax(oti), (5)

AW AS/MS
document 659 28/66
question 10 n/a
answer 5 n/a

NE
Train 32,747
Dev 3,461
Test 10,557

Table 1: NarrativeQA statistics. AW, AS/MS are de-
fined as avg. words, avg./max. sentences in the docu-
ment/question/answer. NE: Number of examples.

where ht is hidden state of the decoder, v, We,
Wh, bo are learnable parameters. The γt repre-
sents a probability distribution over words of rel-
evant regions ei. The context vector is given by
ct =

∑
i γ

t
iei.

The probability distribution to predict word wt
from the fixed vocabulary (Pfv) is computed by
passing state ht and context vector ct to a linear
layer followed by a softmax function denoted as

Pfv = softmax(Wv(Xv[ht, ct] + bp)+ bq). (6)

To allow decoder to copy words from the en-
coder sequence, we compute a soft gate (Pcopy),
which helps the decoder to generate a word by
sampling from the fixed vocabulary or by copying
from a selected text regions (ψr). The soft gate is
calculated as

Pcopy = σ(wTp ct + vTh ht + wTx xt + bc), (7)

where xt is current word embedding, ht is hidden
state of the decoder, ct is the context vector, and
wp, vh, wx, and bc are learnable parameters. We
maintain a list of out-of-vocabulary (OOV) words
for each document. The fixed vocabulary along
with this OOV list acts as an extended vocabulary
for each document. The final probability distribu-
tion (unnormalized) over this extended vocabulary
(Pev) is given by

Pev(wt) = (1−Pcopy)Pfv(wt)+Pcopy
∑

i:wi=wt

γti .

(8)

2.4 Training
We jointly estimate the parameters of our model
coming from the Co-attention, Context Zoom, and
Answer Generation layers, which are denoted as
θa, θz , and θg respectively. Estimating θa and θg
is straight-forward by using the cross-entropy ob-
jective J1({θa, θg}) and the backpropagation algo-
rithm. However, selecting text regions in the Con-
text Zoom layer makes it difficult to estimate θz
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given their discrete nature. We therefore formu-
late the estimation of θz as a reinforcement learn-
ing problem via a policy gradient method. Specif-
ically, we design a reward function over θz .

We use mean F-score of ROUGE-1, ROUGE-2,
and ROUGE-L (Lin and Hovy, 2003) as our re-
ward function R. The objective function to max-
imize is the expected reward under the probabil-
ity distribution of current text regions ψr, i.e.,
J2(θz) = Ep(r|θz)[R]. We approximate the gra-
dient ∇θzJ2(θz) by following the REINFORCE
(Williams, 1992) algorithm. To reduce the high
variance in estimating∇θzJ2(θz) one widely used
mechanism is to subtract a baseline value from
the reward. It is shown that any number will re-
duce the variance (Williams, 1992; Zaremba and
Sutskever, 2015), here we used the mean of the
mini-batch reward b as our baseline. The final ob-
jective is to minimize the following equation:

J(θ) = J1({θa, θg})−J2(θz)+
B∑
i=1

(Ri−b), (9)

where, B is the size of mini-batch, and Ri is the
reward of example i ∈ B. J(θ) is now fully differ-
entiable and we use backpropagation to estimate θ.

3 Experimental Results

3.1 Dataset
The NarrativeQA dataset (Kočiskỳ et al., 2017)
consists of fictional stories gathered from books
and movie scripts, where corresponding sum-
maries and question-answer pairs are generated
with the help of human experts and Wikipedia arti-
cles. The summaries in NarrativeQA are 4-5 times
longer than documents in the SQuAD dataset.
Moreover, answers are well-formed by human ex-
perts and are not verbatim in the story, thus mak-
ing this dataset ideal for testing our model. The
statistics of NarrativeQA are available in Table 11.

3.2 Baselines
We compare our model against reported models
in Kočiskỳ et al. (2017) (Seq2Seq, ASR, BiDAF)
and the Multi-range Reasoning Unit (MRU) in Tay
et al. (2018). We implemented two baseline mod-
els (Baseline 1, Baseline 2) with Context Zoom
layer similar to Wang et al. (2018). In both base-
lines we replace the span prediction layer with an
answer generation layer. In Baseline 1 we use an

1please refer Kočiskỳ et al. (2017) for more details

attention based seq2seq layer without using copy
mechanism in the answer generation unit similar
to Choi et al. (2017). In Baseline 2 the answer
generation unit is similar to our ConZNet archi-
tecture.

3.3 Implementation Details
We split each document into sentences using the
sentence tokenizer of the NLTK toolkit (Bird and
Loper, 2004). Similarly, we further tokenize each
sentence, corresponding question and answer us-
ing the word tokenizer of NLTK. The model is
implemented using Python and Tensorflow (Abadi
et al., 2015). All the weights of the model are
initialized by Glorot Initialization (Glorot et al.,
2011) and biases are initialized with zeros. We use
a 300 dimensional word vectors from GloVe (Pen-
nington et al., 2014) (with 840 billion pre-trained
vectors) to initialize the word embeddings, which
we kept constant during training. All the words
that do not appear in Glove are initialized by sam-
pling from a uniform random distribution between
[-0.05, 0.05]. We apply dropout (Srivastava et al.,
2014) between the layers with keep probability of
0.8 (i.e dropout=0.2). The number of hidden units
are set to 100. We trained our model with the
AdaDelta (Zeiler, 2012) optimizer for 50 epochs,
an initial learning rate of 0.1, and a minibatch size
of 32. The hyperparameter ‘sample size’ (num-
ber of relevant sentences) is chosen based on the
model performance on the devset.

3.4 Results
Table 2 shows the performance of various models
on NarrativeQA. It can be noted that our model
with sample size 5 (choosing 5 relevant sentences)
outperforms the best ROUGE-L score available
so far by 12.62% compared to Tay et al. (2018).
The low performance of Baseline 1 shows that the
hybrid approach (ConZNet) for generating words
from a fixed vocabulary as well as copying words
from the document is better suited than span pre-
diction models (Seq2Seq, ASR, BiDAF, MRU).

To validate the importance of finding relevant
sentences in contrast to using an entire document
for answer generation, we experimented with sam-
ple sizes beyond 5. The performance of our model
gradually dropped from sample size 7 onwards.
This result shows evidence that only a few rele-
vant sentences are sufficient to answer a question.

We also experimented with various sample sizes
to see the effect of intra sentence relations for an-
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Model BLEU-1 BLEU-4 ROUGE-L METEOR
Seq2Seq * 15.89 1.26 13.15 4.08

ASR * 23.20 6.39 22.26 7.77
BiDAF * 33.72 15.53 36.30 15.38

MRU (Tay et al., 2018) 36.55 19.79 41.44 17.87
Baseline 1 (SS=5) 30.22 14.43 34.40 13.36
Baseline 2 (SS=5) 39.35 20.17 43.36 18.01
ConZNet (SS=1) 28.97 16.70 36.02 12.39
ConZNet (SS=3) 36.21 19.33 41.23 17.77
ConZNet (SS=5) 42.76 22.49 46.67 19.24
ConZNet (SS=7) 40.80 21.14 44.01 18.67

*These results are reported in Kočiskỳ et al. (2017)

Table 2: Performance of various models on NarrativeQA dataset (SS=sample size≡ number of relevant sentences)

swer generation. The performance of the model
improved dramatically with sample sizes 3 and 5
compared to the sample size of 1. These results
show that the importance of selecting multiple rel-
evant sentences for generating an answer. In ad-
dition, the low performance of Baseline 2 indi-
cates that just selecting multiple sentences is not
enough, they should also be related to each other.
This result points out that the self-attention mech-
anism in the Context zoom layer is an important
component to identify related relevant sentences.

4 Conclusion

We have proposed a new neural-based architecture
which condenses an original document to facili-
tate fast comprehension in order to generate better
well-formed answers than span based prediction
models. Our model achieved the best performance
on the challenging NarrativeQA dataset. Future
work can focus for example on designing an inex-
pensive preprocess layer, and other strategies for
improved performance on answer generation.
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Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor Melis,
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