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Abstract

Coreference resolution is an intermediate step
for text understanding. It is used in tasks
and domains for which we do not necessarily
have coreference annotated corpora. There-
fore, generalization is of special importance
for coreference resolution. However, while
recent coreference resolvers have notable im-
provements on the CoNLL dataset, they strug-
gle to generalize properly to new domains or
datasets. In this paper, we investigate the role
of linguistic features in building more gen-
eralizable coreference resolvers. We show
that generalization improves only slightly by
merely using a set of additional linguistic fea-
tures. However, employing features and sub-
sets of their values that are informative for
coreference resolution, considerably improves
generalization. Thanks to better generaliza-
tion, our system achieves state-of-the-art re-
sults in out-of-domain evaluations, e.g., on
WikiCoref, our system, which is trained on
CoNLL, achieves on-par performance with a
system designed for this dataset.

1 Introduction

Coreference resolution is the task of recognizing
different expressions that refer to the same en-
tity. The referring expressions are called mentions.
For instance, the sentence “[Susan]1 sent [her]1
daughter to a boarding school” contains two core-
ferring mentions. “her” is an anaphor which refers
to the antecedent “Susan”.

The availability of coreference information ben-
efits various Natural Language Processing (NLP)
tasks including automatic summarization, ques-
tion answering, machine translation and informa-
tion extraction. Current coreference developments
are almost only targeted at improving scores on

∗ This author is currently employed by the Ubiquitous
Knowledge Processing (UKP) Lab, Technische Universität
Darmstadt, https://www.ukp.tu-darmstadt.de.

the CoNLL official test set. However, the supe-
riority of a coreference resolver on the CoNLL
evaluation sets does not necessarily indicate that it
also performs better on new datasets. For instance,
the ranking model of Clark and Manning (2016a),
the reinforcement learning model of Clark and
Manning (2016b) and the end-to-end model of
Lee et al. (2017) are three recent coreference re-
solvers, among which the model of Lee et al.
(2017) performs the best and that of Clark and
Manning (2016b) performs the second best on the
CoNLL development and test sets. However, if we
evaluate these systems on the WikiCoref dataset
(Ghaddar and Langlais, 2016a), which is consis-
tent with CoNLL with regard to coreference def-
inition and annotation scheme, the performance
ranking would be in a reverse order1.

In Moosavi and Strube (2017a), we investigate
the generalization problem in coreference resolu-
tion and show that there is a large overlap between
the coreferring mentions in the CoNLL training
and evaluation sets. Therefore, higher scores on
the CoNLL evaluation sets do not necessarily in-
dicate a better coreference model. They may be
due to better memorization of the training data. As
a result, despite the remarkable improvements in
coreference resolution, the use of coreference res-
olution in other applications is mainly limited to
the use of simple rule-based systems, e.g. Lapata
and Barzilay (2005),Yu and Ji (2016), and Elsner
and Charniak (2008).

In this paper, we explore the role of linguis-
tic features for improving generalization. The in-
corporation of linguistic features is considered as
a potential solution for building more generaliz-
able NLP systems2. While linguistic features3

1The single model of Lee et al. (2017) is used here.
2E.g. there is a dedicated workshop for this topic https:

//sites.google.com/view/relsnnlp.
3We refer to features that are based on linguistic intu-

moosavi@ukp.informatik.tu-darmstadt.de
michael.strube@h-its.org
https://sites.google.com/view/relsnnlp
https://sites.google.com/view/relsnnlp
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were shown to be important for coreference res-
olution, e.g. Uryupina (2007) and Bengtson and
Roth (2008), state-of-the-art systems no longer
use them and mainly rely on word embeddings
and deep neural networks. Since all recent sys-
tems are using neural networks, we focus on the
effect of linguistic features on a neural coreference
resolver.

The contributions of this paper are as follows:

– We show that linguistic features are more ben-
eficial for a neural coreference resolver if we
incorporate features and subsets of their values
that are informative for discriminating corefer-
ence relations. Otherwise, employing linguis-
tic features with all their values only slightly
affects the performance and generalization.

– We propose an efficient discriminative pattern
mining algorithm, called EPM, for determin-
ing (feature, value) pairs that are informative
for the given task. We show that while the in-
formativeness of EPM mined patterns is on-
par with those of its counterparts, it scales best
to large datasets.4

– By improving generalization, we achieve
state-of-the-art performance on all exam-
ined out-of-domain evaluations. Our out-of-
domain performance on WikiCoref is on-par
with that of Ghaddar and Langlais (2016b)’s
coreference resolver, which is a system specif-
ically designed for WikiCoref and uses its do-
main knowledge.

2 Importance of Features in Coreference

Uryupina (2007)’s thesis is one of the most thor-
ough analyses of linguistically motivated features
for coreference resolution. She examines a large
set of linguistic features, i.e. string match, syntac-
tic knowledge, semantic compatibility, discourse
structure and salience, and investigates their inter-
action with coreference relations. She shows that
even imperfect linguistic features, which are ex-
tracted using error-prone preprocessing modules,
boost the performance and argues that coreference
resolvers could and should benefit from linguistic
theories. Her claims are based on analyses on the
MUC dataset. Ng and Cardie (2002), Yang et al.
(2004), Ponzetto and Strube (2006), Bengtson and

itions, e.g. string match, or are acquired from linguistic pre-
processing modules, e.g. POS tags, as linguistic features.

4The EPM code is available at https://github.
com/ns-moosavi/epm

Roth (2008), and Recasens and Hovy (2009) also
study the importance of features in coreference
resolution.

Apart from the mentioned studies, which are
mainly about the importance of individual fea-
tures, studies like Björkelund and Farkas (2012),
Fernandes et al. (2012), and Uryupina and Mos-
chitti (2015) generate new features by combining
basic features. Björkelund and Farkas (2012) do
not use a systematic approach for combining fea-
tures. Fernandes et al. (2012) use the Entropy
guided Feature Induction (EFI) approach (Fernan-
des and Milidiú, 2012) to automatically generate
discriminative feature combinations. The first step
is to train a decision tree on a dataset in which each
sample consists of features describing a mention
pair. The EFI approach traverses the tree from the
root in a depth-first order and recursively builds
feature combinations. Each pattern that is gener-
ated by EFI starts from the root node. As a result,
EFI tends to generate long patterns. A decision
tree does not represent all patterns of data. There-
fore, it is not possible to explore all feature com-
binations from a decision tree.

Uryupina and Moschitti (2015) propose an al-
ternative approach to EFI. They formulate the
problem of generating feature combinations as
a pattern mining approach. They use the Jac-
card Item Mining (JIM) algorithm5 (Segond and
Borgelt, 2011). They show that the classifier that
uses the JIM features significantly outperforms the
one that employs the EFI features.

3 Baseline Coreference Resolver

deep-coref (Clark and Manning, 2016a) and e2e-
coref (Lee et al., 2017) are among the best per-
forming coreference resolvers from which e2e-
coref performs better on the CoNLL test set. deep-
coref is a pipelined system, i.e. a mention detec-
tion first determines the list of candidate men-
tions with their corresponding features. It con-
tains various coreference models including the
mention-pair, mention-ranking, and entity-based
models. The mention-ranking model of deep-
coref has three variations: (1) “ranking” uses the
slack-rescaled max-margin training objective of
Wiseman et al. (2015), (2) “reinforce” is a varia-
tion of the “ranking” model in which the hyper-
parameters are set in a reinforcement learning
framework (Sutton and Barto, 1998), and (3) “top-

5http://www.borgelt.net/jim.html

https://github.com/ns-moosavi/epm
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pairs” is a simple variation of the “ranking” model
that uses a probabilistic objective function and is
used for pretraining the “ranking” model.

e2e-coref is an end-to-end system that jointly
models mention detection and coreference reso-
lution. It considers all possible (start, end) word
spans of each sentence as candidate mentions.
Apart from a single model, e2e-coref includes an
ensemble of five models.

We use deep-coref as the baseline in our experi-
ments. The reason is that some of the examined
features require the head of each mention to be
known, e.g. head match, while e2e-coref mentions
do not have specific heads and heads are automat-
ically determined using an attention mechanism.
We also observe that if we limit e2e-coref candi-
date spans to those that correspond to deep-coref’s
detected mentions, the performance of e2e-coref
drops to a level on-par with deep-coref6.

4 Examined Features

The examined linguistic features include string
match, syntactic, shallow semantic and discourse
features. Mention-based features include:

– Mention type: proper, nominal or pronominal

– Fine mention type: proper, definite or indefi-
nite nominal, or the citation form of pronouns

– Gender: female, male, neutral, unknown

– Number: singular, plural, unknown

– Animacy: animate, inanimate, unknown

– Named entity type: person, location, organiza-
tion, date, time, number, etc.

– Dependency relation: enhanced dependency
relation (Schuster and Manning, 2016) of the
head word to its parent

– POS tags of the first, last, head, two words pre-
ceding and following of each mention

Pairwise features include:

– Head match: both mentions have the same
head, e.g. “red hat” and “the hat”

– String of one mention is contained in the other,
e.g. “Mary’s hat” and “Mary”

– Head of one mention is contained in the other,
e.g. “Mary’s hat” and “hat”

– Acronym, e.g. “Heidelberg Institute for Theo-
retical Studies” and “HITS”

6 The CoNLL score of the e2e-coref single model on the
CoNLL development set drops from 67.36 to 65.81, while
that of the deep-coref “ranking” model is 66.09.

– Compatible pre-modifiers: the set of pre-
modifiers of one mention is contained in that
of the other, e.g. “the red hat that she is wear-
ing” and “the red hat”

– Compatible7 gender, e.g. “Mary” and
“women”

– Compatible number, e.g. “Mary” and “John”

– Compatible animacy, e.g. “those hats” and “it”

– Compatible attributes: compatible gender,
number and animacy, e.g. “Mary” and “she”

– Closest antecedent that has the same head and
compatible premodifiers, e.g. “this new book”
and “This book” in “Take a look at this new
book. This book is one of the best sellers.”

– Closest antecedent that has compatible at-
tributes, e.g. the antecedent “Mary” and the
anaphor “she” in the sentence “John saw Mary,
and she was in a hurry”

– Closest antecedent that has compatible at-
tributes and is a subject, e.g. the antecedent
“Mary” and the anaphor “she” in the sentence
“Mary saw John, but she was in a hurry”

– Closest antecedent that has compatible at-
tributes and is an object, e.g. “Mary” and “she”
in “John saw Mary, and she was in a hurry”

The last three features are similar to the discourse-
level features discussed by Uryupina (2007),
which are created by combining proximity, agree-
ment and salience properties. She shows that such
features are useful for resolving pronouns. we esti-
mate proximity by considering the distance of two
mentions. The salience is also incorporated by dis-
criminating subject or object antecedents. We do
not use any gold information. All features are ex-
tracted using Stanford CoreNLP (Manning et al.,
2014).

5 Impact of Linguistic Features

In this section, we examine the effect of employ-
ing all linguistic features described in Section 4
in a neural coreference resolver, i.e. deep-coref.
We use MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), CEAFe (Luo, 2005), LEA
(Moosavi and Strube, 2016), and the CoNLL score
(Pradhan et al., 2014), i.e. the average F1 value of
MUC, B3, and CEAFe, for evaluations.

The results of employing those features in deep-
coref’s “ranking” and “top-pairs” models on the

7One value is unknown, or both values are identical.



196

CoNLL development set are reported in Table 1.

MUC B3 CEAFe CoNLL LEA
ranking 74.31 64.23 59.73 66.09 60.47
+linguistic 74.35 63.96 60.19 66.17 60.20
top-pairs 73.95 63.98 59.52 65.82 60.07
+linguistic 74.32 64.45 60.19 66.32 60.62

Table 1: Impact of linguistic features on deep-coref
models on the CoNLL development set.

The rows “ranking” and “top-pairs” show the
base results of deep-coref’s “ranking” and “top-
pairs” models, respectively. “+linguistic” rows
represents the results for each of the mention-
ranking models in which the feature set of Sec-
tion 4 is employed. The gender, number, ani-
macy and mention type features, which have less
than five values, are converted to binary features.
Named entity and POS tags, and dependency rela-
tions are represented as learned embeddings.

We observe that incorporating all the linguistic
features bridges the gap between the performance
of “top-pairs” and “ranking”. However, it does not
improve significantly over “ranking”. Henceforth,
we use the “top-pairs” model of deep-coref as the
baseline model to incorporate linguistic features.

To assess the impact on generalization, we eval-
uate “top-pairs” and “+linguistic”8 models that are
trained on CoNLL, on WikiCoref (see Table 2).
We observe that the impact on generalization is
also not notable, i.e. the CoNLL score improves
only by 0.5pp over “ranking”.

MUC B3 CEAFe CoNLL LEA
ranking 63.10 48.43 47.18 52.90 44.40
top-pairs 63.09 48.42 46.05 52.52 44.21
+linguistic 63.99 49.63 46.60 53.40 45.66

Table 2: Out-of-domain evaluation of deep-coref
models on the WikiCoref dataset.

Based on an ablation study, while our feature
set contains numerous features, the resulting im-
provements of “linguistic” over “top-pairs” mainly
comes from the last four pairwise features in Sec-
tion 4, which are carefully designed features.

6 Better Exploiting Linguistic Features

As discussed by Moosavi and Strube (2017a),
there is a large lexical overlap between the core-
ferring mentions of the CoNLL training and eval-
uation sets. As a result, lexical features provide a

8i.e. “top-pairs+linguistic”

very strong signal for resolving coreference rela-
tions.

For linguistic features to be more effective in
current coreference resolvers, which rely heav-
ily on lexical features, they should also provide a
strong signal for coreference resolution.

Additional linguistic features are not necessar-
ily all informative for coreference resolution, es-
pecially if they are extracted automatically and are
noisy. Besides, for features with multiple values,
e.g. mention-based features, only a small subset of
values may be informative.

To better exploit linguistic features, we only
employ (feature, value) pairs9 that are informative
for coreference resolution. Coreference resolution
is a complex task in which features have complex
interactions (Recasens and Hovy, 2009). As a re-
sult, we cannot determine the informativeness of
feature-values in isolation.

We use a discriminative pattern mining ap-
proach (Cheng et al., 2007, 2008; Batal and
Hauskrecht, 2010) that examines all combinations
of feature-values, up to a certain length, and deter-
mines which feature-values are informative when
they are considered in combination.

Due to the large data size (all mention-pairs of
the CoNLL training data) and the high dimension-
ality of feature-values, compared to common eval-
uation sets of pattern mining methods, the exist-
ing discriminative pattern mining approaches were
not applicable to our data. In this section, we pro-
pose an efficient discriminative pattern mining ap-
proach, called Efficient Pattern Miner (EPM), that
is scalable to large NLP datasets. The most impor-
tant properties of EPM are (1) it examines all fre-
quent feature-values combinations, up to the de-
sired length, (2) it is scalable to large datasets, and
(3) it is only data dependent and independent of
the coreference resolver.

6.1 Notation
We use the following notations and definitions
throughout this section:

– D = {Xi, c(Xi)}ni=1: set of n training sam-
ples. Xi is the set of feature-values that de-
scribes the ith sample. c(Xi) ∈ C is the label
of Xi, e.g. coreferent and non-coreferent.

– A = {a1, . . . , al}: set of all feature-values
present in D. Each ai ∈ A is called an item,
e.g. ai =“anaphor type=proper”.

9Henceforth, we refer to them as feature-values.
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– p: pattern p = {ai1 , . . . , aik} is a set of one or
more items, e.g. p ={“anaphor type=proper”,
“antecedent type=proper”}.

– support(p, ci): the number of samples that
contain pattern p and are labeled with ci.

6.2 Data Structure

For representing the input samples, we use the Fre-
quent Pattern Tree (FP-Tree) structure that is the
data structure of the FP-Growth algorithm (Han
et al., 2004), i.e. one of the most common algo-
rithms for frequent pattern mining. FP-Tree pro-
vides a structure for representing all existing pat-
terns of data in a compressed form. Using the
FP-Tree structure allows an efficient enumeration
of all frequent patterns. In the FP-Tree struc-
ture, items are arranged in descending order of
frequency. Frequency of an item corresponds to∑

ci∈C support(ai, ci). Except for the root, which
is a null node, each node n contains an item ai ∈
A. It also contains the support values of ai in the
subpath of the tree that starts from the root and
ends with n, i.e. supportn(ai, cj).

The FP-Tree construction method (Han et al.,
2004) is as follows: (a) scan D to collect the set
of all items, i.e. A. Compute support(ai, cj) for
each item ai ∈ A and label cj ∈ C. Sort A’s
members in descending order according to their
frequencies, i.e.

∑
ci∈C support(ai, ci). (b) cre-

ate a null-labeled node as the root, and (c) scan D
again. For each (Xi, c(Xi)) ∈ D:

1. Order all items aj ∈ Xi according to the or-
der in A.

2. Set the current node (T ) to the root.

3. Consider Xi = [ak|X̄i], where ak is the first
(ordered) item of xi , and X̄i = Xi − ak.
If T has a child n that contains ak then in-
crement supportn(ak, c(Xi)) by one. Oth-
erwise, create a new node n that contains ak
with supportn(ak, c(Xi)) = 1. Add n to the
tree as a child of T .

4. If X̄i is non-empty, set T to n. Assign Xi =
X̄i and go to step 3.

As an example, assume D contains the follow-
ing two samples:

X1={ana-type=NAM, ant-type=NAM, head-
match=F}, C(X1) = 0

X2={ana-type=NAM, ant-type=NAM, head-
match=T}, C(X2) = 1

Based on these samples A={ana-type=NAM,
ant-type=NAM, head-match=F, head-
match=T}, support(ai, 0)ai∈A= {1,1,1,0},
and support(ai, 1)ai∈A={1,1,0,1}. If
we sort A based on ai’s frequencies
(support(ai, 0) + support(ai, 1)), the order-
ing of A’s items will remain the same.

The FP-Tree construction steps for the above
samples are demonstrated in Figure 1. ana-type,
ant-type, and head-match features are abbreviated
as ana, ant, and head, respectively.

ROOT

ana=NAM (1,0)

ant=NAM (1,0)

head=F (1,0)

ROOT

ana=NAM (1,1)

ant=NAM (1,1)

head=F (1,0) head=T (0,1)

Figure 1: Left to right: (partially) constructed FP-
Tree for the example in Section 6.2.

From an initial FP-Tree (T ) that represents all
existing patterns, one can easily obtain a new FP-
Tree in which all patterns include a given pattern
p. This can be done by only including sub-paths
of T that contain pattern p. The new tree is called
conditional FP-Tree of p, Tp. An example of con-
ditional FP-Tree is included in the supplementary
materials.

6.3 Informativeness Measures

We use a discriminative power and an informa-
tion novelty measure for determining informative-
ness. We also use a frequency measure which
determines the required minimum frequency of a
pattern in training samples. It helps to avoid over-
fitting to the properties of the training data.
Discriminative power: We use the G2 likelihood
ratio test (Agresti, 2007) in order to choose pat-
terns whose association with the class variable is
statistically significant.10 The G2 test is success-
fully used for text analysis (Dunning, 1993).
Information Novelty: A large number of redun-
dant patterns can be generated by adding irrelevant
items to a base pattern that is discriminative itself.

10A pattern is considered discriminative if the correspond-
ing p-value is less than a fixed threshold (0.01).
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We consider the pattern p as novel if (1) p predicts
the target class label c significantly better than all
of its containing items, and (2) p predicts c signifi-
cantly better than all of its sub-patterns that satisfy
the frequency, discriminative power, and the first
information novelty conditions. Similar to Batal
and Hauskrecht (2010), we employ a binomial dis-
tribution to determine information novelty.

6.4 Mining Algorithm

The EPM algorithm is summarized in Algo-
rithm 1. It takes FP-Tree T , pattern p on which T
is conditioned, and set of items (Aj ⊂ A) whose
combinations with p will be examined. Initially, p
is empty and the FP-Tree is constructed based on
all frequent items of data and Aj = A. Resulting
patterns are collected in P .

For each ai ∈ Aj , the algorithm builds new
pattern q by combining ai with p. frequent(q)
checks whether q meets the frequency condition.
If q is frequent, the algorithm continues the search
process. Otherwise, it is not possible to build any
frequent pattern out of a non-frequent one. Dis-
criminative power and the first condition of infor-
mation novelty are then checked for pattern q.

Algorithm EPM(T , p, Aj)
foreach ai ∈ Aj do

q = p ∪ {ai}
if Frequent(q) then

if Discriminative(q) then
if Novel(q) then

P = P ∪ q
end

end
if |q| >= Θl then

continue
end
construct Tq = q’s conditional tree
EPM(Tq, q, ancestors(ai))

end
end
Algorithm 1: The EPM algorithm.

We use a threshold (Θl) for the maximum length
of mined patterns. Θl can be set to large values if
more complex and specific patterns are desirable.

If |q| is smaller than Θl, the conditional FP-Tree
Tq is built that represents patterns of T that in-
clude the pattern q. The mining algorithm then
continues to recursively search for more specific

patterns by combining q with the items included
in ancestors(ai), which keeps the list of all an-
cestors of ai in the original FP-Tree. EPM exam-
ines all frequent patterns of up to length Θl.

If we use a statistical test multiple times, the
risk of making false discoveries increases (Webb,
2006). To tackle this, we apply the Bonferroni cor-
rection for multiple tests in a post-pruning func-
tion after the mining process. This function also
applies the second information novelty condition
on the resulting patterns.

7 Why Use EPM?

In this section, we explain why EPM is a better
alternative compared to its counterparts for large
NLP datasets. We compare EPM with two ef-
ficient discriminative pattern mining algorithms,
i.e. Minimal Predictive Patterns (MPP) (Batal and
Hauskrecht, 2010) and Direct Discriminative Pat-
tern Mining (DDPMine) (Cheng et al., 2008), on
standard machine learning datasets.

MPP selects patterns that are significantly more
predictive than all their sub-patterns. It measures
significance by the binomial distribution. For each
pattern of length l, MPP checks 2l−1 sub-patterns.
DDPMine is an iterative approach that selects the
most discriminative pattern at each iteration and
reduces the search space of the next iteration by
removing all samples that include the selected pat-
tern. DDPMine uses the FP-Tree structure.

We show that EPM scales best and compares fa-
vorably based on the informativeness of resulting
patterns. Due to its efficiency, EPM can handle
large datasets similar to ones that are commonly
used in various NLP tasks.

7.1 Experimental Setup

We use the same FP-Tree implementation for
DDPMine and EPM. In all algorithms, we con-
sider a pattern as frequent if it occurs in 10% of
the samples of one of the classes. We use Θl = 3
for both MPP and EPM.

We perform 5-times repeated 5-fold cross vali-
dation and the results are averaged. In each vali-
dation, all experiments are performed on the same
split. We use a linear SVM, i.e. LIBLINEAR 2.11
(Fan et al., 2008), as the baseline classifier.

We use several datasets from the UCI ma-
chine learning repository (Lichman, 2013) whose
characteristics are presented in the first three
columns of Table 3, i.e. the number of (1)
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Data characteristics # Patterns Micro-F Macro-F
Dataset #Features #FI n DDP MPP EPM Orig DDP MPP EPM Orig DDP MPP EPM

cmc (0/2/7) 24 1473 4 99 23 77.5 77.4 76.2 77.3 57.3 57.1 57.7 59.4
nursery (0/0/8) 27 12690 4 258 198 97.5 98.2 99.9 99.8 49.4 79.4 99.8 98.8
sick (6/1/22) 36 2800 5 627 89 94.6 94.7 96.1 95.8 62.6 64.8 81.0 75.6
kr-v-k (0/0/16) 40 28056 7 71 63 99.1 99.1 99.6 99.6 49.8 49.8 87.8 88.4
german (0/7/13) 51 1000 8 548 97 70.7 70.9 73.1 72.7 49.6 55.2 65.3 64.2
connect-4 (0/0/42) 75 67557 - - 907 90.5 - - 90.5 47.5 - - 56.6
census (1/12/28) 76 299284 - - 5618 93.8 - - 93.8 48.4 - - 51.6
poker (0/10/0) 85 1025010 - - 14216 23.1 - - 49.6 22.4 - - 44.5

Table 3: Evaluating the informativeness of DDPMine, MPP and EPM patterns on standard datasets.

(real/integer/nominal) features (#Features), (2)
frequent items (#FI), and (3) samples (n). We
use one[the minority class]-vs-all technique for
datasets with more than two classes.

7.2 How Informative are EPM Patterns?

To evaluate the informativeness of mined patterns,
the common practice is to add them as new fea-
tures to the feature set of the baseline classifier;
the more informative the patterns, the greater im-
pact they would have on the overall performance.
All patterns are added as binary features, i.e. the
feature is true for samples that contain all items of
the corresponding pattern.

The effect of the patterns of DDPMine, MPP
and EPM on the overall accuracy is presented in
Table 3. The columns #Patterns show the num-
ber of patterns mined by each of the algorithms.
The Orig columns show the results of the SVM us-
ing the original feature sets. The DDP, MPP, and
EPM columns show the results of the SVM on the
datasets for which the feature set is extended by
the features mined by DDPMine, MPP, and EPM,
respectively. The results of the 5-repeated 5-fold
cross validation are reported if each single valida-
tion takes less than 10 hours.

Based on the results of Table 3 (1) EPM effi-
ciently scales to larger datasets, (2) MPP and EPM
patterns considerably improves the performance,
and (3) EPM has on-par results with MPP while it
mines considerably fewer patterns.

7.3 How Does it Scale?

Figure 2 compares EPM mining time (in seconds)
with those of DDPMine and MPP. The parame-
ter in the parentheses is the pattern size threshold,
e.g. Θl = 4 for EPM(4). The experiments that
take more than two days are terminated and are
not included. EPM is notably faster in comparison
to the other two approaches. It is notable that the
examined datasets are considerably smaller than
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Figure 2: Comparison of mining times (seconds).

the coreference data, which includes more than 33
million samples and 200 frequent feature-values.

8 Impact of Informative Feature-values

8.1 Experimental Setup
For determining informative feature-values, we
extract all features for all mention-pairs11 of the
CoNLL training data and then apply EPM on this
data. In order to prevent learning annotation er-
rors and specific properties of the training data,
we consider a pattern as frequent if it occurs in
coreference relations of at least m different core-
ferring anaphors (m = 20). Since the majority of
mention-pairs are non-coreferent and we are not
interested in patterns for non-coreferring relations,
we also consider the coreference probability of
each pattern p, i.e. |{Xi|p∈Xi∧c(Xi)=coreferent}|

|{Xi|p∈Xi}| , in
the post-pruning function. The coreference prob-
ability should be higher than a threshold (60% in
our experiments), so we only mine patterns that
are informative for coreferring mentions.

For the coreference resolution experiments, in-
stead of incorporating informative patterns, we in-
corporate feature-values that are included in the

11Each mention is paired with all the preceding mentions.
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MUC B3 CEAFe CoNLL LEA
R P F1 R P F1 R P F1 R P F1

de
ep

-c
or

ef ranking 70.43 79.57 74.72 58.08 69.26 63.18 54.43 64.17 58.90 65.60 54.55 65.68 59.60
reinforce 69.84 79.79 74.48 57.41 70.96 63.47 55.63 63.83 59.45 65.80 53.78 67.23 59.76
top-pairs 69.41 79.90 74.29 57.01 70.80 63.16 54.43 63.74 58.72 65.39 53.31 67.09 59.41
+EPM 71.16 79.35 75.03 59.28 69.70 64.07 56.52 64.02 60.04 66.38 55.63 66.11 60.42
+JIM 69.89 80.45 74.80 57.08 71.58 63.51 55.36 64.20 59.45 65.93 53.46 67.97 59.85

e2
e single 74.02 77.82 75.88 62.58 67.45 64.92 59.16 62.96 61.00 67.27 58.90 63.79 61.25

ensemble 73.73 80.95 77.17 61.83 72.10 66.57 60.11 65.62 62.74 68.83 58.48 68.81 63.23

Table 4: Comparisons on the CoNLL test set. The F1 gains that are statistically significant: (1) “+EPM” compared to “top-
pairs”, “ranking” and “JIM”, (2) “+EPM” compared to “reinforce” based on MUC, B3 and LEA, (3) “single” compared to
“+EPM” based on MUC and B3, and (4) “ensemble” compared to other systems. Significance is measured based on the
approximate randomization test (p < 0.05) (Noreen, 1989).

informative patterns mined by EPM. The reason
is that deep-coref, or any other recent coreference
resolver, uses a deep neural network, which has
a fully automated feature generation process. We
add these feature-values as binary features.

By setting Θl to five,12 EPM results in 13 pair-
wise feature-values, 112 POS tags, i.e. 53 POS
for anaphors and 59 for antecedents, 25 depen-
dency relations, 26 mention types (mention types
or fine mention types), and finally, 14 named en-
tity tags.13

Based on the observation in Section 5, we use
the top-pairs model of deep-coref as the baseline
to employ additional features, i.e. “+EPM” is the
top-pairs model in which EPM feature-values are
incorporated.

8.2 Impact on In-domain Performance

The performance of the “+EPM” model compared
to recent state-of-the-art coreference models on
the CoNLL test set is presented in Table 4. The
“single” and “ensemble” rows represent the results
of the single and ensemble models of e2e-coref.

We also compare EPM with the pattern mining
approach used by Uryupina and Moschitti (2015),
i.e. Jaccard Item Mining (JIM). For a fair compar-
ison, while Uryupina and Moschitti (2015) used
mined patterns for extracting feature templates, we
use them for selecting feature-values. We run the
JIM algorithm on the same data and with the same
setup as that of EPM.14 This results in nine pair-

12We observe that using larger Θl values will result in
many over-specified patterns.

13Following the previous studies that show different fea-
tures are of different importance for various types of men-
tions, e.g. Denis and Baldridge (2008) and Moosavi and
Strube (2017b), we mine a separate set of patterns for each
type of anaphor. These resulting feature-values are the union
of informative feature-values for all types of anaphora.

14 We set the minimum frequency, maximum pattern
length and score+ threshold parameters of JIM to 20, 5 and

wise features, 260 POS tags, 38 dependency rela-
tions, 32 mention types, and 18 named entity tags.
The “+JIM” row shows the results of deep-coref
top-pairs model in which these feature-values are
incorporated. As we see, EPM feature-values re-
sult in significantly better performance than those
of JIM while the number of EPM feature-values is
considerably less than JIM.

MUC B3 CEAFe CoNLL LEA
+EPM 74.92 65.03 60.88 66.95 61.34
-pairwise 74.37 64.55 60.46 66.46 60.71
-type 74.71 64.87 61.00 66.86 61.07
-dep 74.57 64.79 60.65 66.67 61.01
-NER 74.61 65.05 60.93 66.86 61.27
-POS 74.74 65.04 60.88 66.89 61.30
+pairwise 74.25 64.33 60.02 66.20 60.57

Table 5: Impact of different EPM feature groups
on the CoNLL development set.

Feature Ablation Table 5 shows the effect of
each group of EPM feature-values, i.e. pairwise
features, mention types, dependency relations,
named entity tags and POS tags, on the perfor-
mance of “+EPM”. The performance of “+EPM”
from which each of the above feature groups is
removed, one feature group at a time, is repre-
sented as “-pairwise”, “-types”, “-dep”, “-NER”,
and “-POS”, respectively. The POS and named
entity tags have the least and the pairwise features
have the most significant effect. Since pairwise
features have the most significant effect, we also
perform an experiment in which only pairwise fea-
tures are incorporated in the “top-pairs” model, i.e.
“+pairwise”. The results of “-pairwise” compared
to “+pairwise” show that pairwise feature-values
have a significant impact, but only when they
are considered in combination with other EPM

0.6.
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MUC B3 CEAFe CoNLL LEA
R P F1 R P F1 R P F1 R P F1

de
ep

-c
or

ef ranking 57.72 69.57 63.10 41.42 58.30 48.43 42.20 53.50 47.18 52.90 37.57 54.27 44.40
reinforce 62.12 58.98 60.51 46.98 45.79 46.38 44.28 46.35 45.29 50.73 42.28 41.70 41.98
top-pairs 56.31 71.74 63.09 39.78 61.85 48.42 40.80 52.85 46.05 52.52 35.87 57.58 44.21
+EPM 58.23 74.05 65.20 43.33 63.90 51.64 43.44 56.33 49.05 55.30 39.70 59.81 47.72

e2
e single 60.14 64.46 62.22 45.20 51.75 48.25 38.18 43.50 40.67 50.38 40.70 47.56 43.86

ensemble 59.58 71.60 65.04 44.64 60.91 51.52 40.38 49.17 44.35 53.63 40.73 56.97 47.50
G&L 66.06 62.93 64.46 57.73 48.58 52.76 46.76 49.54 48.11 55.11 - - -

Table 6: Out-of-domain evaluation on the WikiCoref dataset. The highest F1 scores are boldfaced.

feature-values.

in-domain out-of-domain
CoNLL LEA CoNLL LEA

pt (Bible)

deep-coref ranking 75.61 71.00 66.06 57.58
+EPM 76.08 71.13 68.14 60.74

e2e-coref single 77.80 73.73 65.22 58.26
ensemble 78.88 74.88 65.45 59.71

wb (weblog)

deep-coref ranking 61.46 53.75 57.17 48.74
+EPM 61.97 53.93 61.52 53.78

e2e-coref single 62.02 53.09 60.69 52.69
ensemble 64.76 57.54 60.99 52.99

Table 7: In-domain and out-of-domain evaluations
for the pt and wb genres of the CoNLL test set.
The highest scores are boldfaced.

8.3 Impact on Generalization
We use the same setup as that of Moosavi and
Strube (2017a) for evaluating generalization in-
cluding (1) training on the CoNLL data and test-
ing on WikiCoref15 and (2) excluding a genre of
the CoNLL data from training and development
sets and testing on the excluded genre. Similar to
Moosavi and Strube (2017a), we use the pt and wb
genres for the latter evaluation setup.

The results of the first evaluation setup are
shown in Table 6. The best performance on
WikiCoref is achieved by Ghaddar and Langlais
(2016a) (“G&L” in Table 6) who introduced Wi-
kiCoref and design a domain-specific coreference
resolver that makes use of the Wikipedia markups
of a document as well as links to Freebase, which
are annotated in WikiCoref.

Incorporating EPM feature-values improves the
performance by about three points. While
“+EPM” does not use the WikiCoref data dur-
ing training, and unlike “G&L”, it does not em-
ploy any domain-specific features, it achieves on-
par performance with that of “G&L”. This indeed

15WikiCoref only contains 30 documents, which is not
enough for training neural coreference resolvers.

shows the effectiveness of informative feature-
values in improving generalization.

The second set of generalization experiments is
reported in Table 7. “in-domain” columns show
the results when the evaluation genres were in-
cluded in training and development sets while the
“out-of-domain” columns show the results when
the evaluation genres were excluded. As we
can see, “+EPM” generalizes best, and in out-of-
domain evaluations, it considerably outperforms
the ensemble model of e2e-coref, which has the
best performance on the CoNLL test set.

9 Conclusions

In this paper, we show that employing linguistic
features in a neural coreference resolver signifi-
cantly improves generalization. However, the in-
corporated features should be informative enough
to be taken into account in the presence of lexi-
cal features, which are very strong features in the
CoNLL dataset. We propose an efficient algorithm
to determine informative feature-values in large
datasets. As a result of a better generalization, we
achieve state-of-the-art results in all examined out-
of-domain evaluations.
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