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Abstract

We introduce ParlAI (pronounced “par-lay”),
an open-source software platform for dialog
research implemented in Python, available at
http://parl.ai. Its goal is to provide a
unified framework for sharing, training and
testing dialog models; integration of Amazon
Mechanical Turk for data collection, human
evaluation, and online/reinforcement learning;
and a repository of machine learning models
for comparing with others’ models, and im-
proving upon existing architectures. Over 20
tasks are supported in the first release, includ-
ing popular datasets such as SQuAD, bAbI
tasks, MCTest, WikiQA, QACNN, QADaily-
Mail, CBT, bAbI Dialog, Ubuntu, OpenSubti-
tles and VQA. Several models are integrated,
including neural models such as memory net-
works, seq2seq and attentive LSTMs.

1 Introduction
The purpose of language is to accomplish communi-
cation goals, which typically involve a dialog between
two or more communicators (Crystal, 2004). Hence,
trying to solve dialog is a fundamental goal for re-
searchers in the NLP community. From a machine
learning perspective, building a learning agent capa-
ble of dialog is also fundamental for various reasons,
chiefly that the solution involves achieving most of the
subgoals of the field, and in many cases those subtasks
are directly impactful to the task.

On the one hand dialog can be seen as a single task
(learning how to talk) and on the other hand as thou-
sands of related tasks that require different skills, all us-
ing the same input and output format. The task of book-
ing a restaurant, chatting about sports or the news, or
answering factual or perceptually-grounded questions
all fall under dialog. Hence, methods that perform task
transfer appear crucial for the end-goal. Memory, log-
ical and commonsense reasoning, planning, learning
from interaction, learning compositionality and other
AI subgoals also have clear roles in dialog.

However, to pursue these research goals, we require
software tools that unify the different dialog sub-tasks

Figure 1: The tasks in the first release of ParlAI.

Figure 2: MTurk Live Chat for collecting QA datasets
in ParlAI.

and the agents that can learn from them. Working on
individual datasets can lead to siloed research, where
the overfitting to specific qualities of a dataset do not
generalize to solving other tasks. For example, meth-
ods that do not generalize beyond WebQuestions (Be-
rant et al., 2013) because they specialize on knowledge
bases only, SQuAD (Rajpurkar et al., 2016) because
they predict start and end context indices (see Sec. 7),
or bAbI (Weston et al., 2015) because they use support-
ing facts or make use of its simulated nature.

In this paper we present a software platform, Par-
lAI (pronounced “par-lay”), that provides researchers
a unified framework for training and testing dialog
models, especially multitask training or evaluation over
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many tasks at once, as well as seamless integration with
Amazon Mechanical Turk. Over 20 tasks are supported
in the first release, including many popular datasets, see
Fig. 1. Included are examples of training neural mod-
els with PyTorch and Lua Torch1. Using Theano2 or
Tensorflow3 instead is also straightforward.

The overarching goal of ParlAI is to build a
community-based platform for easy access to both
tasks and learning algorithms that perform well on
them, in order to push the field forward. This pa-
per describes our goals in detail, and gives a technical
overview of the platform.

2 Goals

The goals of ParlAI are as follows:
A unified framework for development of dialog
models. ParlAI aims to unify dialog dataset input for-
mats fed to machine learning agents to a single format,
and to standardize evaluation frameworks and metrics
as much as possible. Researchers can submit their new
tasks and their agent training code to the repository to
share with others in order to aid reproducibility, and to
better enable follow-on research.
General dialog involving many different skills.
ParlAI contains a seamless combination of real and
simulated language datasets, and encourages multitask
model development & evaluation by making multitask
models as easy to build as single task ones. This should
reduce overfitting of model design to specific datasets
and encourage models that perform task transfer, an im-
portant prerequisite for a general dialog agent.
Real dialog with people. ParlAI allows collecting,
training and evaluating on live dialog with humans via
Amazon Mechanical Turk by making it easy to connect
Turkers with a dialog agent, see Fig. 2. This also en-
ables comparison of Turk experiments across different
research groups, which has been historically difficult.
Towards a common general dialog model. Our aim
is to motivate the building of new tasks and agents
that move the field towards a working dialog model.
Hence, each new task that goes into the repository
should build towards that common goal, rather than be-
ing seen solely as a piece of independent research.

3 General Properties of ParlAI

ParlAI consists of a number of tasks and agents that
can be used to solve them. All the tasks in ParlAI
have a single format (API) which makes applying any
agent to any task, or multiple tasks at once, simple.
The tasks include both fixed supervised/imitation learn-
ing datasets (i.e. conversation logs) and interactive (on-
line or reinforcement learning) tasks, as well as both
real language and simulated tasks, which can all be

1
http://pytorch.org/ and http://torch.ch/

2
http://deeplearning.net/software/theano/

3
https://www.tensorflow.org/

teacher = SquadTeacher(opt)
agent = MyAgent(opt)
world = World(opt, [teacher, agent])
for i in range(num_exs):
world.parley()
print(world.display())

def parley(self):
for agent in self.agents:
act = agent.act()
for other_agent in self.agents:
if other_agent != agent:
other_agent.observe(act)

Figure 3: ParlAI main for displaying data (top) and the
code for the world.parley call (bottom).

seamlessly trained on. ParlAI also supports other me-
dia, e.g. images as well as text for visual question an-
swering (Antol et al., 2015) or visually grounded dia-
log (Das et al., 2017). ParlAI automatically downloads
tasks and datasets the first time they are used. One
or more Mechanical Turkers can be embedded inside
an environment (task) to collect data, train or evaluate
learning agents.

Examples are included in the first release of train-
ing with PyTorch and Lua Torch. ParlAI uses ZeroMQ
to talk to languages other than Python (such as Lua
Torch). Both batch training and hogwild training of
models are supported and built into the code. An ex-
ample main for training an agent is given in Fig. 3.

4 Worlds, Agents and Teachers
The main concepts (classes) in ParlAI are worlds,
agents and teachers:
• world – the environment. This can vary from be-

ing very simple, e.g. just two agents conversing,
to much more complex, e.g. multiple agents in an
interactive environment.

• agent – an agent that can act (especially, speak) in
the world. An agent is either a learner (i.e. a ma-
chine learned system), a hard-coded bot such as
one designed to interact with learners, or a human
(e.g. a Turker).

• teacher – a type of agent that talks to the learner in
order to teach it, e.g. implements one of the tasks
in Fig. 1.

After defining a world and the agents in it, a main
loop can be run for training, testing or displaying,
which calls the function world.parley() to run one time
step of the world. Example code to display data is given
in Fig. 3, and the output of running it is in Fig. 4.

5 Actions and Observations
All agents (including teachers) speak to each other in
a single common format – the observation/action ob-
ject (a python dict), see Fig. 5. It is used to pass text,
labels and rewards between agents. The same object
type is used for both talking (acting) and listening (ob-
serving), but with different values in the fields. Hence,
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python examples/display_data.py -t babi

[babi:Task1k:4]: The office is north of the kitchen.
The bathroom is north of the office.
What is north of the kitchen?
[cands: office|garden|hallway|bedroom|kitchen|bathroom]

[RepeatLabelAgent]: office
- - - - - - - - - - - - - - - - - - - - -
˜˜
[babi:Task1k:2]: Daniel went to the kitchen.
Daniel grabbed the football there.
Mary took the milk there.
Mary journeyed to the office.
Where is the milk?
[cands: office|garden|hallway|bedroom|kitchen|bathroom]

[RepeatLabelAgent]: office

Figure 4: Example output to display data of a given
task (see Fig. 3 for corresponding code).

the object is returned from agent.act() and passed in to
agent.observe(), see Fig. 3.

The fields of the message are as follows:
• text: a speech act.
• id: the speaker’s identity.
• reward: a real-valued reward assigned to the re-

ceiver of the message.
• episode done: indicating the end of a dialog.
For supervised datasets, there are some additional

fields that can be used:
• label: a set of answers the speaker is expecting

to receive in reply, e.g. for QA datasets the right
answers to a question.

• label candidates: a set of possible ways to re-
spond supplied by a teacher, e.g. for multiple
choice datasets or ranking tasks.

• text candidates: ranked candidate predictions
from a learner. Used to evaluate ranking metrics,
rather than just evaluate the single response in the
text field.

• metrics: A teacher can communicate to a learning
agent metrics on its performance.

Finally other media can also be supported with addi-
tional fields:

• image: an image, e.g. for Visual Question An-
swering or Visual Dialog datasets.

As the dict is extensible, we can add more fields over
time, e.g. for audio and other sensory data, as well as
actions other than speech acts.

Each of these fields are technically optional, depend-
ing on the dataset, though the text field will most likely
be used in nearly all exchanges. A typical exchange
from a ParlAI training set is shown in Fig. 6.

6 Code Structure

The ParlAI codebase has five main directories:
• core: the primary code for the platform.
• agents: contains agents which can interact with

the worlds/tasks (e.g. learning models).
• examples: contains examples of different mains

(display data, training and evaluation).

Observation/action dict
Passed back and forth between agents & environment.

Contains:
.text text of speaker(s)
.id id of speaker(s)
.reward for reinforcement learning
.episode done signals end of episode

For supervised dialog datasets:
.label
.label candidates multiple choice options
.text candidates ranked candidate responses
.metrics evaluation metrics

Other media:
.image for VQA or Visual Dialog

Figure 5: The observation/action dict is the central
message passing object in ParlAI: agents send this mes-
sage to speak, and receive a message of this form to
observe other speakers and the environment.

• tasks: contains code for the different tasks avail-
able from within ParlAI.

• mturk: contains code for setting up Mechanical
Turk and sample MTurk tasks.

6.1 Core

The core library contains the following files:
• agents.py: defines the Agent base class for all

agents, which implements the observe() and act()
methods, the Teacher class which also reports
metrics, and MultiTaskTeacher for multitask train-
ing.

• dialog teacher.py: the base teacher class for
doing dialog with fixed chat logs.

• worlds.py: defines the base World class, Di-
alogPartnerWorld for two speakers, MultiAgent-
DialogWorld for more than two, and two contain-
ers that can wrap a chosen environment: Batch-
World for batch training, and HogwildWorld for
training across multiple threads.

• dict.py: code for building language dictionar-
ies.

• metrics.py: computes exact match, F1 and
ranking metrics for evaluation.

• params.py: uses argparse to interpret command
line arguments for ParlAI

6.2 Agents

The agents directory contains machine learning agents.
Currently available within this directory:
• drqa: an attentive LSTM model DrQA (Chen

et al., 2017) implemented in PyTorch that has
competitive results on SQuAD (Rajpurkar et al.,
2016) amongst other datasets.

• memnn: code for an end-to-end memory network
(Sukhbaatar et al., 2015) in Lua Torch.
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Teacher: {
’text’: ’Sam went to the kitchen.\n Pat gave Sam the

milk.\nWhere is the milk?’,\\
’labels’: [’kitchen’],
’label_candidates’: [’hallway’, ’kitchen’, ’bathroom’],
’episode_done’: False

}

Student: {
’text’: ’hallway’

}

Teacher: {
’text’: ’Sam went to the hallway\nPat went to the

bathroom\nWhere is the milk?’,
’labels’: [’hallway’],
’label_candidates’: [’hallway’, ’kitchen’, ’bathroom’],
’done’: True

}

Student: {
’text’: ’hallway’

}
...

Figure 6: A typical exchange from a ParlAI training set
involves messages passed using the observation/action
dict (the test set would not include labels). Shown here
is the bAbI dataset.

• remote agent: basic class for any agent connect-
ing over ZeroMQ.

• seq2seq: basic GRU sequence to sequence model
(Sutskever et al., 2014)

• ir baseline: information retrieval (IR) base-
line that scores responses with TFIDF-weighted
matching (Ritter et al., 2011).

• repeat label: basic class for merely repeating all
data sent to it (e.g. for debugging).

6.3 Examples

This directory contains examples of different mains:.
• display data: display data from a particular

task provided on the command-line.
• display model: show the predictions of a pro-

vided model.
• eval model: compute evaluation metrics for a

given model on a given task.
• train model: execute a standard training proce-

dure with a given task and model, including log-
ging and possibly alternating between training and
validation.

For example, one can display 10 random examples
from the bAbI tasks (Weston et al., 2015):
python display data.py -t babi -n 10

Display multitasking bAbI and SQuAD (Rajpurkar
et al., 2016) at the same time:

python display data.py -t babi,squad

Evaluate an IR baseline model on the Movies Subred-
dit:

python eval model.py -m ir baseline -t

‘#moviedd-reddit’ -dt valid

Train an attentive LSTM model on the SQuAD dataset
with a batch size of 32 examples:

python train model.py -m drqa -t squad

-b 32

6.4 Tasks

Over 20 tasks are supported in the first release, includ-
ing popular datasets such as SQuAD (Rajpurkar et al.,
2016), bAbI tasks (Weston et al., 2015), QACNN and
QADailyMail (Hermann et al., 2015), CBT (Hill et al.,
2015), bAbI Dialog tasks (Bordes and Weston, 2016),
Ubuntu (Lowe et al., 2015) and VQA (Antol et al.,
2015). All the datasets in the first release are shown
in Fig. 14.

The tasks are separated into five categories:
• Question answering (QA): one of the simplest

forms of dialog, with only 1 turn per speaker. Any
intelligent dialog agent should be capable of an-
swering questions, and there are many kinds of
questions (and hence datasets) that one can build,
providing a set of very important tests. Question
answering is particularly useful in that the evalu-
ation is simpler than other forms of dialog if the
dataset is labeled with QA pairs and the questions
are mostly unambiguous.

• Sentence Completion (Cloze Tests): the agent has
to fill in a missing word in the next utterance in a
dialog. Again, this is specialized dialog task, but
it has the advantage that the datasets are cheap to
make and evaluation is simple, which is why the
community has built several such datasets.

• Goal-Oriented Dialog: a more realistic class of
tasks is where there is a goal to be achieved by
the end of the dialog. For example, a customer
and a travel agent discussing a flight, one speaker
recommending another a movie to watch, and so
on.

• Chit-Chat: dialog tasks where there may not be
an explicit goal, but more of a discussion — for
example two speakers discussing sports, movies
or a mutual interest.

• Visual Dialog: dialog is often grounded in physi-
cal objects in the world, so we also include dialog
tasks with images as well as text.

Choosing a task in ParlAI is as easy as specifying
it on the command line, as shown in the dataset dis-
play utility, Fig. 4. If the dataset has not been used
before, ParlAI will automatically download it. As all
datasets are treated in the same way in ParlAI (with
a single dialog API, see Sec. 5), a dialog agent can
switch training and testing between any of them. Im-
portantly, one can specify many tasks at once (multi-
tasking) by simply providing a comma-separated list,
e.g. the command line arguments -t babi,squad, to
use those two datasets, or even all the QA datasets at
once (-t #qa) or indeed every task in ParlAI at once
(-t #all). The aim is to make it easy to build and
evaluate very rich dialog models.

Each task is contained in a folder with the following
standardized files:

4All dataset descriptions and references are at http://
parl.ai in the README.md and task list.py.
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• build.py: file for setting up data for the task,
including downloading the data the first time it is
requested.

• agents.py: contains teacher class(es), agents
that live in the world of the task.

• worlds.py: optionally added for tasks that need
to define new/complex environments.

To add a new task, one must implement build.py
to download any required data, and agents.py for the
teacher. If the data consist of fixed logs/dialog scripts
such as in many supervised datasets (SQuAD, Ubuntu,
etc.) there is very little code to write. For more com-
plex setups where an environment with interaction has
to be defined, new worlds and/or teachers can be im-
plemented.

6.5 Mechanical Turk

An important part of ParlAI is seamless integration
with Mechanical Turk for data collection, training or
evaluation. Human Turkers are also viewed as agents
in ParlAI and hence human-human, human-bot, or mul-
tiple humans and bots in group chat can all converse
within the standard framework, switching out the roles
as desired with no code changes to the agents. This is
because Turkers also receive and send via the same in-
terface: using the fields of the observation/action dict.
We provide two examples in the first release:

(i) qa collector: an agent that talks to Turkers to col-
lect question-answer pairs given a context para-
graph to build a QA dataset, see Fig. 2.

(ii) model evaluator: an agent which collects ratings
from Turkers on the performance of a bot on a
given task.

Running a new MTurk task involves implementing
and running a main file (like run.py) and defining sev-
eral task specific parameters for the world and agent(s)
you wish humans to talk to. For data collection tasks
the agent should pose the problem and ask the Turker
for e.g. the answers to questions, see Fig. 2. Other pa-
rameters include the task description, the role of the
Turker in the task, keywords to describe the task, the
number of hits and the rewards for the Turkers. One
can run in a sandbox mode before launching the real
task where Turkers are paid.

For online training or evaluation, the Turker can talk
to your machine learning agent, e.g. LSTM, memory
network or other implemented technique. New tasks
can be checked into the repository so researchers can
share data collection and data evaluation procedures
and reproduce experiments.

7 Demonstrative Experiment

To demonstrate ParlAI in action, we give results in Ta-
ble 1 of DrQA, an attentive LSTM architecture with
single task and multitask training on the SQuAD and
bAbI tasks, a combination not shown before with any
method, to our knowledge.

This experiment simultaneously shows the power of
ParlAI — how easy it is to set up this experiment — and
the limitations of current methods. Almost all methods
working well on SQuAD have been designed to predict
a phrase from the given context (they are given labeled
start and end indices in training). Hence, those models
cannot be applied to all dialog datasets, e.g. some of
the bAbI tasks include yes/no questions, where yes and
no do not appear in the context. This highlights that re-
searchers should not focus models on a single dataset.
ParlAI does not provide start and end label indices as
its API is dialog only, see Fig. 5. This is a deliberate
choice that discourages such dataset overfitting/ spe-
cialization. However, this also results in a slight drop
in performance because less information is given5 (66.4
EM vs. 69.5 EM, see (Chen et al., 2017), which is still
in the range of many existing well-performing meth-
ods, see https://stanford-qa.com).

Overall, while DrQA can solve some of the bAbI
tasks and performs well on SQuAD, it does not match
the best performing methods on bAbI (Seo et al., 2016;
Henaff et al., 2016), and multitasking does not help.
Hence, ParlAI lays out the challenge to the commu-
nity to find learning algorithms that are generally ap-
plicable and that benefit from training over many dialog
datasets.

8 Related Software

There are many existing independent dialog datasets,
and training code for individual models that work on
some of them. Many are framed in slightly different
ways (different formats, with different types of super-
vision), and ParlAI attempts to unify this fragmented
landscape.

There are some existing software platforms that are
related in their scope, but not in their specialization.
OpenAI’s Gym and Universe6 are toolkits for devel-
oping and comparing reinforcement learning (RL) al-
gorithms. Gym is for games like Pong or Go, and Uni-
verse is for online games and websites. Neither focuses
on dialog or covers the case of supervised datasets as
we do.

CommAI7 is a framework that uses textual commu-
nication for the goal of developing artificial general in-
telligence through incremental tasks that test increas-
ingly more complex skills, as described in (Mikolov
et al., 2015). CommAI is in a RL setting, and con-
tains only synthetic datasets, rather than real natural
language datasets as we do here. In that regard it has
a different focus to ParlAI, which emphasizes the more
immediate task of real dialog, rather than directly on
evaluation of machine intelligence.

5As we now do not know the location of the true answer,
we randomly pick the start and end indices of any context
phrase matching the given training set answer, in some cases
this is unique.

6
https://gym.openai.com/ and https://universe.openai.com/

7
https://github.com/facebookresearch/CommAI-env
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Task Single Multitask
bAbI 10k 1: Single Supporting Fact 100 100

2: Two Supporting Facts 98.1 54.3
3: Three Supporting Facts 45.4 58.1
4: Two Arg. Relations 100 100
5: Three Arg. Relations 98.9 98.2
11: Basic Coreference 100 100
12: Conjunction 100 100
13: Compound Coref. 100 100
14: Time Reasoning 99.8 99.9
16: Basic Induction 47.7 48.2

SQuAD (Dev. Set) 66.4 63.4

Table 1: Test Accuracy of DrQA on bAbI 10k and
SQuAD (Exact Match metric) using ParlAI. The subset
of bAbI tasks for which the answer is exactly contained
in the text is used.

9 Conclusion and Outlook
ParlAI is a framework allowing the research commu-
nity to share existing and new tasks for dialog as well
as agents that learn on them, and to collect and evaluate
conversations between agents and humans via Mechan-
ical Turk. We hope this tool enables systematic devel-
opment and evaluation of dialog agents, helps push the
state of the art in dialog further, and benefits the field
as a whole.
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