
Proceedings of the 2017 EMNLP System Demonstrations, pages 19–24
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

GraphDocExplore:
A Framework for the Experimental Comparison

of Graph-based Document Exploration Techniques

Tobias Falke and Iryna Gurevych
Research Training Group AIPHES and UKP Lab

Department of Computer Science, Technische Universität Darmstadt
https://www.aiphes.tu-darmstadt.de

Abstract

Graphs have long been proposed as a tool
to browse and navigate in a collection of
documents in order to support exploratory
search. Many techniques to automatically
extract different types of graphs, showing
for example entities or concepts and differ-
ent relationships between them, have been
suggested. While experimental evidence
that they are indeed helpful exists for some
of them, it is largely unknown which type
of graph is most helpful for a specific ex-
ploratory task. However, carrying out ex-
perimental comparisons with human sub-
jects is challenging and time-consuming.
Towards this end, we present the Graph-
DocExplore framework. It provides an in-
tuitive web interface for graph-based doc-
ument exploration that is optimized for ex-
perimental user studies. Through a generic
graph interface, different methods to ex-
tract graphs from text can be plugged into
the system. Hence, they can be compared
at minimal implementation effort in an en-
vironment that ensures controlled compar-
isons. The system is publicly available un-
der an open-source license.1

1 Introduction

Structures that reveal relationships between dif-
ferent information units in a document collection,
e.g. relations between mentioned organizations,
have been proposed to support humans analyzing
document collections. Especially in exploratory
search scenarios, where the information need is
complex and cannot be served by a simple key-
word search (Marchionini, 2006), these structures

1https://github.com/UKPLab/
emnlp2017-graphdocexplore

are deemed beneficial. Even without supporting
software, humans were found to naturally create
such structures for themselves (Chin et al., 2009).

Consequently, many types of structures and ap-
proaches to extract them from text have been pro-
posed. These include concept hierarchies (Sander-
son and Croft, 1999; Yang, 2012), concept maps
(Briggs et al., 2004), predicate-argument networks
(van Ham et al., 2009), entailment between propo-
sitions (Adler et al., 2012) or co-occurrences of
named entities (Benikova et al., 2014). All of
them can be seen as labeled graphs in which nodes
and edges represent different information units ex-
tracted from a document collection.

However, what remains unclear is which of
these graphs are most helpful for a specific doc-
ument exploration task. Only few papers evalu-
ate their proposed graphs in a user study and usu-
ally just compare it to baselines such as keyword-
based search. Direct comparisons between differ-
ent types of graphs are missing.

Carrying out such a comparative user study is
a difficult endeavor. Typically, one would have
different groups of subjects that work on a given
task under different conditions, e.g. with graph
A or B. The subjects’ performance on the task,
measured for example in completion time or re-
sult quality, would then be compared between the
groups to draw conclusions on whether graph A
or B is more helpful. The first challenge is that a
full end-user application has to be built around a
graph-extraction method for such an experiment,
which usually involves a non-trivial amount of im-
plementation work. Second, even if full systems
are already available for comparison, they might
not be usable: Every difference between two sys-
tems, as small as different font sizes or colors, can
influence a subject’s performance. As a result, ob-
served performance differences cannot be directly
attributed to the different graphs.

19



1 

2 

3 

5 

4 

Figure 1: User interface: After entering a search term (1), the system displays retrieved documents
(right) and a graph built from them (left). When clicking on a node or edge (2), documents are filtered
and highlighted (3) according to the spans associated with the selected graph element. Active filters are
shown at the top (4). Opening a document (5) shows its full text with all highlighted spans.

In this work, we present GraphDocExplore, a
framework for graph-based document exploration.
Due to the following properties, it is particularly
useful to carry out user studies as described above:

User Interface The framework already contains
a fully implemented, modern and intuitive web ap-
plication for explorative search in documents that
can be used for experimental studies.

Graph-Text-Integration Rather than showing
the constructed graph independently, it is tightly
integrated with the documents via navigation, fil-
tering and highlighting features to ensure that a
user can effectively make use of it (see Figure 1).

Logging All actions a user performs in the web
application are captured in a detailed log for fur-
ther analysis and reconstruction of user behavior.

Graph-Independence Different methods to ex-
tract graphs can be plugged into a generic inter-
face, such that fair experimental comparisons that
effectively control for all other confounding fac-
tors can be set up easily and quickly.

Dynamic Graphs Integrated methods for graph
extraction are notified about all user actions and
can dynamically modify their graph during a ses-
sion, allowing to study the personalization of a
graph based on the user actions.

The remainder of this paper is organized as fol-
lows: First, we review different types of graphs
and corresponding systems proposed in the past

(§2). Then, we present our framework from a
functional (§3) and technical perspective (§4). Fi-
nally, we report results of a first user study (§5).

2 Related Work

Many methods to structure document collections
can be seen as different kinds of labeled graphs
generated from the documents. Early work stud-
ied concept hierarchies which are graphs with
concepts as nodes and edges representing hy-
ponomy relations (Sanderson and Croft, 1999;
Lawrie et al., 2001; Kummamuru et al., 2004).
More recently, personalized versions were pro-
posed (Yang, 2012, 2015). Concept maps are
a more expressive variant of these graphs in
which the edges have different labels defining their
meaning rather than all being taxonomic (Novak
and Gowin, 1984) and can be used for the same
purpose (Briggs et al., 2004). Another popu-
lar type of graph shows keywords (Tixier et al.,
2016) or entities (Benikova et al., 2014) as nodes
with unlabeled edges between them depicting co-
occurrences. Other graphs were suggested to de-
pict entailment (Adler et al., 2012) or relations ex-
pressed by a specific predicate (van Ham et al.,
2009). All of these structures can be captured with
the abstract graph model in our framework.

In addition to specific graphs, more complex
applications, such as new/s/leak (Yimam et al.,
2016), Jigsaw (Görg et al., 2013) or Overview2,

2https://www.overviewdocs.com

20



Figure 2: Layouts: Full (left): The graph is displayed completely and can be zoomed, panned and moved.
Focused (right): A single focus node and its neighbors are visible. Selecting a neighbor moves the focus.

have been developed to support document explo-
ration by integrating many different techniques,
including graphs, in a single application. In con-
trast to our work, their focus is on productive use,
while we are mainly interested in the experimental
evaluation, requiring us to study the use of specific
graphs in isolation. Moreover, note that graphs
in which nodes represent full documents, as ob-
tained by traditional document clustering or docu-
ment chains (Shahaf and Guestrin, 2010), are less
useful for our application because no fine-grained
highlights can be provided for nodes and edges.

With regard to experimental evaluations, only
few of the suggested graphs were extrinsically
evaluated and proven to be helpful in an ex-
ploratory search scenario. Both Kummamuru et al.
(2004) and Yang (2012) compare their approaches
with previous work in user studies, but restrict the
comparison to other methods producing concept
hierarchies. Kang et al. (2011) compare the pow-
erful Jigsaw system against simpler alternatives,
including keyword-based search and pen and pa-
per. To the best of our knowledge, no studies have
been carried out for other types of graphs, e.g. for
concept maps, and there are no studies comparing
different types of graphs against each other. Thus,
the framework presented in this work is highly
needed to make such comparisons.

3 Functionality

The system for graph-based document exploration
was designed in the style of well-known search
engine interfaces. As shown in Figure 1, the list

of search results is complemented by a visual-
ization of the graph that has been extracted from
the retrieved documents. This type of integration
follows the popular paradigm of faceted search,
in which different taxonomies, either predefined
or extracted from the results (Hearst and Stoica,
2009), are offered along with the results to filter
them. Instead of the typically small, single-level
taxonomies, our application takes this idea further
by offering a comprehensive graph.

User Interaction After executing a query, a user
can both scroll through the list of retrieved doc-
uments or navigate through the generated graph.
Every node and (optionally) edge in the graph is
associated with at least one span in one of the re-
trieved documents (see Figure 5). Note that these
spans must not match the label of the graph ele-
ment, but can be other phrases referring to it. If
a user selects an element in the graph, the corre-
sponding spans are highlighted in the document
snippets and the results are filtered to the subset
of documents that contain at least one associated
span. Filters can be combined, which reduces the
documents to those containing spans for all, can
be temporally deactivated and can also be removed
completely. In the result list, the number of corre-
sponding spans for each filter is displayed. Colors
of nodes in the graph, filter tags and highlighted
spans match. In the result list, a user can switch to
the full text view of a document, which also con-
tains highlights according to the current filters.

Graph Layouts The application currently pro-
vides two different graph visualizations that we

21



found to yield useful renderings for graphs of dif-
ferent sizes. At any point, a user can switch be-
tween them using the buttons in the top left cor-
ner. The left part of Figure 2 gives an example
of the full layout, which is a force-directed layout
showing the complete graph. It allows the user to
zoom in and out and pan to fully inspect the graph.
While it has the advantage that it can provide an
overview of the complete graph, the visualization
can become complex for large graphs.

As an alternative, the application offers a fo-
cused layout, which is shown on the right side
of Figure 2. It shows only one focus node and
its direct neighbors at a time, while every neigh-
bor node has a number indicating how many more
edges are connected to it. Selecting one of the
neighbors moves that node to the center and dis-
plays its neighbors. This allows to go through
the graph step by step and it usually yields much
cleaner visualizations, as the number of visible
nodes is limited. Both visualizations support di-
rected and undirected graphs. The modular design
of the application allows to add alternative visual-
izations in the future.

Logging In order to be able to thoroughly study
the behavior of users that are working with the ap-
plication, it creates a comprehensive log of all ac-
tions that a user performed. Figure 3 illustrates
how such a log looks like for a user session. The
user, working on documents about student loans,
starts by issuing the query credit check. The cor-
responding log entry lists the keyword and a list
of the retrieved documents (1). Next, she scrolled
through the result list and stopped with documents
3, 26 and 17 in the visible section of the list (2).
Zooming the graph made a certain set of nodes vis-
ible (3). She then selected one of the nodes (4),
which automatically created a filter (5) and re-
duced the result list correspondingly. From the
filtered result list, she opened document 17 (6),
scrolled to a certain position (7) and closed it af-
terwards (8). She then switches to the alternative
graph layout (9) and continues her search. Note
that the actual log also contains timestamps.

4 Architecture and Implementation

The framework has been implemented following a
server-client-architecture and designed to be eas-
ily extensible in different regards. In the follow-
ing, we provide an overview of the architecture
and describe two aspects, the integration of graph

1 SEARCH “credit check” doc-0,doc-8,doc-3,...
2 RES SCROLLED doc-3,doc-26,doc-17
3 ZOOMED 42,65,89,57,35,24
4 NODE CLICKED 24
5 FILTER ADDED 24
6 DOC OPENED doc-17
7 DOC SCROLLED [516-1468]
8 BACK TO RES
9 GRAPH SWITCHED focused
...

Figure 3: Example for a user interaction log.

generators and dynamic graphs, in more detail.

Overview Figure 4 depicts the architecture of
the framework. The server-side portion is realized
in Java. To enable the keyword search, we inte-
grated Apache Solr3 to index the documents. Dif-
ferent graph generation modules can be plugged
into the system and have access to the documents.
Several document collections can be loaded into
the framework and used with different graphs.
User actions are logged in a text-based format. In
addition to the graphs, the modular design also
allows to easily change the search engine, e.g.
to Lucene, or the logging mechanism, e.g. to a
database. On the client-side, the user interface de-
scribed in the previous section is realized with An-
gular JS.4 The server exposes a REST API to han-
dle all communication with the frontend.

Graph Interface As mentioned above, different
graph generation modules can be used with the
framework. A configuration file defines the ac-
tive type of graph per document collection. When
starting a new search, the framework instantiates
the corresponding graph generator and provides
the retrieved documents. The generator can then
apply its custom processing logic to the documents
and return the resulting graph. To offload expen-
sive preprocessing work, a generator can also ac-
cess precomputed data for each document. Fig-
ure 5 shows the data structure in which a graph is
represented in the framework. Both a node and an
edge have a label, containing a description string
used in the visualization and a list of spans in
the documents. Note that the latter is crucial for
the interaction between the graph and the docu-
ments through filtering and highlighting. The sys-

3http://lucene.apache.org/solr/
4https://angularjs.org/

22



Search
Engine Backend Frontend

Graph Interface

A B ...

Figure 4: System architecture, enabling the inte-
gration of different graph generation models.

Graph

Node

Edge

Label Span

Document

∗
1

∗1
∗
2

11

11

∗1

∗
1

Figure 5: Data structure to capture different types
of text graphs in UML-style class notation.

tem supports both labeled and unlabeled as well as
directed and undirected graphs.

As examples, we created two graph generation
modules for our framework. The first is a file-
based generator that simply reads a static graph
for a document collection from a file. The second
integrates DKPro Core (Eckart de Castilho and
Gurevych, 2014) to create co-occurrence graphs
of automatically recognized entities. It demon-
strates how a broad range of linguistic preprocess-
ing tools can be easily made available and utilized
in our framework. Similarly, many other graph
generation methods can be used with the frame-
work. When comparing them against each other
in a user study, the common web application en-
sures a controlled experimental setting.

Dynamic Graphs As part of the graph gener-
ation interface, implementations are also notified
about the actions that a user performs in the appli-
cation. All events that are documented in the in-
teraction log (see Figure 3) are provided through
the interface. Further, a graph generator can mod-
ify its generated graph after the initial creation. In
case of a change to the graph, the user is notified
and can trigger an update of the visualization in
the frontend. This setup makes it possible to cre-
ate dynamic instead of static graphs and to use the
framework to study their usefulness. While some
work has been done in this direction (Yang, 2012;
Shahaf and Guestrin, 2010), the development of
methods that interactively adapt and personalize a
graph for document exploration to a specific user
has received only little attention. With our appli-
cation, we provide an important evaluation frame-
work that is needed to move further into this inter-
esting direction of research.

5 User Study

To verify whether the user interface and interac-
tion of the presented application is in line with user

expectations, we conducted a first preliminary user
study. Since the focus was on usability, all subjects
worked with the same graph rather than compar-
ing different graph types. 20 researchers from our
lab and students from the university participated.
They used the application to explore a collection
of web pages on student loans (as in Figure 2) and
answered a questionnaire asking for feedback on
different parts of the application.

The results showed that the application was per-
ceived as being very intuitive. Subjects could eas-
ily interpret the meaning of the graph and how it
can be used to filter and highlight the documents.
With regard to the different layouts, 60% preferred
the focused layout because it was “clearer” and
“less cluttered”, while only 15% preferred the full
layout, the rest being undecided. However, sev-
eral subjects noted that the full layout is still use-
ful to get the big picture, advocating to offer both
options in the tool. In addition, the participants
provided many useful suggestions to improve the
application, e.g. adding tooltips, which have been
incorporated into the current version.

6 Conclusion

In this paper, we presented GraphDocExplore,
a framework for graph-based document explo-
ration. Its web application augments a traditional
keyword-search interface with a graph extracted
from the search results. The graph can be used
to navigate, filter and explore a collection of doc-
uments in an intuitive way. With its generic graph
generator interface, different approaches to extract
graphs from text can be plugged into the frame-
work, providing an ideal environment to compare
these approaches in controlled experimental eval-
uations with users. Further, the framework sup-
ports graphs that are dynamically altered based
on user interactions, allowing to study methods
for the interactive personalization of navigation

23



graphs. The framework and its source code are
publicly available at https://github.com/
UKPLab/emnlp2017-graphdocexplore.

Acknowledgments

We would like to thank Alexander Gerhard Gössl,
Arwed Gölz, Ramy Hcini and Christoph Sebastian
Vollbrecht for their help with the implementation
and all participants of the user study for their feed-
back. This work has been supported by the DFG
as part of the Research Training Group “Adaptive
Preparation of Information from Heterogeneous
Sources” (AIPHES) under grant No. GRK 1994/1.

References
Meni Adler, Jonathan Berant, and Ido Dagan. 2012.

Entailment-based Text Exploration with Application
to the Health-care Domain. In Proceedings of the
50th Annual Meeting of the ACL, pages 79–84, Jeju,
Republic of Korea.

Darina Benikova, Uli Fahrer, Alexander Gabriel,
Manuel Kaufmann, Seid Muhie Yimam, Tatiana von
Landesberger, and Chris Biemann. 2014. Network
of the Day: Aggregating and Visualizing Entity Net-
works from Online Sources. In Workshop Proceed-
ings KONVENS 2014, Hildesheim, Germany.

Geoffrey Briggs, David A. Shamma, Alberto J. Cañas,
Roger Carff, Jeffrey Scargle, and Joseph D. No-
vak. 2004. Concept Maps Applied to Mars Ex-
ploration Public Outreach. In Concept Maps: The-
ory, Methodology, Technology. Proceedings of the
First International Conference on Concept Map-
ping, pages 109–116, Pamplona, Spain.

George Chin, Olga A. Kuchar, and Katherine E. Wolf.
2009. Exploring the analytical processes of intelli-
gence analysts. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,
pages 11–20, Boston, MA, USA.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Proceedings of the Workshop on Open Infrastruc-
tures and Analysis Frameworks for HLT, pages 1–
11, Dublin, Ireland.

Carsten Görg, Zhicheng Liu, Jaeyeon Kihm, Jaegul
Choo, Haesun Park, and John T. Stasko. 2013. Com-
bining Computational Analyses and Interactive Vi-
sualization for Document Exploration and Sense-
making in Jigsaw. IEEE Transactions on Visualiza-
tion and Computer Graphics, 19(10):1646–1663.

Marti A. Hearst and Emilia Stoica. 2009. NLP support
for faceted navigation in scholarly collections. In
Proceedings ofthe 2009 Workshop on Text and Ci-
tation Analysis for Scholarly Digital Librarie, pages
62–70, Singapore.

Youn-Ah Kang, Carsten Görg, and John T. Stasko.
2011. How Can Visual Analytics Assist Investiga-
tive Analysis? Design Implications from an Evalua-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 17(5):570–583.

Krishna Kummamuru, Rohit Lotlikar, Shourya Roy,
Karan Singal, and Raghu Krishnapuram. 2004. A
hierarchical monothetic document clustering algo-
rithm for summarization and browsing search re-
sults. In Proceedings of the 13th International Con-
ference on WWW, pages 658–665, New York, USA.

Dawn Lawrie, W. Bruce Croft, and Arnold Rosenberg.
2001. Finding topic words for hierarchical summa-
rization. In Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference, pages 349–357, New
Orleans, LA, USA.

Gary Marchionini. 2006. Exploratory Search. Com-
munications of the ACM, 49(4):41–46.

Joseph D. Novak and D. Bob Gowin. 1984. Learning
How to Learn. Cambridge University Press, Cam-
bridge.

Mark Sanderson and Bruce Croft. 1999. Deriving con-
cept hierarchies from text. In Proceedings of the
22nd Annual International ACM SIGIR Conference,
pages 206–213, Berkeley, CA, USA.

Dafna Shahaf and Carlos Guestrin. 2010. Connecting
the Dots Between News Articles. In Proceedings of
the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 623–
632, Washington, DC, USA.

Antoine Tixier, Konstantinos Skianis, and Michalis
Vazirgiannis. 2016. GoWvis: A Web Application
for Graph-of-Words-based Text Visualization and
Summarization. In Proceedings of ACL-2016 Sys-
tem Demonstrations, pages 151–156, Berlin, Ger-
many.

Frank van Ham, Martin Wattenberg, and Fernanda B.
Viegas. 2009. Mapping Text with Phrase Nets.
IEEE Transactions on Visualization and Computer
Graphics, 15(6):1169–1176.

Hui Yang. 2012. Constructing Task-Specific Tax-
onomies for Document Collection Browsing. In
Proceedings of the 2012 Joint Conference on
EMNLP and CoNLL, pages 1278–1289, Jeju Island,
Korea.

Hui Yang. 2015. Browsing Hierarchy Construction by
Minimum Evolution. ACM Transactions on Infor-
mation Systems, 33(3):1–33.

Seid Muhie Yimam, Heiner Ulrich, Tatiana von Lan-
desberger, Marcel Rosenbach, Michaela Regneri,
Alexander Panchenko, Franziska Lehmann, Uli
Fahrer, Chris Biemann, and Kathrin Ballweg. 2016.
new/s/leak – Information Extraction and Visualiza-
tion for Investigative Data Journalists. In Proceed-
ings of the 54th Annual Meeting of the ACL, pages
163–168, Berlin, Germany.

24


