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Abstract

A number of recent works have pro-
posed techniques for end-to-end learning
of communication protocols among coop-
erative multi-agent populations, and have
simultaneously found the emergence of
grounded human-interpretable language
in the protocols developed by the agents,
learned without any human supervision!

In this paper, using a Task & Talk reference
game between two agents as a testbed, we
present a sequence of ‘negative’ results
culminating in a ‘positive’ one – showing
that while most agent-invented languages
are effective (i.e. achieve near-perfect task
rewards), they are decidedly not inter-
pretable or compositional. In essence, we
find that natural language does not emerge
‘naturally’, despite the semblance of ease
of natural-language-emergence that one
may gather from recent literature. We
discuss how it is possible to coax the
invented languages to become more and
more human-like and compositional by in-
creasing restrictions on how two agents
may communicate.

1 Introduction
One fundamental goal of artificial intelligence
(AI) is the development of goal-driven dialog
agents – specifically, agents that can perceive their
environment (through vision, audition, or other
sensors), and communicate with humans or other
agents in natural language towards a goal.
While historically such agents have been based
on slot filling (Lemon et al., 2006), the domi-
nant paradigm today is neural dialog models (Bor-
des and Weston, 2016; Weston, 2016; Serban
et al., 2016a,b) trained on large quantities of data.

Perhaps somewhat counterintuitively, this current
paradigm treats dialog as a static supervised learn-
ing problem, rather than as the interactive agent
learning problem that it naturally is. Specifi-
cally, a typical pipeline is to collect a large dataset
of human-human dialog (Lowe et al., 2015; Das
et al., 2017a; de Vries et al., 2017; Mostafazadeh
et al., 2017), inject a machine in the middle of a di-
alog from the dataset, and supervise it to mimic the
human response. While this teaches the agent cor-
relations between symbols, it does not convey the
functional meaning of language, grounding (map-
ping physical concepts to words), compositional-
ity (combining knowledge of simpler concepts to
describe richer concepts), or aspects of planning
(why are we having this conversation?).
An alternative paradigm that has a long history
(Winograd, 1971; Kirby et al., 2014) and is wit-
nessing a recent resurgence (Wang et al., 2016;
Foerster et al., 2016; Sukhbaatar et al., 2016; Jorge
et al., 2016; Lazaridou et al., 2017; Havrylov and
Titov, 2017; Mordatch and Abbeel, 2017; Das
et al., 2017b) – is situated language learning. A
number of recent works have proposed reinforce-
ment learning techniques for learning the com-
munication protocols of agents situated in virtual
environments in a completely end-to-end man-
ner – from perceptual input (e.g. pixels) to com-
munication (discrete symbols without any pre-
specified meanings) to action (e.g. signaling in ref-
erence games or navigating in an environment)
– and have simultaneously found the emergence
of grounded human-interpretable (often composi-
tional) language among agents, without any hu-
man supervision or pretraining, simply to succeed
at the task.
In this short paper, we study the following ques-
tion – what are the conditions that lead to the
emergence of human-interpretable or composi-
tional grounded language? Our key finding is that
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(a) World. (b) Q-BOT (left) and A-BOT (right) policy networks.

(c) Task Encoding.

(d) Prediction.
Figure 1: Task & Talk: The testbed for our study is cooperative 2-player game, Task & Talk, grounded in a synthetic world of
objects with 4 shapes × 4 colors × 4 styles. The two agents, Q-BOT and A-BOT, are modeled as neural networks, and their
policies are learned via REINFORCE. We find that the languages invented by the two agents are typically not ‘natural’.

natural language does not emerge ‘naturally’ in
multi-agent dialog, despite independently reported
successful demonstrations in recent literature.
Specifically, in a sequence of ‘negative’ results
culminating in a ‘positive’ one, we find that while
agents always successfully invent communication
protocols and languages to achieve their goals
with near-perfect accuracies, the invented lan-
guages are decidedly not compositional, inter-
pretable, or ‘natural’; and that it is possible to coax
the invented languages to become more and more
human-like and compositional by increasing re-
strictions on how two agents may communicate.
Related work and novelty. The starting point
for our investigation is the recent work of Das
et al. (2017b), who proposed a cooperative refer-
ence game between two agents, where communi-
cation is necessary to accomplish the goal due to
an information asymmetry. Our key contribution
over Das et al. (2017b) is an exhaustive study of
the conditions that must be present before com-
positional grounded language emerges, and subtle
but important differences in execution – tabular Q-
Learning (which does not scale) vs. REINFORCE
(which does), and generalization to novel environ-
ments (not studied in prior work). In the spirit of
Abbeel et al. (2017), we hope our findings shed
more light into the interpretability of languages in-
vented in cooperative multi-agent settings, place
recent work in appropriate context, and inform
fruitful directions for future work.

2 The Task & Talk Game
Our testbed is a reference game (Task & Talk) be-
tween two agents, Q-BOT and A-BOT. The game
is grounded in a synthetic world of objects com-
prised of three attributes – color, style, and shape
– each with four possible values for a total of
4 × 4 × 4 = 64 objects. Fig. 1a shows some ex-
ample instances from this set.
Task & Talk plays out over multiple rounds of dia-
log. At the start, A-BOT is given an instance (e.g.

(green, dotted, square)) unseen by Q-BOT, and Q-
BOT is assigned a task G (unknown to A-BOT)
consisting of two attributes for Q-BOT to discover
from A-BOT (e.g. (color, style)). For two rounds,
Q-BOT and A-BOT exchange utterances from fi-
nite vocabularies VQ and VA, with Q-BOT speak-
ing first. The game culminates in Q-BOT guessing
a pair of attribute values (e.g. (green, dotted)) and
both agents are rewarded identically based on the
accuracy of this prediction.
Note that the Task & Talk game setting involves an
informational asymmetry between the agents – A-
BOT sees the object while Q-BOT does not; sim-
ilarly Q-BOT knows the task while A-BOT does
not. Thus, a two-way communication is neces-
sary for success. Without this asymmetry, A-BOT

could simply convey the target attributes from the
task without Q-BOT having to speak. Such a set-
ting has been widely studies in economics and
game theory as the classic Lewis Signaling (LS)
game (Lewis, 2008). By necessitating dialog be-
tween agents, we are able ground both VA and VQ

in our final setting (Sec. 4.3).

3 Modeling Q-BOT and A-BOT

We formalize Q-BOT and A-BOT as agents oper-
ating in a partially observable world and optimize
their policies using deep reinforcement learning.
States and Actions. Each agent observes its
own input (task G for Q-BOT and object in-
stance I for A-BOT) and the output of the
other agent as a stochastic environment. At
the beginning of round t, Q-BOT observes state
st
Q=[G, q1, a1, . . . , qt−1, at−1] and acts by utter-

ing some token qt from its vocabulary VQ. Simi-
larly, A-BOT observes the history and this new ut-
terance as state st

A=[I, q1, a1, . . . , qt−1, at−1, qt]
and emits a response at from VA. At the last round,
Q-BOT takes a final action by predicting a pair of
attribute values ŵG = (ŵG

1 , ŵ
G
2 ) to solve the task.

Cooperative Reward. Both Q-BOT and A-BOT

are rewarded identically based on the accuracy of
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Q-BOT’s prediction ŵG, receiving a positive re-
ward of R=1 if the prediction matches ground
truth and a negative reward of R=−10 otherwise.
We arrive at these values empirically.
Policy Networks. We model Q-BOT and
A-BOT as operating under stochastic policies
πQ(qt|sQ

t ; θQ) and πA(at|sA
t ; θA) respectively,

which we instantiate as LSTM-based models. We
use lower case characters (e.g. sQ

t ) to denote the
strings (e.g. Q-BOT’s token at round t), and up-
per case SQ

t to denote the corresponding vector as
encoded by the model.
As shown in Fig. 1, Q-BOT is modeled with three
modules – speaking, listening, and prediction. The
task G is received as a 6-dimensional one-hot en-
coding over the space of possible tasks and em-
bedded via the listener LSTM. At each round t, the
speaker network models the probability of output
utterances qt ∈ VQ based on the state SQ

t−1. This is
modeled as a fully-connected layer followed by a
softmax that transforms SQ

t−1 to a distribution over
VQ. After receiving the reply at from A-BOT, the
listener LSTM updates the state by processing both
tokens of the dialog exchange. In the final round,
the prediction LSTM is unrolled twice to produce
Q-BOT’s prediction based on the final state SQ

T and
the task G. As before, task G is fed in one-hot to
the prediction LSTM for two time steps, resulting
in a pair of outputs used as the prediction ŵG.
Analogously, A-BOT is modeled as a combination
of a speaker network, a listener LSTM, and an in-
stance encoder. Like in Q-BOT, the speaker net-
work models the probability of utterances at ∈ VA

given the state SA
t and the listener LSTM updates

the state SA
t based on dialog exchanges. The in-

stance encoder embeds each one-hot attribute vec-
tor via a linear layer and concatenates all three en-
codings to obtain a unified instance representation.
Learning Policies with REINFORCE. We train
these models using the popular REINFORCE
(Williams, 1992) policy gradient algorithm. Note
that while the game is fully-cooperative, we do not
assume full observability of one agent by another,
opting instead to treat one agent as part of the un-
known stochastic environment when updating the
other. During training, we sample 1000 two round
dialog episodes per batch and update policy pa-
rameters with Adam (Kingma and Ba, 2015) based
on these approximate gradients. Our code is pub-
licly available1.

1github.com/batra-mlp-lab/lang-emerge

4 The Road to Compositionality

This section details our key observation – that
while the agents always successfully invent a lan-
guage to solve the game with near-perfect accu-
racies, the invented languages are decidedly not
compositional, interpretable, or ‘natural’ (e.g. A-
BOT ignoring Q-BOT’s utterances and simply en-
coding every object with a unique symbol if the
vocabulary is sufficiently large). In our setting, the
language being compositional simply amounts to
the ability of the agents to communicate the com-
positional atoms of a task (e.g. shape or color) and
an instance (e.g. square or blue) independently.
Through this section, we present a series of set-
tings that get progressively more restrictive to
coax the agents towards adopting a compositional
language, providing analysis of the learned lan-
guages developed along the way. Table 1 summa-
rizes results for all settings. In all experiments,
optimal policies (achieving near-perfect rewards)
were found. For each setting, we provide qualita-
tive analysis of the learned languages and report
their ability to generalize to unseen instances. We
use 80% of the object-instances for training and
the remaining 20% to evaluate these learned poli-
cies. Further, greedy argmax policies are used at
evaluation time.

4.1 Overcomplete Vocabularies

We begin with the simplest setting where both A-
BOT and Q-BOT are given arbitrarily large vocab-
ularies. We find that when |VA| is greater than
the number of instances (64), the learned policy
simply has A-BOT ignore what Q-BOT asks and
instead convey the instance using a single sym-
bol, e.g. token 1≡(red, square, filled). Notice that
this means no ‘dialog’ is necessary and amounts to
each agent having a codebook that maps symbols
to object instances.
Perhaps as expected, the generalization of this lan-
guage to unseen instances is quite poor (success
rate: 25.6%). The adopted strategy of mapping in-
stances to token pairs fails for test instances con-
taining novel combinations of attributes for which
the agents lack an agreed-upon code from training.
It seems clear that like in human communication
(Nowak et al., 2000), a limited vocabulary that
cannot possibly encode the richness of the world
seems to be necessary for non-trivial dialog to
emerge. We explore such a setting next.
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Setting
Vocab. Memory Gen.(%)
VQ VA A Q Both One

Overcomplete (§4.1) 64 64 3 3 25.6 79.5
Attr-Value (§4.2) 3 12 3 3 38.5 88.4

NoMem-Min (§4.3) 3 4 7 3 74.4 94.9

Table 1: Overview of settings we explore to analyze the lan-
guage learnt by two agents in a cooperative game, Task &
Talk. Last two columns measure generalization in terms of
prediction accuracy of both or at least one of the attribute
pair, on a held-out test set containing unseen instances.

4.2 Attribute & Value Vocabulary
Since our world has 3 attributes (shape/color/
style) and 4+4+4 = 12 possible settings of their
states, one may believe that the intuitive choice of
|VQ| = 3 and |VA| = 12 will be enough to circum-
vent the ‘cheating’ enumeration strategy from the
previous experiment. Surprisingly, we find that the
new language learned in this setting is not only de-
cidedly non-compositional but also very difficult
to interpret! We present two salient observations.
We observe that Q-BOT uses only the first round
to convey the task to A-BOT by encoding tasks in
an order-independent fashion e.g. the (style,color)
and (color,style) tasks are both expressed as the ut-
terance Z in the first round. Consequentially, mul-
tiple rounds of dialog are rended unnecssary and
the second round is inconsistent across instances
even for the same task.
Given the task from Q-BOT in the first round, A-
BOT only needs to identify one of the 4×4=16 at-
tribute pairs for a given task. Rather than ground
its symbols into individual states, A-BOT follows
a ‘set partitioning’ strategy, i.e. A-BOT identifies
a pair of attributes with a unique combinations of
round 1 and 2 utterances (i.e. the round 2 utter-
ance has no meaning independent from round 1).
Thus, symbols are reused across tasks to describe
different attributes (i.e. symbols do not have in-
dividual consistent groundings). This ‘set parti-
tioning’ strategy is consistent with known results
from game theory on Nash equilibria in ‘cheap
talk’ games (Crawford and Sobel, 1982).
This strategy has improved generalization to un-
seen instances because it is able to communicate
the task; however, it fails on unseen attribute value
combinations because it is not compositional.

4.3 Memoryless A-BOT, Minimal Vocabulary
The key problem with the previous setting is that
A-BOT’s utterances mean different things based
on the round of dialog (a1 = 1 is different from
a2 = 1). Essentially, the communication protocol
is overparameterized and we must limit it further.

First, we limit A-BOT’s vocabulary to |VA|=4 to
reduce the number of ‘synonyms’ the agents learn.
Second, we remove A-BOT’s memory by reseting
the state vector SA at each time step, which elim-
inates its ability to enumerate all attribute pairs.
These restrictions result in a learned language
that grounds individual symbols into attributes and
their states. For example, Q-BOT learns that Y →
shape, X → color, and Z → style. Q-BOT does
not however learn to always utter these symbols in
the same order as the task, e.g. asking for shape
first for both (color, shape) and (shape, color).
Notice that this is perfectly valid as Q-BOT can
later re-arrange the attributes in the task desired or-
der. Similarly, A-BOT learns mappings to attribute
values for each attribute query that remain consis-
tent regardless of round (i.e. when asked for color,
1 always means blue).
This is similar to learned languages reported in re-
cent works and is most closely related to Das et al.
(2017b), who solve this problem by taking away
Q-BOT’s state rather than A-BOT’s memory. Their
approach can be interpreted as Q-BOT ‘forgetting’
the task after interacting with A-BOT. However,
this behavior of Q-BOT to remember the task only
during dialog but not while predicting is somewhat
unnatural compared to our setting.
Tab. 2 enumerates the learnt groundings for both
the agents. Given this mapping, we can predict a
plausible dialog between the agents for any unseen
instance and task combination. Notice that this is
possible only due to the compositionality in the
emergent language between the two agents. For
example, consider solving (shape, color) for an in-
stance (red, square, filled) from Fig. 2(b). Q-BOT

queries Y (shape) and X (color) across two rounds,
and receives 2 (square) and 4 (red) as answers.
Intuitively, this consistently grounded and compo-
sitional language has the greatest ability to gen-
eralize among the settings we have explored, cor-
rectly answering 74.4% of the held out instances.
We note that errors in this setting seem to largely
be due to A-BOT giving an incorrect answers de-
spite Q-BOT asking the correct questions to ac-
complish the task. A plausible reason could be
the model approximation error stemming from the
instance encoder as test instances are unseen and
have novel attribute combinations.
Fig. 2(b) shows the dialog for the instance (red,
square, filled) and task (shape, color). Q-BOT

queries Y (shape) and (color) across two rounds,
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Figure 2: (a) Evolution of Language: timeline shows groundings learned by the agents during training, overlaid on the accuracy.
Note that Q-BOT learns encodings for all tasks early (around epoch 20) except (style, color). Improvement in accuracy is
strongly correlated with groundings learnt. (b) Example dialogs for memoryless A-BOT, minimal vocabulary setting (§4.3.

Attributes
color shape style

VA X Y Z

1 blue triangle dotted
2 purple square filled
3 green circle dashed
4 red start solid

(a) A-BOT

Task q1, q2

(color, shape)
Y, X

(shape, color)
(shape, style)

Y, Z
(style, shape)
(color, style) Z, X
(style, color) X, Z

(b) Q-BOT

Table 2: Emergence of compositional grounding for language
learnt by the agents. A-BOT (Tab. 2a) learns consistent map-
ping across rounds, depending on the query attribute. Token
grounding for Q-BOT (Tab. 2b) depends on the task at hand.
Though compositional, Q-BOT does not necessarily query at-
tribute in the order of task, but instead re-arranges accord-
ingly at prediction time as it contains memory.

and receives 2 (square) and 4 (red) as answers.

4.4 Evolution of Language Timeline
To gain further insight into the languages learned,
we create a language evolution plot in Fig. 2.
Specifically, at regular intervals during policy
learning, we construct ‘dialog trees’. A dialog tree
enumerates all plausible dialogs between the two
agents (q1, a1, q2, a2), as a tree. The root node is
q1, and at any node, we go deeper by choosing a
branch based on the next utterance in the dialog.
Since Task & Talk runs for two rounds, our dialog
trees are 4 layers deep with |VA|2|VQ|2 leaves. No-
tice that a single input instance could potentially
result in different dialogs depending on the task.
Hence, we consider (instance, task) pairs and as-
sign each to a leaf by traversing the tree according
to the resulting dialog. At some point in the learn-
ing, the nodes become and stay ‘pure’ (the com-
mon trend among all (instance, task) at the node
stays constant till the end of training), at which
point we can say that the agents have learned this
dialog subsequence.
Construction. After constructing dialog trees at
regular intervals, we identify ‘concepts’ at each
node/leaf using the dialog tree of the completely

trained model, which achieves a perfect accuracy
on train set. A concept is simply the common
trend among all the (instance, task) tuples either
assigned to a leaf or contained within the sub-
tree with a node as root. Next, given a resultant
concept for each of the node/leaf, we backtrack
in time and check for the first occurrence when
only tuples which satisfy the corresponding con-
cept are assigned to that particular node/leaf. In
other words, we compute the earliest time when a
node/leaf is ‘pure’ with respect to its final learned
concept. Finally, we plot these leaves/nodes and
the associated concept with their backtracked time
to get Fig. 2.
Observations. We highlight key observations be-
low: (a) The agents ground most of the tasks ini-
tially at around epoch 20. Specifically, Q-BOT

assigns Y to both (shape, style), (style, shape),
(shape,color) and (color, shape), while (color,
style) is mapped to Z. Hence, Q-BOT learns its first
token very early into the training procedure. (b)
The only other task (style, color) is grounded to-
wards the end (around epoch 170) using X, leading
to an immediate convergence. (c) We see a strong
correlation between improvement in performance
and when agents learn a language grounding. In
particular, there is an improvement from 40% to
80% within a span of 25 epochs where most of the
grounding is achieved, as seen from Fig. 2.

5 Conclusion
In conclusion, we presented a sequence of ‘neg-
ative’ results culminating in a ‘positive’ one –
showing that while most invented languages are
effective (i.e. achieve near-perfect rewards), they
are decidedly not interpretable or compositional.
Our goal is simply to improve understanding and
interpretability of invented languages in multi-
agent dialog, place recent work in context, and in-
form fruitful directions for future work.
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