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Abstract

First-order factoid question answering as-
sumes that the question can be answered
by a single fact in a knowledge base (KB).
While this does not seem like a challeng-
ing task, many recent attempts that ap-
ply either complex linguistic reasoning or
deep neural networks achieve 65%–76%
accuracy on benchmark sets. Our ap-
proach formulates the task as two machine
learning problems: detecting the entities in
the question, and classifying the question
as one of the relation types in the KB. We
train a recurrent neural network to solve
each problem. On the SimpleQuestions
dataset, our approach yields substantial
improvements over previously published
results — even neural networks based on
much more complex architectures. The
simplicity of our approach also has prac-
tical advantages, such as efficiency and
modularity, that are valuable especially in
an industry setting. In fact, we present a
preliminary analysis of the performance of
our model on real queries from Comcast’s
X1 entertainment platform with millions
of users every day.

1 Introduction

First-order factoid question answering (QA) as-
sumes that the question can be answered by a
single fact in a knowledge base (KB). For ex-
ample, “How old is Tom Hanks” is about the
[age] of [Tom Hanks]. Also referred to as simple
questions by Bordes et al. (2015), recent attempts
that apply either complex linguistic reasoning or
attention-based complex neural network architec-
tures achieve up to 76% accuracy on benchmark
sets (Golub and He, 2016; Yin et al., 2016). While

it is tempting to study QA systems that can handle
more complicated questions, it is hard to reach rea-
sonably high precision for unrestricted questions.
For more than a decade, successful industry ap-
plications of QA have focused on first-order ques-
tions. This bears the question: are users even in-
terested in asking questions beyond first-order (or
are these use cases more suitable for interactive
dialogue)? Based on voice logs from a major en-
tertainment platform with millions of users every
day, Comcast X1, we find that most existing use
cases of QA fall into the first-order category.

Our strategy is to tailor our approach to first-
order QA by making strong assumptions about
the problem structure. In particular, we assume
that the answer to a first-order question is a sin-
gle property of a single entity in the KB, and de-
compose the task into two subproblems: (a) de-
tecting entities in the question and (b) classify-
ing the question as one of the relation types in
the KB. We simply train a vanilla recurrent neu-
ral network (RNN) to solve each subproblem (El-
man, 1990). Despite its simplicity, our approach
(RNN-QA) achieves the highest reported accu-
racy on the SimpleQuestions dataset. While recent
literature has focused on building more complex
neural network architectures with attention mech-
anisms, attempting to generalize to broader QA,
we enforce stricter assumptions on the problem
structure, thereby reducing complexity. This also
means that our solution is efficient, another criti-
cal requirement for real-time QA applications. In
fact, we present a performance analysis of RNN-
QA on Comcast’s X1 entertainment system, used
by millions of customers every day.

2 Related work

If knowledge is presented in a structured form
(e.g., knowledge base (KB)), the standard ap-
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proach to QA is to transform the question and
knowledge into a compatible form, and perform
reasoning to determine which fact in the KB an-
swers a given question. Examples of this approach
include pattern-based question analyzers (Bus-
caldi et al., 2010), combination of syntactic pars-
ing and semantic role labeling (Bilotti et al.,
2007, 2010), as well as lambda calculus (Berant
et al., 2013) and combinatory categorical gram-
mars (CCG) (Reddy et al., 2014). A downside of
these approaches is the reliance on linguistic re-
sources/heuristics, making them language- and/or
domain-specific. Even though Reddy et al. (2014)
claim that their approach requires less supervision
than prior work, it still relies on many English-
specific heuristics and hand-crafted features. Also,
their most accurate model uses a corpus of para-
phrases to generalize to linguistic diversity. Lin-
guistic parsers can also be too slow for real-time
applications.

In contrast, an RNN can detect entities in the
question with high accuracy and low latency.
The only required resources are word embeddings
and a set of questions with entity words tagged.
The former can be easily trained for any lan-
guage/domain in an unsupervised fashion, given
a large text corpus without annotations (Mikolov
et al., 2013; Pennington et al., 2014). The lat-
ter is a relatively simple annotation task that ex-
ists for many languages and domains, and it can
also be synthetically generated. Many researchers
have explored similar techniques for general NLP
tasks (Collobert et al., 2011), such as named entity
recognition (Lu et al., 2015; Hammerton, 2003),
sequence labeling (Graves, 2008; Chung et al.,
2014), part-of-speech tagging (Huang et al., 2015;
Wang et al., 2015), chunking (Huang et al., 2015).

Deep learning techniques have been studied ex-
tensively for constructing parallel neural networks
for modeling a joint probability distribution for
question-answer pairs (Hsu et al., 2016; Yang
et al., 2014; He et al., 2015; Mueller and Thya-
garajan, 2016) and re-ranking answers output by
a retrieval engine (Rao et al., 2016; Yang et al.,
2016). These more complex approaches might be
needed for general-purpose QA and sentence sim-
ilarity, where one cannot make assumptions about
the structure of the input or knowledge. How-
ever, as noted in Section 1, first-order factoid ques-
tions can be represented by an entity and a relation
type, and the answer is usually stored in a struc-

tured knowledge base. Dong et al. (2015) sim-
ilarly assume that the answer to a question is at
most two hops away from the target entity. How-
ever, they do not propose how to obtain the target
entity, since it is provided as part of their dataset.
Bordes et al. (2014) take advantage of the KB
structure by projecting entities, relations, and sub-
graphs into the same latent space. In addition to
finding the target entity, the other key information
to first-order QA is the relation type correspond-
ing to the question. Many researchers have shown
that classifying the question into one of the pre-
defined types (e.g., based on patterns (Zhang and
Lee, 2003) or support vector machines (Buscaldi
et al., 2010)) improves QA accuracy.

3 Approach

(a) From Question to Structured Query. Our
approach relies on a knowledge base, containing a
large set of facts, each one representing a binary
[subject, relation, object] relationship. Since we
assume first-order questions, the answer can be re-
trieved from a single fact. For instance, “How old
is Sarah Michelle Gellar?” can be answered by the
fact:

[Sarah Michelle Gellar,bornOn,4/14/1977]

The main idea is to dissect a first-order factoid
natural-language question by converting it into a
structured query: {entity “Sarah Michelle Gellar”,
relation: bornOn}. The process can be modular-
ized into two machine learning problems, namely
entity detection and relation prediction. In the
former, the objective is to tag each question word
as either entity or not. In the latter, the objective is
to classify the question into one of the K relation
types. We modeled both using an RNN.

We use a standard RNN architecture: Each
word in the question passes through an embed-
ding lookup layer E, projecting the one-hot vector
into a d-dimensional vector xt. A recurrent layer
combines this input representation with the hid-
den layer representation from the previous word
and applies a non-linear transformation to com-
pute the hidden layer representation for the cur-
rent word. The hidden representation of the final
recurrent layer is projected to the output space of k
dimensions and normalized into a probability dis-
tribution via soft-max.

In relation prediction, the question is classified
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into one of the 1837 classes (i.e., relation types in
Freebase). In the entity detection task, each word
is classified as either entity or context (i.e., k = 2).

Given a new question, we run the two RNN
models to construct the structured query. Once
every question word is classified as entity (de-
noted by E) or context (denoted by C), we can ex-
tract entity phrase(s) by grouping consecutive en-
tity words. For example, for question “How old is
Michelle Gellar”, the output of entity detection is
[C C C E E], from which we can extract a sin-
gle entity “Michelle Gellar”. The output of rela-
tion prediction is bornOn. The inferred struc-
tured query q becomes the following:
{entityText: “michelle gellar”, relation: bornOn}
(b) Entity Linking. The textual reference to the
entity (entityText in q) needs to be linked to an ac-
tual entity node in our KB. In order to achieve that,
we build an inverted index Ientity that maps all n-
grams of an entity (n ∈ {1, 2, 3}) to the entity’s
alias text (e.g., name or title), each with an associ-
ated TF -IDF score. We also map the exact text
(n =∞) to be able to prioritize exact matches.

Following our running example, let us demon-
strate how we construct Ientity. Let us assume
there is a node ei in our KB that refers to the
actress “Sarah Michelle Gellar”. The alias of
this entity node is the name, which has three un-
igrams (“sarah”, “michelle”, “gellar”), two bi-
grams (“sarah michelle”, “michelle gellar”) and a
single trigram (i.e., the entire name). Each one
of these n-grams gets indexed in Ientity with TF -
IDF weights. Here is how the weights would
be computed for unigram “sarah” and bigram
“michelle gellar” (⇒ denotes mapping):

Ientity(“sarah”)⇒ {node : ei,

score : TF -IDF (“sarah”, “sarah michelle gellar”)}
Ientity(“michelle gellar”)⇒ {node : ei,

score : TF -IDF (“michelle gellar”,

“sarah michelle gellar”)}
This is performed for every n-gram (n ∈
{1, 2, 3,∞}) of every entity node in the KB. As-
suming there is an entity node, say ej , for the ac-
tress “Sarah Jessica Parker”, we would end up cre-
ating a second mapping from unigram “sarah”:

Ientity(“sarah”)⇒ {node : ej ,

score : TF -IDF (“sarah”, “sarah jessica parker”)}
In other words, “sarah” would be linked to both ei

and ej , with corresponding TF -IDF weights.

Once the index Ientity is built, we can link en-
tityText from the structured query (e.g., “michelle
gellar”) to the intended entity in the KB (e.g., ei).
Starting with n = ∞, we iterate over n-grams
of entityText and query Ientity, which returns all
matching entities in the KB with associated TF -
IDF relevance scores. For each n-gram, retrieved
entities are appended to the candidate set C. We
continue this process with decreasing value of n
(i.e., n ∈ {∞, 3, 2, 1})

Early termination happens if C is non-empty
and n is less than or equal to the number of to-
kens in entityText. The latter criterion is to avoid
cases where we find an exact match but there are
also partial matches that might be more relevant:
For “jurassic park”, for n = ∞, we get an exact
match to the original movie “Jurassic Park”. But
we would also like to retrieve “Jurassic Park II”
as a candidate entity, which is only possible if we
keep processing until n = 2.
(c) Answer Selection. Once we have a list of can-
didate entities C, we use each candidate node ecand
as a starting point to reach candidate answers.

A graph reachability index Ireach is built for
mapping each entity node e to all nodes e′ that are
reachable, with the associated path p(e, e′). For
the purpose of the current approach, we limit our
search to a single hop away, but this index can be
easily expanded to support a wider search.

Ireach(ei)⇒
{node:ei1 , text:The Grudge, path:[actedIn]}
{node:ei2 , text:4/14/1977, path:[bornOn]}
{node:ei3 , text:F. Prinze, path:[marriedTo]}

We use Ireach to retrieve all nodes e′ that are reach-
able from ecand, where the path from is consistent
with the predicted relation r (i.e., r ∈ p(ecand, e

′)).
These are added to the candidate answer set A. For
example, in the example above, node ei2 would
have been added to the answer set A, since the
path [bornOn] matches the predicted relation in
the structured query. After repeating this process
for each entity in C, the highest-scored node in A
is our best answer to the question.

4 Experimental Setup

Data. Evaluation of RNN-QA was carried out on
SimpleQuestions, which uses a subset of Freebase
containing 17.8M million facts, 4M unique enti-
ties, and 7523 relation types. Indexes Ientity and
Ireach are built based on this knowledge base.
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SimpleQuestions was built by (Bordes et al.,
2014) to serve as a larger and more diverse fac-
toid QA dataset.1 Freebase facts are sampled in a
way to ensure a diverse set of questions, then given
to human annotators to create questions from, and
get labeled with corresponding entity and relation
type. There are a total of 1837 unique relation
types that appear in SimpleQuestions.

Training. We fixed the embedding layer based
on the pre-trained 300-dimensional Google News
embedding,2 since the data size is too small for
training embeddings. Out-of-vocabulary words
were assigned to a random vector (sampled from
uniform distribution). Parameters were learned
via stochastic gradient descent, using categori-
cal cross-entropy as objective. In order to han-
dle variable-length input, we limit the input to
N tokens and prepend a special pad word if in-
put has fewer.3 We tried a variety of configura-
tions for the RNN: four choices for the type of
RNN layer (GRU or LSTM, bidirectional or not);
depth from 1 to 3; and drop-out ratio from 0 to
0.5, yielding a total of 48 possible configurations.
For each possible setting, we trained the model on
the training portion and used the validation portion
to avoid over-fitting. After running all 48 experi-
ments, the most optimal setting was selected by
micro-averaged F-score of predicted entities (en-
tity detection) or accuracy (relation prediction) on
the validation set. We concluded that the opti-
mal model is a 2-layer bidirectional LSTM (BiL-
STM2) for entity detection and BiGRU2 for rela-
tion prediction. Drop-out was 10% in both cases.

5 Results

End-to-End QA. For evaluation, we apply the re-
lation prediction and entity detection models on
each test question, yielding a structured query
q = {entityText: te, relation: r} (Section 3a).
Entity linking gives us a list of candidate entity
nodes (Section 3b). For each candidate entity
ecand, we can limit our relation choices to the set
of unique relation types that some candidate en-
tity ecand is associated with. This helps eliminate
the artificial ambiguity due to overlapping rela-

175910/10845/21687 question-answer pairs for train-
ing/validation/test is an order of magnitude larger than com-
parable datasets. Vocabulary size is 55K as opposed to
around 3K for WebQuestions (Berant et al., 2013).

2word2vec.googlecode.com
3Input length (N ) was set to 36, the maximum number of

tokens across training and validation splits.

tion types as well as the spurious ambiguity due to
redundancies in a typical knowledge base. Even
though there are 1837 relation types in Freebase,
the number of relation types that we need to con-
sider per question (on average) drops to 36. The
highest-scored answer node is selected by find-
ing the highest scored entity node e that has an
outward edge of type r (Section 3c). We follow
Bordes et al. (2015) in comparing the predicted
entity-relation pair to the ground truth. A ques-
tion is counted as correct if and only if the entity
we select (i.e., e) and the relation we predict (i.e,
r) match the ground truth.

Table 1 summarizes end-to-end experimental
results. We use the best models based on valida-
tion set accuracy and compare it to three prior ap-
proaches: a specialized network architecture that
explicitly memorizes facts (Bordes et al., 2015), a
network that learns how to convolve sequence of
characters in the question (Golub and He, 2016),
and a complex network with attention mechanisms
to learn most important parts of the question (Yin
et al., 2016). Our approach outperforms the state
of the art in accuracy (i.e., precision at top 1) by
11.9 points (15.6% relative).

Model P@1
Memory Network (2015) 63.9
Char-level CNN (2016) 70.9

Attentive max-pooling (2016) 76.4
RNN-QA (best models) 88.3

naive ED 58.9
naive RP 4.1

naive ED and RP 3.7

Table 1: Top-1 accuracy on test portion of Simple-
Questions. Ablation study on last three rows.

Last three rows quantify the impact of each
component via an ablation study, in which we re-
place either entity detection (ED) or relation pre-
diction (RP) models with a naive baseline: (i) we
assign the relation that appears most frequently in
training data (i.e., bornOn), and/or (ii) we tag the
entire question as an entity (and then perform the
n-gram entity linking). Results confirm that RP
is absolutely critical, since both datasets include
a diverse and well-balanced set of relation types.
When we applied the naive ED baseline, our re-
sults drop significantly, but they are still compa-
rable to prior results. Given that most prior work
do not use the network to detect entities, we can
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deduce that our RNN-based entity detection is the
reason our approach performs so well.
Error Analysis. In order to better understand
the weaknesses of our approach, we performed a
blame analysis: Among 2537 errors in the test set,
15% can be blamed on entity detection — the rela-
tion type was correctly predicted, but the detected
entity did not match the ground truth. The reverse
is true for 48% cases.4 We manually labeled a
sample of 50 instances from each blame scenario.
When entity detection is to blame, 20% was due
to spelling inconsistencies between question and
KB, which can be resolved with better text nor-
malization during indexing (e.g., “la kings” refers
to “Los Angeles Kings”). We found 16% of the
detected entities to be correct, even though it was
not the same as the ground truth (e.g., either “New
York” or “New York City” is correct in “what can
do in new york?”); 18% are inherently ambigu-
ous and need clarification (e.g., “where bin laden
got killed?” might mean “Osama” or “Salem”).
When blame is on relation prediction, we found
that the predicted relation is reasonable (albeit dif-
ferent than ground truth) 29% of the time (e.g.,
“what was nikola tesla known for” can be classi-
fied as profession or notable for).

RNN-QA in Practice. In addition to matching the
state of the art in effectiveness, we also claimed
that our simple architecture provides an efficient
and modular solution. We demonstrate this by
applying our model (without any modifications)
to the entertainment domain and deploying it to
the Comcast X1 platform serving millions of cus-
tomers every day. Training data was generated
synthetically based on an internal entertainment
KB. For evaluation, 295 unique question-answer
pairs were randomly sampled from real usage logs
of the platform.

We can draw two important conclusions from
Table 2: First of all, we find that almost all
of the user-generated natural-language questions
(278/295∼95%) are first-order questions, support-
ing the significance of first-order QA as a task.
Second, we show that even if we simply use an
open-sourced deep learning toolkit (keras.io)
for implementation and limit the computational re-
sources to 2 CPU cores per thread, RNN-QA an-
swers 75% of questions correctly with very rea-
sonable latency.

4In remaining 37% incorrect answers, both models fail, so
the blame is shared.

Error Count
Correct 220

Incorrect entity 16
Incorrect relation 42

Not first-order question 17
Total Latency 76±16 ms

Table 2: Evaluation of RNN-QA on real questions
from X platform.

6 Conclusions and Future work

We described a simple yet effective approach for
QA, focusing primarily on first-order factual ques-
tions. Although we understand the benefit of ex-
ploring task-agnostic approaches that aim to cap-
ture semantics in a more general way (e.g., (Ku-
mar et al., 2015)), it is also important to acknowl-
edge that there is no “one-size-fits-all” solution as
of yet.

One of the main novelties of our work is to de-
compose the task into two subproblems, entity de-
tection and relation prediction, and provide solu-
tions for each in the form of a RNN. In both cases,
we have found that bidirectional networks are ben-
eficial, and that two layers are sufficiently deep to
balance the model’s ability to fit versus its ability
to generalize.

While an ablation study revealed the importance
of both entity detection and relation prediction, we
are hoping to further study the degree of which im-
provements in either component affect QA accu-
racy. Drop-out was tuned to 10% based on valida-
tion accuracy. While we have not implemented at-
tention directly on our model, we can compare our
results side by side on the same benchmark task
against prior work with complex attention mecha-
nisms (e.g., (Yin et al., 2016)). Given the proven
strength of attention mechanisms, we were sur-
prised to find our simple approach to be clearly
superior on SimpleQuestions.

Even though deep learning has opened the po-
tential for more generic solutions, we believe that
taking advantage of problem structure yields a
more accurate and efficient solution. While first-
order QA might seem like a solved problem, there
is clearly still room for improvement. By revealing
that 95% of real use cases fit into this paradigm,
we hope to convince the reader that this is a valu-
able problem that requires more attention.
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