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Abstract

In a controlled experiment of sequence-to-
sequence approaches for the task of sen-
tence correction, we find that character-
based models are generally more effec-
tive than word-based models and models
that encode subword information via con-
volutions, and that modeling the output
data as a series of diffs improves effec-
tiveness over standard approaches. Our
strongest sequence-to-sequence model im-
proves over our strongest phrase-based
statistical machine translation model, with
access to the same data, by 6 M2 (0.5
GLEU) points. Additionally, in the data
environment of the standard CoNLL-2014
setup, we demonstrate that modeling (and
tuning against) diffs yields similar or
better M2 scores with simpler models
and/or significantly less data than previous
sequence-to-sequence approaches.

1 Introduction

The task of sentence correction is to convert a
natural language sentence that may or may not
have errors into a corrected version. The task is
envisioned as a component of a learning tool or
writing-assistant, and has seen increased interest
since 2011 driven by a series of shared tasks (Dale
and Kilgarriff, 2011; Dale et al., 2012; Ng et al.,
2013, 2014).

Most recent work on language correction has
focused on the data provided by the CoNLL-2014
shared task (Ng et al., 2014), a set of corrected es-
says by second-language learners. The CoNLL-
2014 data consists of only around 60,000 sen-
tences, and as such, competitive systems have
made use of large amounts of corrected text with-
out annotations, and in some cases lower-quality

crowd-annotated data, in addition to the shared
data. In this data environment, it has been sug-
gested that statistical phrase-based machine trans-
lation (MT) with task-specific features is the
state-of-the-art for the task (Junczys-Dowmunt
and Grundkiewicz, 2016), outperforming word-
and character-based sequence-to-sequence models
(Yuan and Briscoe, 2016; Xie et al., 2016; Ji et al.,
2017), phrase-based systems with neural features
(Chollampatt et al., 2016b,a), re-ranking output
from phrase-based systems (Hoang et al., 2016),
and combining phrase-based systems with classi-
fiers trained for hand-picked subsets of errors (Ro-
zovskaya and Roth, 2016).

We revisit the comparison across translation ap-
proaches for the correction task in light of the Au-
tomated Evaluation of Scientific Writing (AESW)
2016 dataset, a correction dataset containing over
1 million sentences, holding constant the training
data across approaches. The dataset was previ-
ously proposed for the distinct binary classifica-
tion task of grammatical error identification.

Experiments demonstrate that pure character-
level sequence-to-sequence models are more ef-
fective on AESW than word-based models and
models that encode subword information via con-
volutions over characters, and that representing
the output data as a series of diffs significantly in-
creases effectiveness on this task. Our strongest
character-level model achieves statistically sig-
nificant improvements over our strongest phrase-
based statistical machine translation model by 6
M2 (0.5 GLEU) points, with additional gains
when including domain information. Further-
more, in the partially crowd-sourced data envi-
ronment of the standard CoNLL-2014 setup in
which there are comparatively few professionally
annotated sentences, we find that tuning against
the tags marking the diffs yields similar or su-
perior effectiveness relative to existing sequence-
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to-sequence approaches despite using significantly
less data, with or without using secondary mod-
els. All code is available at https://github.
com/allenschmaltz/grammar.

2 Background and Methods

Task We follow recent work and treat the task
of sentence correction as translation from a source
sentence (the unedited sentence) into a target sen-
tence (a corrected version in the same language as
the source). We do not make a distinction between
grammatical and stylistic corrections.

We assume a vocabulary V of natural language
word types (some of which have orthographic er-
rors). Given a sentence s = [s1 · · · sI ], where
si ∈ V is the i-th token of the sentence of length
I , we seek to predict the corrected target sentence
t = [t1 · · · tJ ], where tj ∈ V is the j-th token of
the corrected sentence of length J . We are given
both s and t for supervised training in the standard
setup. At test time, we are only given access to se-
quence s. We learn to predict sequence t (which
is often identical to s).

Sequence-to-sequence We explore word and
character variants of the sequence-to-sequence
framework. We use a standard word-based model
(WORD), similar to that of Luong et al. (2015), as
well as a model that uses a convolutional neural
network (CNN) and a highway network over char-
acters (CHARCNN), based on the work of Kim
et al. (2016), instead of word embeddings as the
input to the encoder and decoder. With both of
these models, predictions are made at the word
level. We also consider the use of bidirectional
versions of these encoders (+BI).

Our character-based model (CHAR+BI) follows
the architecture of the WORD+BI model, but the
input and output consist of characters rather than
words. In this case, the input and output sequences
are converted to a series of characters and whites-
pace delimiters. The output sequence is converted
back to t prior to evaluation.

The WORD models encode and decode over
a closed vocabulary (of the 50k most frequent
words); the CHARCNN models encode over an
open vocabulary and decode over a closed vocab-
ulary; and the CHAR models encode and decode
over an open vocabulary.

Our contribution is to investigate the impact
of sequence-to-sequence approaches (including
those not considered in previous work) in a series

of controlled experiments, holding the data con-
stant. In doing so, we demonstrate that on a large,
professionally annotated dataset, the most effec-
tive sequence-to-sequence approach can signifi-
cantly outperform a state-of-the-art SMT system
without augmenting the sequence-to-sequence
model with a secondary model to handle low-
frequency words (Yuan and Briscoe, 2016) or an
additional model to improve precision or inter-
secting a large language model (Xie et al., 2016).
We also demonstrate improvements over these
previous sequence-to-sequence approaches on the
CoNLL-2014 data and competitive results with Ji
et al. (2017), despite using significantly less data.

The work of Schmaltz et al. (2016) applies
WORD and CHARCNN models to the distinct bi-
nary classification task of error identification.

Additional Approaches The standard formula-
tion of the correction task is to model the output
sequence as t above. Here, we also propose mod-
eling the diffs between s and t. The diffs are pro-
vided in-line within t and are described via tags
marking the starts and ends of insertions and dele-
tions, with replacements represented as deletion-
insertion pairs, as in the following example se-
lected from the training set: “Some key points are
worth <del> emphasiz </del> <ins> emphasiz-
ing </ins> .”. Here, “emphasiz” is replaced with
“emphasizing”. The models, including the CHAR

model, treat each tag as a single, atomic token.
The diffs enable a means of tuning the model’s

propensity to generate corrections by modifying
the probabilities generated by the decoder for the
4 diff tags, which we examine with the CoNLL
data. We include four bias parameters associated
with each diff tag, and run a grid search between 0
and 1.0 to set their values based on the tuning set.

It is possible for models with diffs to output
invalid target sequences (for example, inserting a
word without using a diff tag). To fix this, a deter-
ministic post-processing step is performed (greed-
ily from left to right) that returns to source any
non-source tokens outside of insertion tags. Diffs
are removed prior to evaluation. We indicate mod-
els that do not incorporate target diff annotation
tags with the designator –DIFFS.

The AESW dataset provides the paragraph con-
text and a journal domain (a classification of the
document into one of nine subject categories) for
each sentence.1 For the sequence-to-sequence

1The paragraphs are shuffled for purposes of obfuscation,
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GLEU M2

Model Dev Test Dev Test

No Change 89.68 89.45 00.00 00.00

SMT–DIFFS+M2 90.44 − 38.55 −
SMT–DIFFS+BLEU 90.90 − 37.66 −
WORD+BI–DIFFS 91.18 − 38.88 −
CHAR+BI–DIFFS 91.28 − 40.11 −
SMT+BLEU 90.95 90.70 38.99 38.31
WORD+BI 91.34 91.05 43.61 42.78
CHARCNN 91.23 90.96 42.02 41.21
CHAR+BI 91.46 91.22 44.67 44.62

WORD+DOM 91.25 − 43.12 −
WORD+BI+DOM 91.45 − 44.33 −
CHARCNN+BI+DOM 91.15 − 40.79 −
CHARCNN+DOM 91.35 − 43.94 −
CHAR+BI+DOM 91.64 91.39 47.25 46.72

Table 1: AESW development/test set correction results.
GLEU and M2 differences on test are statistically significant
via paired bootstrap resampling (Koehn, 2004; Graham et al.,
2014) at the 0.05 level, resampling the full set 50 times.

models we propose modeling the input and output
sequences with a special initial token representing
the journal domain (+DOM).2

3 Experiments

Data AESW (Daudaravicius, 2016; Daudaravi-
cius et al., 2016) consists of sentences taken from
academic articles annotated with corrections by
professional editors used for the AESW shared
task. The training set contains 1,182,491 sen-
tences, of which 460,901 sentences have edits. We
set aside a 9,947 sentence sample from the orig-
inal development set for tuning (of which 3,797
contain edits), and use the remaining 137,446 sen-
tences as the dev set3 (of which 53,502 contain ed-
its). The test set contains 146,478 sentences.

The primary focus of the present study is con-
ducting controlled experiments on the AESW
dataset, but we also investigate results on the
CoNLL-2014 shared task data in light of recent
neural results (Ji et al., 2017) and to serve as a
baseline of comparison against existing sequence-
to-sequence approaches (Yuan and Briscoe, 2016;
Xie et al., 2016). We use the common sets
of public data appearing in past work for train-
ing: the National University of Singapore (NUS)
Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013) and the publicly available Lang-8

so document-level context is not available.
2Characteristics of the dataset preclude experiments with

additional paragraph context features. (See Appendix A.)
3The dev set contains 13,562 unique deletion types,

29,952 insertion types, and 39,930 replacement types.

data (Tajiri et al., 2012; Mizumoto et al., 2012).
The Lang-8 dataset of corrections is large4 but
is crowd-sourced5 and is thus of a different na-
ture than the professionally annotated AESW and
NUCLE datasets. We use the revised CoNLL-
2013 test set as a tuning/dev set and the CoNLL-
2014 test set (without alternatives) for testing. We
do not make use of the non-public Cambridge
Learner Corpus (CLC) (Nicholls, 2003), which
contains over 1.5 million sentence pairs.

Evaluation We follow past work and use the
Generalized Language Understanding Evaluation
(GLEU) (Napoles et al., 2016) and MaxMatch
(M2) metrics (Dahlmeier and Ng, 2012).

Parameters All our models, implemented with
OpenNMT (Klein et al.), are 2-layer LSTMs with
750 hidden units. For the WORD model, the word
embedding size is also set to 750, while for the
CHARCNN and CHAR models we use a char-
acter embedding size of 25. The CHARCNN
model has a convolutional layer with 1000 fil-
ters of width 6 followed by max-pooling, which
is fed into a 2-layer highway network. Additional
training details are provided in Appendix A. For
AESW, the WORD+BI model contains around 144
million parameters, the CHARCNN+BI model
around 79 million parameters, and the CHAR+BI

model around 25 million parameters.

Statistical Machine Translation As a baseline
of comparison, we experiment with a phrase-based
machine translation approach (SMT) shown to
be state-of-the-art for the CoNLL-2014 shared
task data in previous work (Junczys-Dowmunt and
Grundkiewicz, 2016), which adds task specific
features and the M2 metric as a scorer to the
Moses statistical machine translation system. The
SMT model follows the training, parameters, and
dense and sparse task-specific features that gener-
ate state-of-the-art results for CoNLL-2014 shared
task data, as implemented in publicly available
code.6 However, to compare models against the
same training data, we remove language model
features associated with external data.7 We exper-

4about 1.4 million sentences after filtering
5derived from the Lang-8 language-learning website
6SRI International provided access to SRILM (Stol-

cke, 2002) for running Junczys-Dowmunt and Grundkiewicz
(2016)

7We found that including the features and data associ-
ated with the large language models of Junczys-Dowmunt
and Grundkiewicz (2016), created from Common Crawl text
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iment with tuning against M2 (+M2) and BLEU
(+BLEU). Models trained with diffs were only
tuned with BLEU, since the tuning pipeline from
previous work is not designed to handle removing
such annotation tags prior to M2 scoring.

4 Results and Analysis: AESW

Table 1 shows the full set of experimental results
on the AESW development and test data.

The CHAR+BI+DOM model is stronger than the
WORD+BI+DOM and CHARCNN+DOM models
by 2.9 M2 (0.2 GLEU) and 3.3 M2 (0.3 GLEU),
respectively. The sequence-to-sequence models
were also more effective than the SMT models,
as shown in Table 1. We find that training with
target diffs is beneficial across all models, with an
increase of about 5 M2 points for the WORD+BI

model, for example. Adding +DOM information
slightly improves effectiveness across models.

We analyzed deletion, insertion, and replace-
ment error types. Table 2 compares effec-
tiveness across replacement errors. We found
the CHARCNN+BI models were less effective
than CHARCNN variants in terms of GLEU and
M2, and the strongest CHARCNN models were
eclipsed by the WORD+BI models in terms of
the GLEU and M2 scores. However, Table 2
shows CHARCNN+DOM is stronger on lower fre-
quency replacements than WORD models. The
CHAR+BI+DOM model is relatively strong on ar-
ticle and punctuation replacements, as well as er-
rors appearing with low frequency in the training
set and overall across deletion and insertion error
types, which are summarized in Table 3.

Errors never occurring in training The com-
paratively high Micro F0.5 score (18.66) for the
CHAR+BI+DOM model on replacement errors
(Table 2) never occurring in training is a result of
a high precision (92.65) coupled with a low re-
call (4.45). This suggests some limited capacity
to generalize to items not seen in training. A se-
lectively chosen example is the replacement from
“discontinous” to “discontinuous”, which never
occurs in training. However, similar errors of low
edit distance also occur once in the dev set and
never in training, but the CHAR+BI+DOM model

filtered against the NUCLE corpus, hurt effectiveness for the
phrase-based models. This is likely a reflection of the do-
main specific nature of the academic text and LaTeX holder
symbols appearing in the text. Here, we conduct controlled
experiments without introducing additional domain-specific
monolingual data.

never correctly recovers many of these errors, and
many of the correctly recovered errors are minor
changes in capitalization or hyphenation.

Error frequency About 39% of the AESW
training sentences have errors, and of those sen-
tences, on average, 2.4 words are involved in
changes in deletions, insertions, or replacements
(i.e., the count of words occurring between diff
tags) per sentence. In the NUCLE data, about 37%
of the sentences have errors, of which on aver-
age, 5.3 words are involved in changes. On the
AESW dev set, if we only consider the 9545 sen-
tences in which 4 or more words are involved in a
change (average of 5.8 words in changes per sen-
tence), the CHAR+BI model is still more effective
than SMT+BLEU, with a GLEU score of 67.21
vs. 65.34. The baseline GLEU score (No Change)
is 60.86, reflecting the greater number of changes
relative to the full dataset (cf. Table 1).

Re-annotation The AESW dataset only pro-
vides 1 annotation for each sentence, so we per-
form a small re-annotation of the data to gauge
effectiveness in the presence of multiple annota-
tions. We collected 3 outputs (source, gold, and
generated sentences from the CHAR+BI+DOM

model) for 200 randomly sampled sentences, re-
annotating to create 3 new references for each
sentence. The GLEU scores for the 200 original
source, CHAR+BI+DOM, and original gold sen-
tences evaluated against the 3 new references were
79.79, 81.72, and 84.78, respectively, suggesting
that there is still progress to be made on the task
relative to human levels of annotation.

5 Results and Analysis: CoNLL

Table 4 shows the results on the CoNLL dev set,
and Table 5 contains the final test results.

Since the CoNLL data does not contain enough
data for training neural models, previous works
add the crowd-sourced Lang-8 data; however,
this data is not professionally annotated. Since
the distribution of corrections differs between the
dev/test and training sets, we need to tune the pre-
cision and recall.

As shown in Table 4, WORD+BI effectiveness
increases significantly by tuning the weights8 as-
signed to the diff tags on the CoNLL-2013 set9.

8In contrast, in early experiments on AESW, tuning
yielded negligible improvements.

9The single model with highest M2 score was then run on
the test set. Here, a single set is used for tuning and dev.
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Replacement Error Type (out of 39,930) – Frequency relative to training

Model Punctuation Articles Other
> 100 [5, 100] [2, 5) 1 0

Raw frequency in dev 11507 1691 6788 8974 2271 1620 7079
Number of unique instances 371 367 215 2918 1510 1242 5819

SMT+BLEU 56.03 16.41 44.57 36.17 39.46 31.93 0.00

WORD+BI 56.13 18.58 55.38 44.33 18.79 6.38 0.77
WORD+BI+DOM 56.87 19.16 59.02 44.57 19.70 4.42 2.01

CHARCNN+DOM 55.64 13.37 57.34 41.83 28.99 16.74 7.09

CHAR+BI 58.71 28.40 55.34 44.59 28.98 24.48 14.14
CHAR+BI+DOM 58.93 27.64 59.32 46.08 32.82 26.48 18.66

Table 2: Micro F0.5 scores on replacement errors on the dev set. Errors are grouped by ‘Punctuation’, ‘Article’, and ‘Other’.
‘Other’ errors are further broken down based on frequency buckets on the training set, with errors grouped by the frequency in
which they occur in the training set.

Deletions Insertions Replacements

SMT+BLEU 46.56 31.48 42.21

WORD+BI 47.75 38.31 46.02
WORD+BI+DOM 47.78 39.00 47.29

CHARCNN+DOM 48.30 39.57 46.24

CHAR+BI 49.05 37.17 48.55
CHAR+BI+DOM 50.20 42.51 50.39

Table 3: Micro F0.5 scores across error types

Precision Recall F0.5

WORD+BI–DIFFS 65.36 6.19 22.45
WORD+BI, before tuning 72.34 0.97 4.60
WORD+BI, after tuning 46.66 15.35 33.14

Table 4: M2 scores on the CoNLL-2013 set.

Note that we are tuning the weights on this same
CoNLL-2013 set. Without tuning, the model very
rarely generates a change, albeit with a high pre-
cision. After tuning, it exceeds the effective-
ness of WORD+BI–DIFFS. The comparatively low
effectiveness of WORD+BI–DIFFS is consistent
with past sequence-to-sequence approaches utiliz-
ing data augmentation, additional annotated data,
and/or secondary models to achieve competitive
levels of effectiveness.

Table 5 shows that WORD+BI is within 0.2 M2

of Ji et al. (2017), despite using over 1 million
fewer sentence pairs, and exceeds the M2 scores
of Xie et al. (2016) and Yuan and Briscoe (2016)
without the secondary models of those systems.
We hypothesize that further gains are possible uti-
lizing the CLC data and moving to the charac-
ter model. (The character model is omitted here
due to the long training time of about 4 weeks.)

Data M2

Yuan and Briscoe (2016) CLC∗ 39.90

Xie et al. (2016) NUCLE, Lang-8,
Common Crawl LM

40.56

Ji et al. (2017) NUCLE, Lang-8,
CLC∗

41.53

WORD+BI–DIFFS NUCLE, Lang-8 35.73
WORD+BI NUCLE, Lang-8 41.37

Table 5: M2 scores on the CoNLL-2014 test set and data
used for recent sequence-to-sequence based systems. Results
for previous works are those reported by the original authors.
∗CLC is proprietary.

Notably, SMT systems (with LMs) are still more
effective than reported sequence-to-sequence re-
sults, as in Ji et al. (2017), on CoNLL.10

6 Conclusion

Our experiments demonstrate that on a large,
professionally annotated dataset, a sequence-to-
sequence character-based model of diffs can lead
to considerable effectiveness gains over a state-
of-the-art SMT system with task-specific fea-
tures, ceteris paribus. Furthermore, in the crowd-
sourced environment of the CoNLL data, in which
there are comparatively few professionally anno-
tated sentences in training, modeling diffs enables
a means of tuning that improves the effectiveness
of sequence-to-sequence models for the task.

10For reference, the reported M2 results of the carefully
optimized SMT system of Junczys-Dowmunt and Grund-
kiewicz (2016) trained on NUCLE and Lang-8, with param-
eter vectors averaged over multiple runs, with a Wikipedia
LM is 45.95 and adding a Common Crawl LM is 49.49. We
leave to future work the intersection of a LM for the CoNLL
environment and more generally, whether these patterns hold
in the presence of additional monolingual data.
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