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Abstract

We model the problem of disfluency detec-
tion using a transition-based framework,
which incrementally constructs and labels
the disfluency chunk of input sentences us-
ing a set of transition actions without syn-
tax information. Compared with sequence
labeling methods, it can capture non-local
chunk-level features; compared with joint
parsing and disfluency detection methods,
it is free for noise in syntax. Experiments
show that our model achieves state-of-the-
art F-score on both the commonly used
English Switchboard test set and a set of
in-house annotated Chinese data.

1 Introduction

Disfluency detection is the task of recognizing
non-fluent word sequences in spoken language
transcripts (Zayats et al., 2016; Wang et al., 2016;
Wu et al., 2015). As shown in Figure 1, stan-
dard annotation of disfluency structure (Shriberg,
1994) indicates the reparandum (words that are
discarded, or corrected by the following words),
the interruption point (+) marking the end of the
reparandum, the associated repair, and an optional
interregnum after the interruption point (filled
pauses, discourse cue words, etc.).

Ignoring the interregnum, disfluencies can be
categorized into three types: restarts, repetitions,
and corrections, based on whether the repair is
empty, the same as the reparandum or different,
respectively. Table 1 gives a few examples. In-
terregnums are easy to detect as they often consist
of fixed phrases (e.g. “uh”, “you know”). How-
ever, reparandums are more difficult to detect, be-
cause they can be in arbitrary form. Most previ-

*Email corresponding.

I want a flight [ to Boston + {um} to Denver ]

RM IM RP

Figure 1: Sentence with disfluencies annotated in
English Switchboard corpus. RM=Reparandum,
IM=Interregnum, RP=Repair. The preceding RM
is corrected by the following RP.

Type Annotation
repair [ I just + I ] enjoy working
repair [ we want + {well} in our area we want ] to
repetition [it’s + {uh} it’s ] almost like
restart [ we would like + ] let’s go to the

Table 1: Different types of disfluencies.

ous disfluency detection work focuses on detect-
ing reparandums.

The main challenges of detecting reparandums
include that they vary in length, may occur in dif-
ferent locations, and are sometimes nested. For
example, the longest reparandum in our training
set has fifteen words. Hence, it is very important
to capture long-range dependencies for disfluency
detection. Since there is large parallelism between
the reparandum chunk and the following repair
chunk (for example, in Figure 1, the reparandum
begins with to and ends before another occurrence
of to), it is also useful to exploit chunk-level rep-
resentation, which explicitly makes use of resulted
infelicity disfluency chunks.

Common approaches take disfluency detection
as a sequence labeling problem, where each sen-
tential word is assigned with a label (Zayats et al.,
2016; Hough and Schlangen, 2015; Qian and Liu,
2013; Georgila, 2009). These methods achieve
good performance, but are not powerful enough
to capture complicated disfluencies with longer
spans or distances. Another drawback of these ap-
proaches is that they are unable to exploit chunk-
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level features. Semi-CRF (Ferguson et al., 2015)
is used to alleviate this issue to some extent. Semi-
CRF models still have their inefficiencies because
they can only use the local chunk information lim-
ited by the markov assumption when decoding.

A different line of work (Rasooli and Tetreault,
2013; Honnibal and Johnson, 2014; Wu et al.,
2015) adopts transition-based parsing models for
disfluency detection. This line of work can be seen
as a joint of disfluency detection and parsing. The
main advantage of the joint models is that they can
capture long-range dependency of disfluencies as
well as chunk-level information. However, they
introduce additional annotated syntactic structure,
which is very expensive to produce, and can cause
noise by significantly enlarging the output search
space.

Inspired by the above observations, we inves-
tigate a transition-based model without syntactic
information. Our model incrementally constructs
and labels the disfluency chunks of input sentences
using an algorithm similar to transition-based de-
pency parsing. As shown in Figure 2, the model
state consists of four components: (i)O, a conven-
tional sequential LSTM (Hochreiter and Schmid-
huber, 1997) to store the words that have been la-
beled as fluency. (ii) S, a stack LSTM to represent
partial disfluency chunks, which captures chunk-
level information. (iii) A, a conventional sequen-
tial LSTM to represent history of actions. (iiii)
B, a Bi-LSTM to represent words that have not
yet been processed. A sequence of transition ac-
tions are used to consume input tokens and con-
struct the output from left to right. To reduce
error propagation, we use beam-search (Collins
and Roark, 2004) and scheduled sampling (Ben-
gio et al., 2015), respectively.

We evaluate our model on the commonly used
English Switchboard test set and a in-house an-
notated Chinese data set. Results show that our
model outperforms previous state-of-the-art sys-
tems. The code is released1.

2 Background

For a background, we briefly introduce transition-
based parsing and its extention for joint disfluency
detection. An arc-eager transition-based parsing
system consists of a stack σ containing words be-
ing processed, a buffer β containing words to be
processed and a memory A storing dependency

1https://github.com/hitwsl/transition disfluency
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et=max{0,W[st;bt;ot;at]+d}

A

DELOUT

denverto

O

want a flight

B

Bi-LSTM Subtraction

DEL

S

DEL

to boston

btstatot

Figure 2: model state when processing the sen-
tence “want a flight to boston to denver”.

arcs which have been generated. There are four
types of transition actions (Nivre, 2008)

• Shift : Remove the front of the buffer and
push it to the stack.

• Reduce : Pop the top of the stack.

• LeftArc : Pop the top of the stack, and link
the popped word to the front of the buffer.

• RightArc : Link the front of the buffer to the
top of the stack, remove the front of the buffer
and push it to the stack.

Many neural network parsers have been con-
structed under this framework, such as (Dyer et al.,
2015), who use different LSTM structure to repre-
sent information from σ to β.

For disfluency detection, the input is a sentence
with disfluencies from automatic speech recogni-
tion (ASR). We denote the word sequence aswn

1 =
(w1, ..., wn). The output of the task is a sequence
of binary tags denoted as Dn

1 = (d1, ..., dn),
where each di corresponds to the wordwi, indicat-
ing whether wi is a disfluent word or not. Hence
the task can be modeled as searching for the best
sequenc D∗ given the stream of words wn

1

D∗ = argmaxDP (Dn
1 |wn

1 )

Wu et al. (2015) proposes a statistical transition-
based disfluency detection model, which performs
disfluency detection and parsing jointly by aug-
menting the Shift-Reduce algorithm with a binary
classifier transition (BCT) action:
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• BCT : Classify whether the current word is
disfluent or not. If it is, remove it from the
buffer, push it into the stack which is similar
to Shift and then mark it as disfluent. Other-
wise the original parser transition actions will
be used.

Disfluency detection and parsing are jointly opti-
mized

(D∗, T ∗) = argmaxD,T

n∏
i=1

P (di|wi
1, T

i−1
1 )

×P (T i
1|wi

1, T
i−1
1 , di),

where T i
1 is the partial tree after word wi is con-

sumed, di is the disfluency tag of wi. P (T i
1|.) is

the parsing model and P (di
1|.) is the disfluency

model used to predict the disluency tags on the
contexts of partial trees that have been built.

3 Our Transition-Based Model

The BCT model serves as a state-of-the-art
transition-based baseline. However, it requires
that the training data contains both syntax trees
and disfluency annotations, which reduces the
practicality of the algorithm. Also, BCT does not
explicitly make use of resulting infelicity disflu-
ency chunks. Being a discrete model, the perfor-
mance relies heavily on manual feature engineer-
ing.

To address the constraints above, we apply a
transition-based neural model for disfluency de-
tection that does not use any syntax information.
Our transition-based method incrementally con-
structs and labels the disfluency chunk of input
sentences by performing a sequence of actions.
The task is modeled as

(D∗, T ∗) = argmaxD,T

n∏
i=1

P (di, T
i
1|wi

1, T
i−1
1 ),

where T i
1 is the partial model state after word wi

is consumed. di is the disfluency tag of wi.

3.1 Transition-Based Disfluency Detection
Our model incrementally constructs and labels the
disfluency chunks of input sentences, where a state
is represented by a tuple (O, S, A, B):

• output (O) : the output is used to represent
the words that have been labeled as fluent.

• stack (S) : stack is used to represent the par-
tially constructed disfluency chunk.

• action (A) : action is used to represent the
complete history of actions taken by the tran-
sition system.

• buffer (B) : buffer is used to represent the
sentences that have not yet been processed.

Given an input disfluent sentence, the stack,
output and action are initially empty and the buffer
contains all words of the sentence, a sequence of
transition actions are used to consume words in the
buffer and build the output sentence:

• OUT: which moves the first word in the buffer
to the output and clears out the stack if it is
not empty.

• DEL: which moves the first word in the buffer
to the stack.

Search Algorithm
Based on the transition system, the decoder
searches for an optimal action sequence for a given
sentence. The system is initialized by pushing
all the input words and their representations (of
§3.3) onto B in the reverse order, such that the
first word is at the top of B, and S, O and A each
contains an empty-stack token.

At each step, the system computes a composite
representation of the model states (as determined
by the current configurations of B, S, O, and
A), which is used to predict an action to take.
Decoding completes when B is empty (except
for the empty-stack symbol), regardless of the
state of S. Since each token in B is either moved
directly to O or S every step, the total number
of actions equals to the length of input sentence.
Table 2 shows the sequence of operations required
to process the sentence “want a flight to boston to
denver”.

As shown in Figure 2, the model state represen-
tation at time t, which is written as et, is defined
as:

et = max{0,W [st; bt; ot; at] + d},

where W is a learned parameter matrix, st is the
representation of S, bt is the representation of B,
ot is the representation of O, at is the representa-
tion ofA, d is a bias term. (W [st; bt; ot; at]+d) is
passed through a component-wise rectified linear
unit (ReLU) for nonlinearity (Glorot et al., 2011).
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Step Action Output Stack Buffer

0 [] [] [a, flight, to, boston, to, denver]
1 OUT [a] [] [flight, to, boston, to, denver]
2 OUT [a, flight] [] [to, boston, to, denver]
3 DEL [a, flight] [to] [boston, to, denver]
4 DEL [a, flight] [to, boston] [to, denver]
5 OUT [a, flight, to] [] [denver]
6 OUT [a, flight, to, denver] [] []

Table 2: Segmentation process of a flight to boston to denver

Finally, the model state et is used to compute
the probability of the action at time t as:

p(zt|et) =
exp(gT

zt
et + qzt)∑

z′∈A(S,B) exp(g
T
z′et + qz′)

,

where gz is a column vector representing the em-
bedding of the transition action z, and qz is a bias
term for action z. The set A(S,B) represents the
valid actions that may be taken given the current
state. Since et = f(st, bt, at, ot) encodes infor-
mation about all previous decisions made by the
transition system, the probability of any valid se-
quence of transition actions z conditioned on the
input can be written as:

p(z|w) =
|z|∏
t=1

p(zt|et)

We then have

(D∗, T ∗) = argmaxD,T

|z|∏
i=1

P (di, T
i
1|wi

1, T
i−1
1 )

= argmaxD,T

|z|∏
t=1

p(zt|et),

where the disfluency detection task is merged into
the transition-based system.

Beam Search
The mainly drawback of greedy search is error
propagation. An incorrect action will have a neg-
ative influence to its subsequent actions, leading
to an incorrect output sequence. One way to re-
duce error propagation is beam-search. Because
the number of actions taken always equals to the
number of input sentence for every valid path, it is
straightforward to use beam search. We use beam-
search for both training and testing. The early up-
date strategy from Collins and Roark (2004) is ap-
plied for training. In particular, each training se-
quence is decoded, and we keep track of the lo-
cation of the gold path in the beam. If the gold

path falls out of the beam at step t, decoding pro-
cess is stopped and parameter update is performed
using the gold path as a positive example, and
beam items as negative examples. We also use the
global optimization method (Andor et al., 2016;
Zhou et al., 2015) to train our beam-search model.

Scheduled Sampling
Scheduled sampling (Bengio et al., 2015) can also
be used to reduce error propagation. The train-
ing goal of the greedy baseline is to maximize the
likelihood of each action given the current model
state, which means that the correct action is taken
at each step. Doing inference, the action predicted
by the model itself is taken instead. This discrep-
ancy between training and inference can yield er-
rors that accumulate quickly along the searching
process. Scheduled sampling is used to solve the
discrepancy by gently changing the training pro-
cess from a fully guided scheme using the true pre-
vious action, towards a less guided scheme which
mostly uses the predicting action instead. We take
the action gaining higher p(zt|et) with a certain
probability p, and a probability (1−p) for the cor-
rect action when training.

3.2 State Representation
For better capturing non-local context informa-
tion, we use LSTM structures to represent differ-
ent components of each state, including buffer, ac-
tion, stack, and output. In particular, we exploit
LSTM-Minus (Wang and Chang, 2016) to model
the buffer segment, conventional LSTM to model
the action and ouptut segment, and stack LSTM
(Dyer et al., 2015) to model the stack segments,
which demonstrates highly effectively in parsing
task.

Buffer Representation
In order to construct more informative represen-
tation, we use a Bi-LSTM to represent the buffer
following the work of Wang and Chang (2016),
where the subtraction between a unidirectional
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boston to denverto

hb(to) hb(denver)hf(to) hf(denver)

O
want a flight to boston

S
to denver

B

hb(to)hb(denver) hf(to) hf(denver)bb = - - bf =

Figure 3: Illustration for learning buffer represen-
tation based on a Bi-LSTM, hf (*) and hb(*) indi-
cate the hidden vectors of forward and backward
LSTM respectively.

LSTM hidden vectors is utilized to represent a
segment’s information. We perform a similar
method in a Bi-LSTM to obtain the representa-
tion of the buffer. The forward and backward
subtractions for the buffer can be described as
bf = hf (l) − hf (f) and bb = hb(f) − hb(l),
respectively, where hf (f) and hf (l) are the
hidden vectors of the first and the last words in the
forward LSTM, respectively. Similarly, hb(f) and
hb(l) are the hidden vectors of the first and the last
words in the backward LSTM, respectively. Then
these subtractions are concatenated as the repre-
sentation of the buffer bt = bf ⊕ bb. As illustrated
in Figure 3, the forward and backward subtrac-
tions for buffer are bf = hf (to) − hf (denver)
and bb = hb(denver) − hb(to), respectively.
Here to is the first word in buffer and denver is
the last. Then bf and bb are concatenated as the
representation of buffer.

Action Representation
We represent an action awith an embedding ea(a)
from a looking-up table Ea , and apply a conven-
tional LSTM to represent the complete history of
actions taken by the transition system. Once an ac-
tion a is taken, the embedding ea(a) will be added
to the right-most position of the LSTM.

Stack Representation
We use a stack LSTM (Dyer et al., 2015) to rep-
resent partial disfluency chunk. The stack LSTM
tries to augment the conventional LSTM with a

“stack pointer”. For a conventional LSTM, new
inputs are always added in the right-most position;
but in a stack LSTM, the current location of the
stack pointer determines which cell in the LSTM
provides ct−1 and ht−1 when computing the new
memory cell contents. In addition to adding ele-
ments to the end of the sequence, the stack LSTM
provides a pop operation which moves the stack
pointer to the previous element. Thus, the LSTM
can be understood as a stack implemented so that
contents are never overwritten, When the action
OUT is taken, the stack is cleared by moving the
stack pointer to the initial position. When the ac-
tion DEL is taken, the representation of the buffer
will be added directly to the stack LSTM.

Output Representation
We use a conventional LSTM to represent the out-
put. When the action OUT is taken, the repre-
sentation of the buffer will be added directly to
the right-most position of the LSTM. Because the
words in the output are a continuous subsequence
of the final output sentence with disfluencies re-
moved, the LSTM representation can be seen as a
pseudo language model and thus has the ability to
keep the generated sentence grammatical, which
is very important for disfluency detection.

3.3 Token Embeddings
We use four vectors to represent each input token:
a learned word embedding w; a fixed word em-
bedding w̃; a learned POS-tag embedding p; and
a hand-crafted feature representation d. The four
vectors are concatenated, transformed by a matrix
V and fed to a rectified layer to learn a feature
combination:

x = max{0, V [w̃;w; p; d] + b},
where V means vector concatenation.

Following the work of Wang et al. (2016), we
extract two types of hand-crafted discrete features
(as shown in Table 3) for each token in a sentence,
and incorporate them into our neural networks
by translating them into a 0-1 vector d. The
dimension of d is 78, which equals to the number
of discrete features. For a token xt, di fires if xt

matches the i-th pattern of the feature templates.
The duplicate features indicate whether xt has a
duplicated word/POS-tag in certain distance. The
similarity features indicate whether the surface
string of xt resembles its surrounding words.
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duplicate features
Duplicate(i, wi+k),−15 ≤ k ≤ +15 and k 6= 0: if wi equals wi+k, the value is 1, others 0
Duplicate(pi, pi+k),−15 ≤ k ≤ +15 and k 6= 0: if pi equals pi+k, the value is 1, others 0
Duplicate(wiwi+1, wi+kwi+k+1),−4 ≤ k ≤ +4 and k 6= 0: if wiwi+1 equals wi+kwi+k+1,

the value is 1, others 0
Duplicate(pipi+1, pi+kpi+k+1), −4 ≤ k ≤ +4 and k 6= 0: if pipi+1 equals pi+kpi+k+1,

the value is 1, others 0
similarity features
fuzzyMatch(wi, wi+k), k ∈ {−1, +1}:

similarity = 2 ∗ num same letters/(len(wi) + len(wi+k)).
if similarity > 0.8, the value is 1, others 0

Table 3: Discrete features used in our transition-based neural networks. p-POS tag. w-word.

4 Experiments

4.1 Settings

Dataset. Our training data include the Switch-
board portion of the English Penn Treebank (Mar-
cus et al., 1993) and a in-house Chinese data
set. For English, two annotation layers are pro-
vided: one for syntactic bracketing (MRG files),
and the other for disfluencies (DPS files). The
Switchboard annotation project was not fully com-
pleted. Because disfluency annotation is cheaper
to produce, many of the DPS training files do
not have matching MRG files. Only 619,236 of
the 1,482,845 tokens in the DPS disfluency de-
tection training data have gold-standard syntac-
tic parses. To directly compare with transition-
based parsing methods (Honnibal and Johnson,
2014; Wu et al., 2015), we also use the subcor-
pus of PARSED/MRG/SWBD. Following the ex-
periment settings in Charniak and Johnson (2001),
the training subcorpus contains directories 2 and 3
in PARSED/MRG/SWBD and directory 4 is split
into test, development sets and others. Follow-
ing Honnibal and Johnson (2014), we lower-case
the text and remove all punctuations and partial
words2. We also discard the ‘um’ and ‘uh’ to-
kens and merge ‘you know’ and ‘i mean’ into sin-
gle tokens. Automatic POS-tags generated from
pocket crf (Qian and Liu, 2013) are used as POS-
tag in our experiments.

For Chinese experiments, we collect 25k spo-
ken sentences from meeting minutes, which are
transcribed using the iflyrec toolkit3, and annotate
them with only disfluency annotations according
to the guideline proposed by Meteer et al. (1995).

2words are recognized as partial words if they are tagged
as ‘XX’ or end with ‘-’

3the iflyrec toolkit is available at http://www.iflyrec.com/

4.2 Neural Network Training

Pretrained Word Embeddings. Following
Dyer et al. (2015) and Wang et al. (2016), we use
a variant of the skip n-gram model introduced
by Ling et al. (2015), named “structured skip
n-gram”, to create word embeddings. The AFP
portion of English Gigaword corpus (version 5) is
used as the training corpus. Word embeddings for
Chinese are trained on Chinese baike corpus. We
use an embedding dimension of 100 for English,
300 for chinese.
Hyper-Parameters. Both the Bi-LSTMs and
the stack LSTMs have two hidden layers and
their dimensions are set to 100. Pretrained word
embeddings have 100 dimensions and the learned
word embeddings have also 100 dimensions.
Pos-tag embeddings have 12 dimensions. The
dimension of action embeddings is set to 20.

4.3 Performance On English Swtichboard

We build two baseline systems using CRF and
Bi-LSTM, respectively. The hand-crafted dis-
crete features of CRF refer to those in Ferguson
et al. (2015). For the Bi-LSTM model, the token
embedding is the same with our transition-based
method. Table 4 shows the result of our model on
both the development and test sets. Beam search
improves the F-score form 87.1% to 87.5%, which
is consistent with the finding of Buckman et al.
(2016) on the LSTM parser of (Dyer et al., 2015)
(improvements by about 0.3 point). Scheduled
sampling achieves the same improvements com-
pared to beam-search. Because of high training
speed, we conduct subsequent experiments based
on scheduled sampling.

We compare our transition-based neural model
to five top performing systems. Our model out-
performs the state-of-the-art, achieving a 87.5% F-
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Method Dev Test
P R F1 P R F1

CRF 93.9 78.3 85.4 91.7 75.1 82.6
Bi-LSTM 94.1 79.3 86.1 91.7 80.6 85.8
greedy 91.4 83.7 87.4 91.1 83.3 87.1
+beam 93.6 83.6 88.3 92.8 82.7 87.5
+schedualed 92.3 84.3 88.1 91.1 84.1 87.5

Table 4: Experiment results on the development
and test data of English Switchboard data.

Method P R F1
Our 91.1 84.1 87.5
Attention-based (Wang et al., 2016) 91.6 82.3 86.7
Bi-LSTM (Zayats et al., 2016) 91.8 80.6 85.9
semi-CRF (Ferguson et al., 2015) 90.0 81.2 85.4
UBT (Wu et al., 2015) 90.3 80.5 85.1
M3N (Qian and Liu, 2013) - - 84.1

Table 5: Comparison with previous state-of-the-
art methods on the test set of English Switchboard.

score as shown in Table 5. It achieves 2.4 point im-
provements over UBT (Wu et al., 2015), which is
the best syntax-based method for disfluency detec-
tion. The best performance by linear statistical se-
quence labeling methods is the semi-CRF method
of Ferguson et al. (2015), achieving a 85.4% F-
score leveraging prosodic features. Our model ob-
tains a 2.1 point improvement compared to this.
Our model also achieves 0.8 point improvement
over the neural attention-based model (Wang et al.,
2016), which regards the disfluency detection as a
sequence-to-sequence problem. We attribute the
success to the strong ability to learn global chunk-
level features and the good state representation
such as the stack-LSTM.

4.4 Result On DPS Corpus

As described in section 3.1, to directly compare
with the transition-based parsing methods (Hon-
nibal and Johnson, 2014; Wu et al., 2015), we
only use MRG files, which are less than the DPS
files. In fact, many methods, such as Qian and
Liu (2013), have used all the DPS files as train-
ing data. We are curious about the performance
of our system using all the DPS files. Following
the experimental settings of Johnson and Charniak
(2004), the corpus is split as follows: main train-
ing consisting of all sw[23]*.dps files, develop-
ment training consisting of all sw4[5-9]*.dps files
and test training consisting of all sw4[0-1]*.mrg
files. Table 6 shows the result on the DPS files.

Method P R F1
Our 93.1 83.5 88.1
Bi-LSTM 92.4 82.0 86.9
M3N∗ (Qian and Liu, 2013) 90.6 78.7 84.2
CRF 91.8 77.2 83.9

Table 6: Test result of our transition-based model
using DPS files for training.

Method
Dev Test

P R F1 P R F1
Our 68.9 40.4 50.9 77.2 37.7 50.6
Bi-LSTM 60.1 41.3 48.9 65.3 38.2 48.2
CRF 73.7 33.5 46.1 77.7 32.0 45.3

Table 7: performance on Chinese annotated data

The result of M3N∗ comes from our experiments
with the toolkit4 released by Qian and Liu (2013),
which use the same data set and pre-processing.
Our model achieves a 88.1% F-score by using
more training data, obtaining 0.6 point improve-
ment compared with the system training on MRG
files. The performance is far better than the se-
quence labeling methods that use DPS files for
training.

4.5 Performance on Chinese
Table 7 shows the results of Chinese disfluency
detection. Our model obtains a 2.4 point im-
provement compared with the baseline Bi-LSTM
model and a 5.3 point compared with the baseline
CRF model. The performance on Chinese is much
lower than that on English. Apart from the smaller
training set, the main reason is that the proportion
of repair type disflueny is much higher.

5 Analysis

5.1 Ablation Tests
As described in section 3.1, the sate representa-
tion has four components. We explicitly compare
the impact of different parts. As shown in Table 8,
the F-score decreases most heavily without stack,
which indicates that it is very necessary to cap-
ture chunk-level information for disfluency detec-
tion and our model can model it effectively. The
results also show that output, which can be seen as
a pseudo language model, has important influence
on model performance. Seen from the result, his-
tory of actions represented in action is also useful
for predicting at each step. The F-score decreases

4The toolkit is available at
https://code.google.com/p/disfluency-detection/downloads.
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Method P R F1
ALL 91.1 84.1 87.5
- stack 93.5 80.6 86.5
- action 91.6 83.0 87.1
- output 89.0 84.4 86.7
- Bi-LSTM 93.6 81.4 87.1

Table 8: Results of feature ablation experiments
on English Switchboard test data. “- Bi-LSTM”
means using unidirectional LSTM for buffer

about 0.4 point, which shows that Bi-LSTM can
capture more information compared to simple uni-
directional LSTM.

5.2 Repetitions vs Non-repetitions
Repetition disfluencies are easier to detect and
even some simple hand-crafted features can han-
dle them well. Other types of reparandums such
as repair are more complex (Zayats et al., 2016;
Ostendorf and Hahn, 2013). In order to bet-
ter understand model performances, we evalu-
ate our model’s ability to detect repetition vs.
non-repetition (other) reparandum. The results
are shown in Table 9. All the three mod-
els achieve high score on repetition reparan-
dum. Our transition-based model is much bet-
ter in predicting non-repetitions compared to CRF
and Bi-LSTM. We conjecture that our transition-
based structure can capture more of the reparan-
dum/repair “rough copy” similarities by learning
represention of both chunks and global state.

6 Related Work

Common approaches take disfluency detection as
a sequence labeling problem, where each senten-
tial word is assigned with a label (Georgila, 2009;
Qian and Liu, 2013). These methods achieve good
performance, but are not powerful enough to cap-
ture complicated disfluencies with longer spans or
distances. Another drawback is that they have no
ability to exploit chunk-level features. There are
also works that try to use recurrent neural network
(RNN), which can capture dependencies at any
length in theory, on disfluency detection problem
(Zayats et al., 2016; Hough and Schlangen, 2015).
The RNN method treats sequence tagging as clas-
sification on each input token. Hence, it also has
no power to exploit chunk-level features. Some
works (Wang et al., 2016) regard the disfluency
detection as a sequence-to-sequence problem and
propose a neural attention-based model for it. The

Method Repetitions Non-repetitions Either
CRF 93.8 61.4 82.6
Bi-LSTM 93.1 65.3 85.8
OUR 93.3 68.7 87.5

Table 9: F-score of different types of reparandums
on English Switchboard test data.

attention-based model can capture a global repre-
sentation of the input sentence by using a RNN
when encoding. It can strongly capture long-range
dependencies and achieves good performance, but
are also not powerful enough to capture chunk-
level information. To capture chunk-level infor-
mation, Ferguson et al. (2015) try to use semi-CRF
for disfluency detection, and reports improved re-
sults. Semi-CRF models still have their inefficien-
cies because they can only use the local chunk in-
formation limited by the markov assumption when
decoding.

Many syntax-based approaches (Lease and
Johnson, 2006; Rasooli and Tetreault, 2013; Hon-
nibal and Johnson, 2014; Wu et al., 2015) have
been proposed which jointly perform dependency
parsing and disfluency detection. The main advan-
tage of joint models is that they can capture long-
range dependency of disfluencies. However, it re-
quires that the training data contains both syntax
trees and disfluency annotations, which reduces
the practicality of the algorithm. The performance
relies heavily on manual feature engineering.

Transition-based framework has been widely
exploited in a number of other NLP tasks, includ-
ing syntactic parsing (Zhang and Nivre, 2011; Zhu
et al., 2013), information extraction (Li and Ji,
2014) and joint syntactic models (Zhang et al.,
2013, 2014).

Recently, deep learning methods have been
widely used in many nature language processing
tasks, such as name entity recognition (Lample
et al., 2016), zero pronoun resolution (Yin et al.,
2017) and word segmentation (Zhang et al., 2016).
The effectiveness of neural features has also been
studied for this framework (Zhou et al., 2015;
Watanabe and Sumita, 2015; Andor et al., 2016).
We apply the transition-based neural framework to
disfluency detection, which to our knowledge has
not been investigated before.
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7 Conclusion

We introduced a transition-based model for dis-
fluency detection, which does not use any syntax
information, learning represention of both chunks
and global contexts. Experiments showed that
our model achieves the state-of-the-art F-scores on
both the commonly used English Switchboard test
set and a in-house annotated Chinese data set.
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