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Abstract

One of the main obstacles for many Dig-
ital Humanities projects is the low data
availability. Texts have to be digitized
in an expensive and time consuming pro-
cess whereas Optical Character Recogni-
tion (OCR) post-correction is one of the
time-critical factors. At the example of
OCR post-correction, we show the adap-
tation of a generic system to solve a spe-
cific problem with little data. The system
accounts for a diversity of errors encoun-
tered in OCRed texts coming from differ-
ent time periods in the domain of litera-
ture. We show that the combination of dif-
ferent approaches, such as e.g. Statisti-
cal Machine Translation and spell check-
ing, with the help of a ranking mecha-
nism tremendously improves over single-
handed approaches. Since we consider
the accessibility of the resulting tool as
a crucial part of Digital Humanities col-
laborations, we describe the workflow we
suggest for efficient text recognition and
subsequent automatic and manual post-
correction.

1 Introduction

Humanities are no longer just the realm of schol-
ars turning pages of thick books. As the worlds
of humanists and computer scientists begin to in-
tertwine, new methods to revisit known ground
emerge and options to widen the scope of research
questions are available. Moreover, the nature of
language encountered in such research attracts the
attention of the NLP community (Kao and Juraf-
sky (2015), Milli and Bamman (2016)). Yet, the
basic requirement for the successful implemen-
tation of such projects often poses a stumbling

block: large digital corpora comprising the textual
material of interest are rare. Archives and individ-
ual scholars are in the process of improving this
situation by applying Optical Character Recog-
nition (OCR) to the physical resources. In the
Google Books1 project books are being digitized
on a large scale. But even though collections of
literary texts like Project Gutenberg2 exist, these
collections often lack the texts of interest to a spe-
cific question. As an example, we describe the
compilation of a corpus of adaptations of Goethe’s
Sorrows of the young Werther which allows for the
analysis of character networks throughout the pub-
lishing history of this work.
The success of OCR is highly dependent on the
quality of the printed source text. Recognition er-
rors, in turn, impact results of computer-aided re-
search (Strange et al., 2014). Especially for older
books set in hard-to-read fonts and with stained
paper the output of OCR systems is not good
enough to serve as a basis for Digital Humanities
(DH) research. It needs to be post-corrected in a
time-consuming and cost-intensive process.
We describe how we support and facilitate the
manual post-correction process with the help of
informed automatic post-correction. To account
for the problem of relative data sparsity, we illus-
trate how a generic architecture agnostic to a spe-
cific domain can be adjusted to text specificities
such as genre and font characteristics by including
just small amounts of domain specific data. We
suggest a system architecture (cf. Figure 1) with
trainable modules which joins general and specific
problem solving as required in many applications.
We show that the combination of modules via a
ranking algorithm yields results far above the per-
formance of single approaches.

1https://books.google.de/, 02.04.2017.
2http://www.gutenberg.org, 14.04.2017.

2716



preprocessingOCR text

preprocessed text

originalspecific statistical
machine translation

general statistical
machine translation

specific vocab compound split spell check

correction suggestions

decision module corrected text

Figure 1: Multi-modular OCR post-correction system.

We discuss the point of departure for our research
in Section 2 and introduce the data we base our
system on in Section 4. In Section 5, we illustrate
the most common errors and motivate our multi-
modular, partly customized architecture. Section 6
gives an overview of techniques included in our
system and the ranking algorithm. In Section 7,
we discuss results, the limitations of automatic
post-correction and the influence the amount of
training data takes on the performance of such a
system. Finally, Section 8 describes a way to effi-
ciently integrate the results of our research into a
digitization work-flow as we see the easy accessi-
bility of computer aid as a central point in Digital
Humanities collaborations.

2 Related work

There are two obvious ways to automatically im-
prove quality of digitized text: optimization of
OCR systems or automatic post-correction. Com-
monly, OCR utilizes just basic linguistic knowl-
edge like character set of a language or reading
direction. The focus lies on the image recognition
aspect which is often done with artificial neural
networks (cf. Graves et al. (2009), Desai (2010)).
Post-correction is focused on the correction of er-
rors in the linguistic context. It thus allows for the
purposeful inclusion of knowledge about the text
at hand, e.g. genre-specific vocabulary. Neverthe-
less, post-correction has predominantly been tack-
led OCR system agnostic as outlined below. As
an advantage, post-correction can also be applied
when no scan or physical resource is available.
There have been attempts towards shared datasets
for evaluation. Mihov et al. (2005) released a cor-
pus covering four different kinds of OCRed text
comprising German and Bulgarian. However, in
2017 the corpus was untraceable and no recent re-

search relating to the data could be found.
OCR post-correction is applied in a diversity of
fields in order to compile high-quality datasets.
This is not merely reflected in the homogeneity of
techniques but in the metric of evaluation as well.
While accuracy has been widely used as evalu-
ation measure in OCR post-correction research,
Reynaert (2008a) advocates the use of precision
and recall in order to improve transparency in eval-
uations. Dependent on the paradigm of the applied
technique even evaluation measures like BLEU
score can be found (cf. Afli et al. (2016)).
Since shared tasks are a good opportunity to estab-
lish certain standards and facilitate the compara-
bility of techniques, the Competition on Post-OCR
Text Correction3 organized in the context of IC-
DAR 2017 could mark a milestone for more uni-
fied OCR post-correction research efforts.

Regarding techniques used for OCR post-
correction, there are two main trends to be
mentioned: statistical approaches utilizing error
distributions inferred from training data and lex-
ical approaches oriented towards the comparison
of source words to a canonical form. Combina-
tions of the two approaches are also available.
Techniques residing in this statistical domain
have the advantage that they can model specific
distributions of the target domain if training data
is available. Tong and Evans (1996) approach
post-correction as a statistical language modeling
problem, taking context into account. Pérez-
Cortes et al. (2000) employ stochastic finite-state
automaton along with a modified version of
the Viterbi Algorithm to perform a stochastic
error correcting parsing. Extending the simpler
stochastic context-sensitive models, Kolak and

3https://sites.google.com/view/
icdar2017-postcorrectionocr/home, 3.07.2017.
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Resnik (2002) apply the first noisy channel model,
using edit distance from noisy to corrected text
on character level. In order to train such a model,
manually generated training data is required. Rey-
naert (2008b) suggests a corpus-based correction
method, taking spelling variation (especially in
historical text) into account. Abdulkader and
Casey (2009) introduce an error estimator neural
network that learns to assess error probabilities
from ground truth data which in turn is then
suggested for manual correction. This decreases
the time needed for manual post-correction since
correct words do not have to be considered as
candidates for correction by the human corrector.
Llobet et al. (2010) combine information from
the OCR system output, the error distribution and
the language as weighted finite-state transducers.
Reffle and Ringlstetter (2013) use global as
well as local error information to be able to
fine-tune post-correction systems to historical
documents. Related to the approach introduced by
Pérez-Cortes et al. (2000), Afli et al. (2016) use
statistical machine translation for error correction
using the Moses toolkit on character level. Volk
et al. (2010) merge the output of two OCR systems
with the help of a language model to increase the
quality of OCR text. The corpus of yearbooks of
the Swiss Alpine Club which has been manually
corrected via crowdsourcing (cf. Clematide et al.
(2016)) is available from their website.
Lexical approaches often use rather generic
distance measures between an erroneous word
and a potential canonical lexical item. Strohmaier
et al. (2003) investigate the influence of the
coverage of a lexicon on the post-correction task.
Considering the fact that writing in historical
documents is often not standardized, the success
of such approaches is limited. Moreover, systems
based on lexicons rely on the availability of such
resources. Historical stages of a language – which
constitute the majority of texts in need for OCR
post-correction – often lack such resources or pro-
vide incomplete lexicons which would drastically
decrease performance of spell-checking-based
systems. Ringlstetter et al. (2007) address this
problem by suggesting a way to dynamically
collect specialized lexicons for this task. Taka-
hashi et al. (1990) apply spelling correction
with preceding candidate word detection. Bassil
and Alwani (2012) use Google’s online spelling
suggestions for as they draw on a huge lexicon

based on contents gathered from all over the web.
The human component as final authority has
been mentioned in some of these projects. Visual
support of the post-correction process has been
emphasized by e.g. Vobl et al. (2014) who
describe a system of iterative post-correction
of OCRed historical text which is evaluated in
an application-oriented way. They present the
human corrector with an alignment of image
and OCRed text and make batch correction of
the same error in the entire document possible.
They can show that the time needed by human
correctors considerably decreases.

3 Evaluation metrics

We describe and evaluate our data by means of
word error rate (WER) and character error rate
(CER). The error rates are a commonly used met-
ric in speech recognition and machine translation
evaluation and can also be referred to as length
normalized edit distance. They quantify the num-
ber of operations, namely the number of inser-
tions, deletions and substitutions, that are needed
to transform the suggested string into the manually
corrected string and are computed as follows:

WER =
word insertions + word substitutions + word deletions

# words in the reference

CER =
char insertions + char substitutions + char deletions

# characters in the reference

4 Data

As mentioned in the introduction, errors found in
OCRed texts are specific to time of origin, quality
of scan and even the characteristics of a specific
text. Our multi-modular architecture paves the
way for a solution taking this into account by in-
cluding general as well as specific modules. Thus,
we suggest to include domain specific data as well
as larger, more generic data sets in order to en-
hance coverage of vocabulary and possible error
classes. The data described hereafter constitutes
parallel corpora with OCR output and manually
corrected text which we utilize for training statis-
tical models.

4.1 The Werther corpus

Since our system is developed to help in the
process of compiling a corpus comprising adapta-
tions of Goethe’s The Sorrows Of Young Werther
throughout different text types and centuries, we
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1 Berichtigung der Geschichte des jungen Werthers H. von Breitenbach 1775
2 Schwacher jedoch wohlgemeynter Tritt vor dem Riss, neben oder hinter Herren Pastor Goeze,

gegen die Leiden des jungen Werthers und dessen ruchlose Anhänger
anonymous 1775

3 Lorenz Konau David Iversen 1776
4 Werther der Jude Ludwig Jacobowski 1910
5 Eine rührende Erzählung aus geheimen Nachrichten von Venedig und Cadir (first letter) Joseph Codardo und Rosaura Bianki 1778
6 Afterwerther oder Folgen jugendlicher Eifersucht A. Henselt 1784
7 Der neue Werther oder Gefühl und Liebe Karl P. Bonafont 1804
8 Leiden des modernen Werther Max Kaufmann 1901

Table 1: Werther texts included in our corpus from different authors and times of origin.

collected texts from this target domain. To be
able to train a specialized system, we manually
corrected a small corpus of relevant texts (cf.
Table 2). We use the output of Abbyy Fine Reader
7 for several Werther adaptations (Table 1) all
based on scans of books with German Gothic
lettering.

4.2 The Deutsches Textarchive (DTA) corpus

Even though manual OCR post-correction is a
vital part of many projects, only very little de-
tailed documentation of this process exists. Das
Deutsche Textarchiv (The German Text Archive)
(DTA) is one of the few projects providing de-
tailed correction guidelines along with the scans
and the text corrected within the project (Geyken
et al., 2012). This allows the compilation of a
comprehensive parallel corpus of OCR output and
corrected text spanning a period of four centuries
(17th to 20th) in German Gothic lettering. For
OCR, we use the open source software tesseract4

(Smith and Inc, 2007) which comes with recogni-
tion models for Gothic font.

4.3 Gutenberg data for language modeling

Since the output of our system is supposed to con-
sist of well-formed German sentences, we need
a method to assess the quality of the output lan-
guage. This task is generally tackled by language
modeling. We compiled a collection of 500 ran-
domly chosen texts from Project Gutenberg5 com-
prising 28,528,078 tokens. With its relative close-
ness to our target domain it constitutes the best
approximation of a target language. The language
model is trained with the KenLM toolkit (Heafield,
2011) with an order of 5 on token level and 10 on
character level following De Clercq et al. (2013).

4Considering the open source aspect of our resulting sys-
tem, we decided to use the open source OCR software tesser-
act and move away from Abbyy some time after our project
started: https://github.com/tesseract-ocr.

5Project Gutenberg. Retrieved January 21, 2017, from
www.gutenberg.org.

5 Why OCR post-correction is hard

In tasks like the normalization of historical text
(Bollmann et al., 2012) or social media, one can
take advantage of regularities in the deviations
from the standard form that appear throughout an
entire genre or in case of social media e.g. dialect
region (Eisenstein, 2013). Errors in OCR, how-
ever, depend on the font and quality of the scan as
well as the time of origin which makes each text
unique in its composition of features and errors.
In order to exemplify this claim, we analyzed three
different samples: Lorenz Konau (1776), Werther
der Jude (1910) and a sample from the DTA data.
Figure 2 (a-c) illustrate the point that the qual-
ity of scan is crucial for the OCR success. Fig-
ure 2a shows a text from the 20th century where
the type setting is rather regular and the distances
between letters is uniform as opposed to Figure 2b.
Figure 2c shows how the writing from the back
of the page shines through and makes the script
less readable. Thus, we observe a divergence in
the frequency of certain character operations be-
tween those texts: the percentage of substitutions
range between 74% for Lorenz Konau and 60% for
Werther der Jude and 18% and 30% of insertions,
respectively. The varying percentage of insertions
might be due to the fact that some scans are more
“washed out” than others. Successful insertion of
missing characters, however, relies on the precon-
dition that a system knows a lot of actual words
and sentences in the respective language and can-
not be resolved via e.g. character similarity like in
the substitution from l to t.
Another factor that complicates the correction of
a specific text is the number of errors per word.
Words with an edit distance of one to the cor-
rect version are easier to correct those with more
than one necessary operation. With respect to er-
rors per word our corpus shows significant dif-
ferences in error distributions. Especially in our
DTA corpus the number of words with two or
more character-level errors per word is consider-
ably higher than those with one error. For Werther
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(a) Werther der Jude (1910) (b) Lorenz Konau (1776)
(c) DTA: Blumenbach (1791): Handbuch
der Naturgeschichte

Figure 2: Scans of three different texts from our corpora. Emphasizes differences in quality of scan and
differences in type setting, font and genre (e.g. drama).

der Jude (WER 10.0, CER 2.4) the number of
errors in general is much lower than for Konau
(WER: 34.7, CER: 10.9). These characteristics in-
dicate that subcorpus-specific training of a system
is promising.

6 Specialized multi-modular
post-correction

In order to account for the nature of errors that can
occur in OCR text, we apply a variety of modules
for post-correction. The system proceeds in two
stages and is largely based on an architecture sug-
gested by Schulz et al. (2016) for normalization
of user-generated contents. In the first stage, a set
of specialized modules (Section 6.1) suggest cor-
rected versions for the tokenized6 OCR text lines.
Those modules can be context-independent (work
on just one word at a time) or context-dependent
(an entire text line is processed at a time). The
second stage is the decision phase. After the
collection of various suggestions per input token,
these have to be ranked to enable a decision for
the most probable output token given the context.
We achieve this by assigning weights the differ-
ent modules with the help of Minimal Error Rate
Training (MERT) (Och, 2003).

6.1 Suggestion modules

In the following, we give an outline of techniques
included into our system.

6.1.1 Word level suggestion modules

• Original: the majority of words do not con-
tain any kind of error, thus we want to have

6Tokenizer of TreeTagger (Schmid, 1997).

Figure 3: Irregular type setting in German Gothic
lettering. sind and insgemein are two separate
words but yet written closely together.

the initial token available in our suggestion
pool

• Spell checker: spelling correction sugges-
tion for misspelled words with hunspell7

• Compounder: merges two tokens into one
token if it is evaluated as an existing word by
hunspell

• Word splitter: splits two tokens into two
words using compound-splitter module from
the Moses toolkit (Koehn et al., 2007)

• Text-Internal Vocabulary: extracts high-
frequent words from the input texts and sug-
gests them as correction of words with small
adjusted Levenshtein distance8

The compound and word split techniques react to
the variance in manual typesetting, where the dis-
tances between letters vary. This means that the
word boundary recognition becomes difficult (cf.
Figure 3).
A problem related to the spell-checking approach
is the limited coverage of the dictionary since it
uses a modern German lexicon. Related to this
is the difficulty of out-of-vocabulary words above
average for literature text. Archaic words from
e.g. the 17th century or named entities cannot be
found in a dictionary and can therefore not be cov-
ered with any of the approaches mentioned above.

7https://github.com/hunspell/hunspell.
8OCR-adjusted Levenshtein distance taking frequent sub-

stitution, insertion and deletion patterns learned from training
data into account.
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However, especially named entities are crucial for
the automatic or semi-automatic analysis of narra-
tives e.g. with the help of network analysis. Our
Text-Internal Vocabulary technique is designed to
find frequent words in the input text, following
the assumption that errors would not be regular
enough to distort those frequencies. We compile
a list from those high-frequency words. Subse-
quently, erroneous words can be corrected cal-
culating an OCR-adjusted Levenshtein distance.
In this way misspelled words like Loveuzo could
be resolved to Lorenzo if this name appears fre-
quently. Since the ranking algorithm relies on
a language model which will most probable not
contain those suggestions, we insert the high-
frequency words into the language modeling step.

6.1.2 Sentence level suggestion modules
As has been suggested by Afli et al. (2016), we
include Phrase-based Statistical Machine Trans-
lation (SMT) into our system. We treat the
post-correction as a translation problem translat-
ing from erroneous to correct text. Like in stan-
dard SMT, we train our models on a parallel cor-
pus, the source language being the OCRed text
and the target language being manually corrected
text. We train models on token level as well as
on character-level (unigram). This way, we aim at
correcting frequently mis-recognized words along
with frequent character-level errors. We train four
different systems:

• token level

– domain specific data (cf. Section 4.1)
– general data (cf. Section 4.2)

• character level

– domain specific data (cf. Section 4.1)
– general data (cf. Section 4.2)

The models are trained with the Moses toolkit
(Koehn et al., 2007). Moreover, we use a subse-
quent approach by forwarding the output of the
character-based SMT model to the token-based
SMT.

6.1.3 Additional feature
The information whether a word contains an er-
ror can help to avoid the incorrect alternation of
an initially correct word (overcorrection). In order
to deliver this information to the decision module
without making a hard choice for each word, we

include the information whether a word has been
found either in combination with the word before
or after in a corpus (cf. Section 4.3) into the de-
cision process in form of a feature that will be
weighted along with the other modules. This naive
language modeling approach allows for a context-
relevant decision of the correctness of a word.

6.2 Decision modules: the ranking
mechanism

Since the recognition errors appearing in a text are
hard to pre-classify by nature, we run all modules
on each sentence of the input, returning sugges-
tions for each word. Since the output of some of
our modules are entire sentences, input sentence
and output sentence have to be word-aligned in or-
der to be able to make suggestions on word level.
The word alignment between input and output sen-
tence is done with the Needleman-Wunsch algo-
rithm (Needleman and Wunsch, 1970), an algo-
rithm originally developed in bioinformatics.
From all corrected suggestions the most proba-
ble well-formed combination has to be chosen.
To solve the combinatorial problem of deciding
which suggestion is the most probable candidate
for a word, the decision module makes use of the
Moses decoder.
As in general SMT, the decoder makes use of a
language model (cf. Section 4.3) and a phrase
table. The phrase table is compiled from all in-
put words along with all possible correction sug-
gestions. In order to assign weights to the single
modules and the language model, we tune on the
phrase tables collected from a run on our devoverall

set, following the assumption that suggestions of
certain modules are more reliable than others and
expect their feature weights to be higher after tun-
ing.

7 Experiments

7.1 Experimental Setup
To guarantee diversity, we split each of texts 1-4
(cf. Table 1) into three parts and combined the
respective parts: 80% train (train), 10% develop-
ment (devSMT ) and 10% test (testinit).

Test setup We introduce two different test sce-
narios. Even though both test sets are naturally
compiled from unseen data, the first test set con-
sists of a self-contained Werther adaptation intro-
ducing new named entities, originating from a dif-
ferent source and thus showing a different error
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set # tokens (OCR) # tokens (corr) WER CER

train 70,159 68,608 15.7 5.5
trainext 133,457 131,901 12.9 4.0
devSMT 12,464 12,304 13.9 3.5
devoverall 13,663 13,396 16.75 4.6
testinit 17,443 17,367 9.4 2.5
testunk 13,286 13,304 31.2 9.2

Table 2: Werther specific parallel corpus of OCR
text and corrected text showing the number of to-
kens before and after post-correction along with
WER and CER

set # tokens (OCR) # tokens (corr) WER CER

train 3,452,922 3,718,712 41.6 13.2
dev 663,376 836,974 30.4 9.1

Table 3: DTA parallel corpus of OCR text and
corrected text showing the number of tokens be-
fore and after post-correction along with WER and
CER

constitution. It constitutes an evaluation in which
no initial manual correction as support for the au-
tomatic correction is included in the workflow. We
henceforth call this unknown set testunk (text 6).

In contrast, the second set contains parts of the
same texts as the training, thus specific vocabulary
might have been introduced already. The results
for this test set give a first indication of the extent
to which pre-informing the system with manually
correcting parts of a text could assist the automatic
correction process. Since this scenario can be de-
scribed as a text-specific initiated post-correction,
we henceforth refer to this test set as testinit.

We further on experiment with an extended
training set trainext (train with texts 7 and 8) to as-
sess the influence of the size of the specific train-
ing set on the overall performance. The sizes of
the datasets before and after correction along with
WER and CER are summarized in Table 2. The
sizes for the general dataset before and after cor-
rection along with WER and CER are summarized
in Table 3.

7.2 Evaluation

In the following we concentrate on the compari-
son of WER and CER before and after automatic
post-correction. As a baseline for our system we
chose the strongest single-handed module (SMT
on character-level trained on Werther data).

training set system testinit testunk
WER CER WER CER

original text 23.5 15.1 36.7 30.0

train baseline 22.0 13.2 26.6 26.3
overall system 4.7 8.0 15.4 19.6

trainext
baseline 21.1 11.7 24.0 20.4
overall system 4.4 7.2 15.2 16.4

Table 4: WER and CER for both test sets be-
fore and after automatic post-correction for the
system trained with the small training set (train)
and the larger training set (trainext). Baselines:
the original text coming from the OCR system
and the character-level SMT system trained on the
Werther data.

Overall performance As indicated previously,
our test sets differ with respect to their similarity
to the training set. The results for both test scenar-
ios for systems trained on our two training sets are
summarized in Table 4. The results from testinit

and testunk show that our system performs con-
siderably better than the baseline and can improve
quality of the OCR output considerably.

For testunk, the system improves the quality by
almost 20 points of WER from 36.7 to 15.4 and
over 10 points in CER from 30.0 to 19.6. For
testinit, our system improves the quality of the
text with a reduction of approximately 20 points of
WER from 23.5 to 4.7 and 7 points in CER from
15.1 to 8.0. It is not surprising that the decrease in
WER is stronger than the decrease in CER. This
is due to the fact that many words contain more
than one error and require more than one charac-
ter level operation to get from the incorrect to the
correct string.

Just slight improvement can be shown by
adding training material to the Werther-specific
parts of the system (cf. trainext row of Table 4).
Merely the CER can be improved whereas the
WER stays about the same. The improvement in
testunk is higher than for testinit.

Module specific analysis Since a WER and
CER evaluation is not expedient for all mod-
ules as they were designed to correct specific
problems and not the entirety of them, we look
into the specialized modules in terms of correct
suggestions contributed to the suggestion pool
and correct suggestions only suggested by one
module (unique suggestions). As the system in-
cluding the extended training set trainext delivered
slightly better results, in the following we will
describe the contribution of the single modules
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testinit testunk
module # overcorrected # corrected # unique correct # overcorrected # corrected # unique correct
SMT Werther token 128 364 10 209 1,089 0
SMT Werther character 235 684 0 700 1,919 0
SMT Werther cascaded 273 697 2 728 1,933 4
SMT DTA token 2,179 229 8 1,627 893 19
SMT DTA character 4121 372 22 3,143 1,530 115
text-internal vocab 3,317 131 16 4,142 244 60
word split 594 3 0 720 45 2
spell check 1,329 219 15 2,819 731 40
compound 222 0 0 169 2 2

overall system 238 2171 - 675 2,642 -

Table 5: Number of overcorrected, corrected and uniquely corrected words per module out of 17,367
tokens in testinit (2,726 erroneous words) and 13,304 tokens in testunk (4,141 erroneous words)

to the overall performance of this system (cf.
Table 5). For testunk the number of corrected
tokens along with the number of overcorrections
is higher than for testinit throughout all modules.
Clearly, for testinit the Werther-specific modules
are strongest. The more general modules prove
useful for testunk. The number of corrected words
increases for the SMT module trained on DTA
data on character-level. The usefulness of the
module extracting specific words (text-internal
vocab) as well as the general SMT model and the
spell checker becomes evident in terms of unique
suggestions contributed by those modules.
The analysis of the output of the individual
modules and their contribution to the overall
system uncovers an issue: those modules that
produce a high number of incorrect suggestions,
thus overcorrecting actually correct input tokens,
are at the same time those modules that are the
only ones producing correct suggestions for some
of the incorrect input words. Consequently, those
uniquely suggested corrections are not chosen
in the decision modules due to an overall weak
performance of this module. These suggestions
are often crucial to the texts like the suggestions
by the special vocabulary module which contain
named entities or words specific to the time
period. For our testunk set, the text-internal
vocabulary module yields around 60 unique sug-
gestions, out of which 15 are names (Friedrich,
Amalia) or words really specific to the text (Auftrit
spelled with one t instead of two).

Challenges In the context of literature OCR
post-correction is a challenging problem since the
texts themselves can be considered non-standard
text. The aim is not to bring the text at hand to an
agreed upon standard form but to digitize exactly
what was contained in the print version. This can
be far from the standard form of a language. In one

of our texts, we find a character speaking German
with a strong dialect. Her speech contains a lot of
words that are incorrect in standard German, how-
ever, the goal is it to preserve this “errors” in the
digital version. Thus, correction merely on the ba-
sis of the OCR text without consulting the printed
version or an image-digitized facsimile, can essen-
tially never be perfect. It follows, that the integra-
tion of automatic post-correction techniques into
the character recognition process could lead to fur-
ther improvements.

7.3 Adaptability

Reusability as a key concept in NLP for DH origi-
nates in the time limitations given in such projects.
Since DH projects do not evolve around the devel-
opment of tools but the analysis performed with
the help this tools in order to answer a specific
question, the tools are expected to be delivered
in an early phase of collaborative projects. From-
scratch development easily exceeds this time lim-
its. We show that our OCR post-correction system
is modular enough to be adjusted to correct texts
from other languages by training it for two other
languages, English and French, with data released
in the OCR post-correction competition organized
in the context of ICDAR 20179. The texts origi-
nate from the the last four centuries and come from
different collections and therefore have been dig-
itized using different OCR systems. The data is
summarized in Table 610.

We adjust our system to the language by retrain-
ing the SMT models and including spell-checkers
for the respective languages. Due to the modular
architecture these adjustments can be made eas-

9https://sites.google.com/view/
icdar2017-postcorrectionocr/home, 3.07.2017.

10The test set does not comply with the official shared task
set since the manually corrected data is not yet available for
the test set. We test on a combination of periodicals and
monographs.

2723



language trainocr traingold dev1ocr dev1gold dev2ocr dev2gold testocr testgold

English 309,080 282,738 71,049 65,480 13,000 11,966 14,302 12,859

French 805,438 783,371 167,473 163,373 9,566 9,216 12,289 11,780

Table 6: Number of tokens in the English and French corpus provided by the competition on OCR-
postcorrection.

ily and with a low expenditure of time. Since
the datasets are compilation of a variety of texts,
we use all modules but the domain-specific SMT
models. We solely include one token-level and
character-level SMT module for each language.

language system WER CER

English
original 29.4 28.4
SMT Cascaded 22.7 23.6
overall system 22.1 24.5

French
original text 13.3 25.0
SMT Cascaded 9.9 20.0
overall system 8.7 21.5

Table 7: The results reported in word error rate
(WER) and character error rate (CER) for the En-
glish and French test set.

The strongest unique module for these two
languages is the subsequent combination of the
character-level SMT and the token-level SMT
models (Cascaded). For English it performs just
slightly worse on WER and even outperforms the
overall system on the CER. For French, the over-
all system is clearly stronger than the Cascaded
SMT system with more than 1 percent improve-
ment of WER but also performs worse in terms
of CER by 1.5 percent. Generally, the OCR post-
correction system achieves about 25% reduction
of WER for English and over 30% reduction in
WER for French.

8 Digitization workflow

We integrate the automatic OCR process with
tesseract and our automatic post-correction system
into a workflow which results in an hocr file, an
XML format which is readable by PoCoTo (Vobl
et al., 2014) a tool for supporting manual post-
correction of OCRed text through alignment of
image and digitized text. The upload of scans or
images is provided online via a webapplication11.
This shields the user from the technicalities of the

11http://clarin05.ims.uni-stuttgart.de/
ocr/, for access please contact the author.

correction process and provides them with the in-
put for the PoCoTo tool.
The implementation of an easy-to-handle work-
flow is an often underemphasized aspect of DH.
It needs to be intuitive enough to not absorb the
time ion has been saved via automation. Since the
final post-correction step requires that the human
corrector compares the digitized version with the
scan, presenting both next to each other is an ideal
scenario. This functionality is one of the main
strengths of PoCoTo, a visual correction tool, sup-
porting manually initiated correction operations
and batch correction of the same error.

9 Conclusion

We can show that the enhancement of a general,
adaptable architecture by including small but spe-
cific data sets can improve results within a specific
domain. Moreover, the combination of different
techniques for of OCR post-correction is signif-
icantly superior to single techniques. Especially
the integration of SMT models on token level and
character level contributes to the overall success
of the system. Due to the complexity of OCR
post-correction, there cannot be a general solution.
Even though the ranking algorithm achieves large
improvement, further potential lies in the inclusion
of fine-tuned language models since the decision
process highly depends upon it. The intrinsic char-
acteristic of literature as being non-standard com-
plicates the task. However, techniques that focus
on these features like our module that is special-
ized on extracting text-specific vocabulary show
promising results for e.g. named entity correction.
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Slovenia, May 23-28, 2016.

Orphée De Clercq, Bart Desmet, Sarah Schulz, Els
Lefever, and Veronique Hoste. 2013. Normalization
of Dutch user-generated content. In Proceedings of
Recent Advances in Natural Language Processing,
pages 179–188. INCOMA.

Apurva A. Desai. 2010. Gujarati Handwritten Numeral
Optical Character Reorganization Through Neural
Network. Pattern Recogn., 43(7):2582–2589.

Jacob Eisenstein. 2013. What to do about bad language
on the Internet. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 359–369, Atlanta, Geor-
gia. Association for Computational Linguistics.

Alexander Geyken, Susanne Haaf, Bryan Jurish,
Matthias Schulz, Christian Thomas, and Frank Wie-
gand. 2012. TEI und Textkorpora: Fehlerklassi-
fikation und Qualittskontrolle vor, whrend und nach
der Texterfassung im Deutschen Textarchiv. In
Jahrbuch für Computerphilologie, page online.

Alex Graves, Marcus Liwicki, Santiago Fernández,
Roman Bertolami, Horst Bunke, and Jürgen
Schmidhuber. 2009. A Novel Connectionist System
for Unconstrained Handwriting Recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 31(5):855–868.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation.

Justine T. Kao and Dan Jurafsky. 2015. A computa-
tional analysis of poetic style: Imagism and its in-
fluence on modern professional and amateur poetry.
Linguistic Issues in Language Technology, 12(3):1–
31.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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