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Abstract

Mining biomedical text offers an oppor-
tunity to automatically discover important
facts and infer associations among them.
As new scientific findings appear across
a large collection of biomedical publica-
tions, our aim is to tap into this literature
to automate biomedical knowledge extrac-
tion and identify important insights from
them. Towards that goal, we develop a
system with novel deep neural networks
to extract insights on biomedical litera-
ture. Evaluation shows our system is able
to provide insights with competitive accu-
racy of human acceptance and its relation
extraction component outperforms previ-
ous work.

1 Introduction

Biomedical literature offers a rich set of knowl-
edge sources to discover important facts and find
associations among them. For instance, MED-
LINE contains over 18 million references to arti-
cles published since 1946 and sourced from over
5500 journals worldwide (Simpson and Demner-
Fushman, 2012). Two major processing tasks
performed on the biomedical text are: (1) iden-
tify and classify biomedical entities (NER) into
predefined categories such as proteins, genes,
or diseases, and (2) infer pair-wise relationships
among named entities e.g., protein-protein interac-
tion (Poon et al., 2014), gene-protein, and medical
problem-treatment.

This paper presents a system that processes
biomedical text to extract two specific types of re-
lationships among biomedical entities: (a) cause-
effect and (b) correlation.

This system is motivated by the need to bet-
ter automate biomedical knowledge extraction and

identify important information from them, as new
scientific findings appear across a large collection
of publications. For instance, given user sleep pat-
terns, existing biomedical research can be better
utilized to provide insights: inform about poten-
tial effect (e.g., “diabetes”, “obesity”) due to the
cause (e.g., “sleep disorder”) and suggest appro-
priate treatment.

Since biomedical articles usually have title and
abstract summarizing the contents of the full-text
article, we focus on extracting the two relationship
types from them. Unfortunately, mining this sum-
mary data still poses several key challenges. Sim-
ilar to full-text, this data comprises unstructured
text with domain-specific vocabulary, issues of
synonymy (e.g., “heart attack” vs. “myocardial
infarction”), acronyms, abbreviations and rapidly
evolving terminology due to new scientific discov-
eries. While the titles are short and informative,
they do not contain the key information that would
be contained in the abstract.

Many of these challenges are also applicable
for biomedical relation extraction. Further, iden-
tifying particular relation types is challenging be-
cause relations are expressed as discontinuous
spans of text , and the relation types are typically
application-specific. Finally, there is often little
consensus on how to best annotate relation types
resulting in lack of high quality annotated corpora
for training.

In this study, we develop neural networks
with novel similarity modeling for better causal-
ity/correlation relation extraction, as we map the
extraction task into a representational similarity
measurement task in the vector space. Our ap-
proach innovates in that it explicitly measures both
relational and contextual similarity among repre-
sentations of named entities, entity relations and
contexts. Our system also provides a novel com-
bination of recognizing named entities, predicting
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relationships (insights) between extracted entities,
and ranking the output. We conduct human eval-
uations of the system to show it is able to ex-
tract insights with high human acceptance accu-
racy, and on a SemEval task evaluation its causal-
ity/correlation relation extraction compares favor-
ably against previous state-of-the-art work.

1.1 Contributions
1. We build an end-to-end system to extract in-

sights from biomedical literature.
2. We innovate in similarity measurement model-

ing with deep neural networks for better causal-
ity/correlation relation extraction.

3. Our human evaluation show our system can
achieve competitive acceptance accuracy.

2 Related Work

Most previous work in BioNLP focused on ex-
traction of biomedical concepts (Craven, 1999;
Finkel et al., 2005; Poon and Vanderwende, 2010;
Simpson and Demner-Fushman, 2012; Liu, 2016),
such as drug or protein names. We also con-
duct relation extraction on general named entities,
such as “smoking” or “sleep quality”. Kabiljo
et al. (2009) compared pattern-matching tech-
niques against a baseline regular expression ap-
proach for gene/protein entity extraction. But ex-
isting tools for relation extraction are not as com-
prehensive as entity recognition tools.

Medical dictionaries and resources are heavily
utilized by previous work. For instance, Chen
et al. (2008) extracted disease-drug relation pairs
with MedLEE (Friedman et al., 2004) system for
clinical information extraction of EHR records.
Liu et al. (2015) developed a text-mining system
to search for associations among human diseases,
genes, drugs, metabolites and toxins against large
collections of text-rich biological databases. Pre-
vious research efforts also lead to semantic rep-
resentation program SemRep (Rindflesh and Fisz-
man, 2003), which exploits biomedical domain
knowledge and linguistic analysis of biomedical
text. Other unconventional resource such as web
query logs are also utilized (Paparrizos et al.,
2016) to provide early warnings about the pres-
ence of devastating diseases.

Feature engineering was the dominant approach
in most biomedical relation extraction work with
machine learning techniques (Dogan et al., 2011;
Yala et al., 2016); different sparse features were
explored. For example, word n-gram features,

Algorithm 1 System Overview
1: Input: Biomedical article title and abstract
2: Preprocess the input texts
3: for each sentence of the input do
4: Identify all possible named entities
5: for each named entity pair ( ~A, ~B) do
6: if causality/correlation holds then
7: Extract and Score ( ~A, ~B)
8: end if
9: end for

10: end for
11: Rank all extracted ( ~A, ~B) pairs
12: return top ranked entity pairs

knowledge-based features from medical dictionar-
ies and word position features. Our work instead
propose neural network models that do not require
sparse features as in most previous work.

Recent shift from feature engineering to model
engineering with neural networks has signifi-
cantly improved accuracy on many NLP tasks.
Jagannatha and Yu (2016) adopted an LSTM
model for medical entity detection given patient
EHR records. There are recent work with the
use of deep reinforcement learning on health-
care study (Li, 2017). Our approach is inspired
by recent embedding learning work to jointly
represent texts and knowledge base (Toutanova
et al., 2015, 2016), previous work on embedding
transfer learning (Bordes et al., 2013) and noise-
contrastive estimation (Rao et al., 2016). Lastly
our work models insight extraction as a similar-
ity measurement problem, and is inspired by sim-
ilarity measurement work (He et al., 2016; He and
Lin, 2016) on pairwise word interaction modeling
with deep neural networks.

3 System Overview

We provide a recipe to build a system for biomed-
ical insight extraction and use it as a guide for the
remainder of this paper (Algorithm 1).

To make our discussion concrete, we will use
a sample biomedical article in Example 1. Given
the text, at line 4 of Algorithm 1 we firstly look for
all named entities using a shallow parser and pub-
lic medical dictionaries (see details in Section 4).
Many named entities could be found, for example,
“clinical study”, “sleep disturbances in middle-
aged men” and “diabetes”. Next given any pair
of previously extracted entities within a sentence,
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RESEARCH METHODS: A group of 6,599
initially healthy, nondiabetic middle-aged men
took part in a prospective, population-based
study. The incidence of diabetes during a mean
follow-up of 14.8 years was examined in relation
to self-reported difficulties in falling asleep.
RESULTS: A total of 615 subjects reported ei-
ther difficulties in falling asleep or use of hyp-
notics (seen as makers of sleep disturbances).
Among those, 281 of the men developed diabetes
during the follow-up period. The clinical study
suggests sleep disturbances in middle-aged men
are likely associated with diabetes.

Example 1: Sample Text

at line 6 our neural network-based relation extrac-
tor checks if a valid causality/correlation relation-
ship exists (Section 5). For example, our mod-
els can identify that the entity “sleep disturbances
in middle-aged men” has a correlation relation-
ship with “diabetes” but not with “clinical study”.
Later each valid entity pair is scored via the rank-
ing component at line 7 (Section 6). In the final
step, the system returns top ranked insight(s) to
users: “sleep disturbances in middle-aged men→
diabetes” given this example.

Figure 1 presents the system which consists
of three major neural network-based compo-
nents: (1) a named entity extractor, (2) a causal-
ity/correlation relation extractor, and (3) an insight
ranker. Our system reads in biomedical texts, then
provides insights in the end. We primarily inno-
vate in the relation extraction component. Next,
we describe each of these components in detail.

4 Named Entity Extraction

Named entity extraction in biomedical domain is
challenging due to the domain-specific and rapidly
evolving terminology. For example, “Diabetes
mellitus type 1”, “Type 1 diabetes”, “IDDM”, or
“juvenile diabetes” all express the same concept.
Given frequent evolution of entity naming for new
drugs, diseases or abbreviations, this task becomes
more complicated.

Most existing off-the-shelf biomedical entity
recognizers narrowly focus on specific biomedical
terms. Instead we aim to improve the system recall
by extracting both specific biomedical concepts
such as “gene tmem230” or “prostate cancer” as
well as general noun phrases such as “sleep qual-

Biomedical

Knowledgebase

Shallow Parsing

Contextual
Similarity

Insight Ranker

Modeling

Relational
Similarity
Modeling

Figure 1: Three major components of the system.

ity”, “daily exercises”, or “men with diabetes”.
Thus the scope of the system is broader.

We design an entity extractor by using both
an in-domain medical knowledge base for key-
word matching, and a domain-independent neural
network-based shallow parser for entity boundary
detection. We present the procedure below:
1. We firstly use a large public dictionary,

Metathesaurus of the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004) to
obtain in-domain biomedical terms. UMLS
Metathesaurus is a set of dictionaries provid-
ing large collections of biomedical vocabular-
ies. We extract over 3.3 million of biomedical
terms from UMLS, then utilize the Aho Cora-
sick pattern matching algorithm to create a dic-
tionary lookup tool. Our tool can efficiently lo-
cate all UMLS terms given input texts, since it
has a linear complexity due to its trie tree data
structure.

2. We also use a neural network-based shallow
parser (Collobert et al., 2011) to identify bound-
aries of general noun phrases, which are not
limited to biomedical terms. Usage of shallow
parser is to improve system recall on named en-
tity recognition.

3. Our named entity extraction component aims to
locate all entities of input texts. The result list
is an output concatenation of both step 2 and 3,
and is later provided to the causality/correlation
relation extraction component for further pro-
cessing. If entity overlaps exist, only phrases
with longest matching sequence are extracted.
Our insight extraction system adopts a coarse-

to-fine design approach. First, we focus on im-
proving recall for the entity extraction task. Then
we show how the causality/correlation relation ex-
traction component (Sec. 5) processes extracted
named entities to achieve high precision.

5 Relation Extraction as Similarity
Measurement

We first provide our model design intuition: if
a causality/correlation relationship holds between
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two named entities, then representations of the
two entities should be semantically similar and
close to the representation of the relation in a low-
dimensional vector space. Therefore we map the
causality/correlation relation extraction into a sim-
ilarity measurement task in the vector space.

Our novel approach learns representations of
named entities ( ~A, ~B), context words and the rela-
tion vector ~R, then explicitly measures two aspects
of the similarity: 1) relational similarity between
entities and relation (Sec. 5.2); plus, 2) contextual
similarity between entities and sentence context
(Sec. 5.3).

The intent of our approach is to enforce such
structure of the vector space: as the similarity
among entities, relation and contexts gets stronger,
a fit of all should be observed for better causal-
ity/correlation relation extraction. We develop two
neural network models with such property; both
are utilized in the relation extraction component
of the system.

We define input sentence representation S ∈
R`×d to be a sequence of ` words, each with a
d-dimensional word embedding vector. xt ∈ Rd

denotes the embedding vector of the t-th word
(t ∈ [1, l]) in S. Model details are described in
the following sections.

5.1 Context Modeling

Different words occurring in similar contexts
should have a higher chance to contribute to sim-
ilarity measurement and relation extraction. We
use bidirectional LSTMs (BiLSTM) for context
modeling as a basis for all following models.

LSTM (Hochreiter and Schmidhuber, 1997)
is a special variant of Recurrent Neural Net-
works (Williams and Zipser, 1989). At time step
t, given an input word xt and previous LSTM hid-
den state ht−1, LSTM(xt, ht−1) outputs current
hidden state ht ∈ Rdim. BiLSTM consists of
two LSTMs that run in parallel in opposite direc-
tions. The BiLSTM hidden state hbi

t ∈ R2dim is a
concatenation of forward LSTM’s hfor

t and back-
ward LSTM’s hback

t , representing contexts of input
word xt in the sentence. We define concat oper-
ation and output sentence context representation
HS ∈ R`×2dim below:

ht = LSTM(xt, ht−1) (1)

hbi
t = concat(hfor

t , hback
t ) (2)

HS [t] = hbi
t (3)

Function 1 SimiScore( ~A, ~B, ~R)
1: conC = concat( ~A, ~B)
2: entityC = WC · conC
3: relationT = WD · ~R
4: dist = W di · tanh(entityC + relationT )
5: return dist

Context modeling with BiLSTM allows our fol-
lowing model components to be built over con-
texts rather than over individual words. Given
named entity positions of the sentence, we get ~A
and ~B from context HS .

5.2 Relational Similarity Modeling
Relational similarity modeling focuses on inter-
actions between named entities and relations in
the vector space. When the named entity ~A goes
through a transformation process induced by the
relation ~R, our intent of relational similarity mod-
eling is to force the transformed entity to be trans-
lated to the other named entity ~B in the same vec-
tor space so that the relation ~R holds between the
two named entities.

We show the following objective function of our
relational similarity modeling:

~A+ ~B − ~R ' 0 (4)

To model the transformation process in Equa-
tion 4, we need to know how to measure
the similarity of the triplet ( ~A, ~B, ~R). There-
fore we develop a similarity measurement func-
tion SimiScore( ~A, ~B, ~R) with learnable weights
(W ∗), the similarity function takes an input named
entity pair of ( ~A, ~B) and a relation ~R, returns a
similarity score dist ∈ R1 representing how se-
mantically close ( ~A, ~B, ~R) are, as in Function 1.

We utilize a ranking approach during training
to incorporate the constraint of Equation 4 into the
relational similarity model. Our goal is to learn a
function SimiScore(·) so that the positive triplet
( ~A, ~B, ~R+) is assigned a larger score than that of
the negative triplet ( ~A, ~B, ~R−):

SimiScore( ~A, ~B, ~R+) > SimiScore( ~A, ~B, ~R−) (5)

where R+ denotes the positive causal-
ity/correlation relation, R− denotes a non-
causality/non-correlation relation. The ranking
approach maximizes the similarity score between
the entity pair ( ~A, ~B) and a positive relation ~R+

while minimizing the score with the negative ~R−,
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~C : Lung cancer is most likely caused by smoking

Named Entities ( ~A, ~B)

Contextual Similarity

Causality Relation ~R+ Non-Caus. Relation ~R−

Relational Similarity

>

Figure 2: Our causality/correlation relation extrac-
tion component models both relational similarity
(blue) and contextual similarity (red). Thicker ar-
rows indicate stronger similarity between named
entities ( ~A, ~B) and relation ~R/sentence context.

thus ensuring that the positive connection is larger
than the negative one as in Figure 2.

Our relational similarity model and the ranking
training approach facilitate the transformation pro-
cess of ( ~A, ~B) and ~R in the vector space, which
in the end leads to better constraint satisfaction of
objective Equation 4.

The relational similarity model is placed on top
of BiLSTM (Sec 5.1) as part of the system. We
initialize named entities ~A/ ~B as hbi

A/h
bi
B from the

BiLSTM model, then initialize relation represen-
tations ~R+/ ~R− as random vectors. During train-
ing both ~R+/ ~R− are updated.

5.3 Contextual Similarity Modeling

Since not all words of a given title/abstract are cre-
ated equal, important context words around named
entities that can better contribute to the causal-
ity/correlation relation extraction deserve more
model focus. We develop a contextual similarity
model that can increase model weights onto im-
portant context words to better utilizing contextual
information.

For example, given a sentence, lung cancer is
most likely caused by smoking, the context words
caused by are important clues to suggest there
exists a causality/correlation relationship between
the two named entities. Clue words that require
model attentions usually include, e.g. lead to, is
associated with, because of, while others are not

obvious, such as promote, reflect, reduce, make.
Our system does not require a manually pre-

pared list of clue words, but an attention mecha-
nism (Bahdanau et al., 2014) is utilized to better
identify them by conducting similarity measure-
ment between context word representation hbi

t (not
including entity words) and extracted named en-
tities ( ~A, ~B) (from Sec. 4). Resulting similarity
scores of words are accumulated in atten ∈ R`.

mix = W a · concat( ~A, ~B) (6)

E[t] = dotProd(mix, hbi
t ), ∀t ∈ [1, l] (7)

atten = softmax (E) (8)

where we concatenate both entity representations
( ~A, ~B), apply linear transformation with weights
W a to obtain a representationmix of both entities.
We then use dot product dotProd to measure the
similarity between mix and each context word, fi-
nally normalize the attention weights atten[:] with
softmax . The weights of atten indicate the im-
portance of each context word with respect to both
named entities.

The attention weights should better guide the
focus of the model onto important context words
of the sentence. That is, context words that are
closer to entity representation mix should have
better chances to be clue words. We define
the attention re-weighted sentence representation
attenSen ∈ R2dim:

attenSen = atten�HS (9)

where � represents element-wise multiplication.
Figure 2 illustrates an example where repre-

sentation mix of named entities attends to con-
text words one at a time. Important context clue
words “caused by” should receive higher attention
weights than irrelevant neighbor words.

The re-weighted sentence representation
attenSen is used together with entity representa-
tions ( ~A, ~B) for final prediction.

In summary, both models described in this
section focus on different aspects of similarity
measurement in relation extraction: the contex-
tual similarity model utilizes context information
around named entities, while the relational simi-
larity model focuses on enforcing a transformation
constraint between entities and relation in the vec-
tor space. We adopt both models for better relation
extraction, in the end only pairs of named entities
that are recognized positively by either one of the
models are passed to the next stage of the system.
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Figure 3: Human annotation interface on UHRS platform. Annotators are required to identify and verify
extracted entities and correlation/causality relations from the output of our system for evaluation.

6 Ranking of Extracted Insights

The last major component of our system is to rank
extracted relations ( ~A, ~B, ~R) from the output of
the relation extraction component, as there could
be many extracted relations but not all of them are
important enough as insights of the article. Impor-
tance scores of extracted relations are obtained by
following a set of rules below:

1. We utilize the output classification probability
(∈ [0, 1]) of the relational similarity model as
the base ranking score.

2. We use a multi-perspective convolutional neural
network model (MPCNN) (He et al., 2015) to
measure the similarity (∈ [0, 1]) between the ti-
tle of the article and extracted relation, since the
MPCNN model has competitive performance
on multiple benchmarks for textual similarity
measurement. We compare title text with “ ~A
leads to ~B” of an extracted relation, if the sim-
ilarity score is over a threshold of 0.75, we in-
crease the extracted relation’s ranking score by
15%. If the extracted relation is from the title
text, we also boost its ranking score by 15% be-
cause of its location importance.

Once all extracted relations are scored, our system
only returns the top ranked insights to users.

7 Experiment Setup

Datasets. Experiments are conducted on two
datasets: our own dataset of medical/health publi-
cations annotated on Universal Human Relevance
System (UHRS), a crowdsourcing platform for
end-to-end system evaluation; and SemEval-2010
task 8 dataset for training and evaluation of our re-
lation extraction component:

1. The first dataset consists of 100 publications
from recent biomedical/health journals, which
are then annotated on UHRS to evaluate our
system. In order to ensure high-quality human
annotations, Figure 3 provides an annotation in-
terface on UHRS, which displays instructions,
title/abstract texts of publications and a list of
top ranked extracted insights from the system
output. For fair evaluation the order of extracted
insights is randomized then we ask expert an-
notators with suitable background to verify the
correctness of each.

2. SemEval-2010 Task 8 (Hendrickx et al.,
2009) defines 9 relation types between named
entities: Cause-Effect, Instrument-Agency,
Product-Producer, Content-Container, Entity-
Origin, Entity-Destination, Component-Whole,
Member-Collection and Message-Topic, and a
tenth relation type Other when two named enti-
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ties do not have the first 9 relations. SemEval-
2010 dataset consists of 10, 717 sentences,
with 8, 000 for training and 2, 717 for test.
The dataset is human annotated, and each in-
stance provides one sentence which includes
two named entities and a relation type between
the two entities.

Since our system focuses on extracting insights,
we only use Cause-Effect subset of SemEval-
2010 dataset as the positive training/testing ex-
amples and treat the remaining 9 categories data
such as Content-Container, Message-Topic as
negatives. We use this dataset for training and
evaluating our relation extraction component
(Sec. 5) only.

Training. Two loss functions are adopted to train
relation extraction neural network models.

For contextual similarity model (Sec. 5.3), a
hinge loss is used. The training objective is to min-
imize the following loss, summed over examples
〈x, ygold 〉:

losscontextSim(w, x, ygold) =∑
y′ 6=ygold

max(0, 1 + fw(x, y′)− fw(x, ygold)) (10)

where input x represents an entity pair ( ~A, ~B) plus
its sentence context, ygold is the ground truth la-
bel and y′ is the model predicted label. Both y′

and ygold indicate the relation type with direction-
ality (e.g. directional causality). w represents
weights of contextual similarity model with BiL-
STM, function fw(x, y′) outputs the model pre-
dicted label value, function fw(x, ygold ) outputs
the model ground truth label value, and n is the
number of training examples.

For relational similarity model (Sec. 5.2), a
Bayesian Personalized Ranking (BPR) loss (Ren-
dle et al., 2009) is used. The label of the rela-
tional similarity model is binary because the BPR
loss ranks positive inputs above negative inputs,
thereby requiring the supervision signal to distin-
guish positives from negatives. Due to BPR loss’s
ranking nature, each training instance of the rela-
tional similarity model include one positive input
(x, ~R+) and one negative input (x, ~R−). Given a
positive correlation/causality input ( ~R+), we gen-
erate negative training examples by matching the
input x with each of the negative relation labels
( ~R−). BPR loss is shown to be better tailored for
ranking tasks empirically (Verga et al., 2016):

lossrelationSim(w, x, ~R+, ~R−) =∑
~R−

− log(σ(f ′w(x, ~R+)− f ′w(x, ~R−))) (11)

where σ is the sigmoid function, function
f ′w(x, ~R) represents the relational similarity
model with BiLSTM, and outputs a similarity
score for ranking purpose (Sec. 5.2).

In all experiments, we perform optimization us-
ing RMSProp (Tieleman and Hinton, 2012) with
backpropagation (Bottou, 1998) and a learning
rate fixed to 10−4 and a momentum parameter 0.9.

Settings and Preprocessing. We preprocess both
datasets with Stanford CoreNLP toolkit (Man-
ning et al., 2014). We tokenize, lowercase, sen-
tence split and dependency parse all words of both
datasets. We set LSTM hidden state dim = 500.

Two sets of d = 300-dimension word embed-
dings are utilized. The first one is 300-dimension
GloVe word embeddings (Pennington et al., 2014)
trained on 840 billion tokens; for better biomed-
ical/health domain adaptation, we also train sec-
ond word embeddings using the GloVe toolkit on
biomedical research articles with over 1 billion to-
kens. We do not update word embeddings in all
experiments.

During system deployment, we only initialize
input words with the medical word embeddings
if they do not exist in GloVe embeddings’ vocab-
ulary. We also concatenate embeddings of both
input words and their head words on dependency
trees as input for relation extraction models. We
follow the task settings and compute F1-score with
the official evaluation script only on Cause-Effect
subset of SemEval-2010 data, then the best model
based on F1 is selected for final system deploy-
ment. We set a distance limit and do not extract re-
lations between two named entities if the distance
is larger than 15.

8 Evaluation and Results

Human Evaluation of the Entire System. We
firstly provide a full end-to-end evaluation of the
system on UHRS with human annotators.

For each biomedical publication, top 10 candi-
date insights from the system are listed for fur-
ther inspection. The annotators are required to
understand the texts, carefully inspect each in-
sight, finally either accept it if it is one of the ar-
ticle insights or simply reject it. The annotation
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Figure 4: Human evaluation results of the full system and a baseline system on UHRS. We show the
acceptance accuracy for each of the top ten positions given both systems’ output lists. We primarily
focus on the first 1 and 3 positions, namely Precision@1 and Precision@3.

System Ablation Study Precision@1
Full System 63%
- Remove ReRanker (Sec. 6) -5%
- Replace with BiGRU (Sec. 5) -42%

Table 1: Ablation studies on the full system.

task requires understanding of biomedical/health
publications and is non-trivial, therefore the sys-
tem evaluation is completed by five expert anno-
tators, who all hold postgraduate degrees and/or
have biomedical background.

We also provide a baseline system, of which
its relation extraction component is a bidirectional
gated RNN model (BiGRU) (Cho et al., 2014). Bi-
GRU model and the ranking component are major
differences between our full and baseline system.
Since typically only a limited number of key find-
ings is presented in one article, we evaluate the
system with an averaged acceptance accuracy at
top 1 (Precision@1) and top 3 (Precision@3) po-
sitions of the output rank list, which represent on
average the number of extracted insights accepted
by annotators among the first 1 and 3 output.

Figure 4 shows annotation results with accep-
tance accuracies for each of the ten output posi-
tions given biomedical titles and articles. The Pre-
cision@3 of our full system is 50.6%, which is sig-
nificantly better than the baseline system’s 21.3%.
For top 3 extracted insights on the list, our full
system on average have 1.5 insights accepted by
annotators. Furthermore, the acceptance accuracy
Precision@1 of our system is 63% in comparison
to that of the baseline system’s 21%.

Table 1 shows the ablation study on the removal
of the ranking component (Sec. 6) and the replace-
ment of BiGRU model for causality/correlation re-
lation extraction. We observe significant perfor-
mance difference.

Model F1 score?
Tymoshenko and Giuliano (2010) 82.30%
Tratz and Hovy (2010) 87.63%
Rink and Harabagiu (2010) 89.63%
BiGRU 89.89%
Miwa and Bansal (2016) 91.57%
Contextual similarity modeling 90.77%
Relational similarity modeling 92.28%

Table 2: Test results (F1 score) on the Cause-
Effect subset(?) of SemEval-2010 dataset. Re-
sults are grouped as 1) Top 3 participating teams
in SemEval-2010 competition; 2) Baseline Bi-
GRU model; 3) Recent state-of-the-art treeLSTM
model (Miwa and Bansal, 2016); 4) Our work.

Evaluation of Relation Extraction Component.
We also evaluate the relation extraction compo-
nent (Sec. 5) on Cause-Effect subset of SemEval-
2010 dataset. Note our causality/correlation rela-
tion extraction component is not supposed to be
a general purpose one, since our system only fo-
cuses on insight extraction of biomedical/health
literature. We compare our relation extraction
models against previous work on the Cause-
Effect subset of the data, Table 2 shows our
relational similarity model, without the use of
sparse features or external resources such as Word-
Net, outperforms recent state-of-the-art treeLSTM
model (Miwa and Bansal, 2016). It also shows
BiGRU model is reasonably competitive on this
dataset, which is why we use it in our baseline sys-
tem for comparison purpose.

9 Result Analysis and Case Study

Visualization of Contextual Similarity Model.
We show values of attention weights, atten of
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Excess oil , dirt and bacteria cause acne .
0 0 0 0 0 0 0.9962 0 0.0037
The bombing resulted in the deaths of 1318 in Hanoi
0 0 0.0005 0.9579 0.0415 0 0 0 0 0
Ambient vanadium pentoxide dust produces irritation of the eyes ...
0 0 0 0 0.99 0 0 0 0 ...
Electron beam is generated by an explosive emission cathode
0 0 0 0.0053 0.9946 0 0 0 0

Table 3: Visualization of model attention weights atten given four SemEval-2010 test sentences.

Equation 8 and 9 from within the contextual sim-
ilarity model (Sec. 5.3). Given four sentences in
the test set of SemEval-2010 data, the model pre-
dicts that all provided entity pairs (in bold) have
the causality/correlation relation. From Table 3
we observe the model is able to do its expected
job: it can recognize important clues words, such
as “result in”, “produce”, “generated by” and
“cause”; the model produces attention weights
(each ∈ [0, 1]) to tell the importance of clue words
for causality/correlation relation extraction. We
also observe the model tends to focus more on
prepositions of clue words, such as “by” of “gen-
erated by” and “in” of “result in”, this is probably
because we use head words as extra inputs (Sec. 7)
to the model.

Case Study. We lastly provide case study of our
system. We show two biomedical articles’ titles
and abstracts as examples, with only necessary
omissions to remove irrelevant texts due to the
space limit.

Given Case 1, our system outputs the top in-
sight “the slow negative shift of the DC potential
→ increased cortical excitability” with a score of
0.71. Given Case 2, our system outputs top 3 in-
sights: “excessive drinking → skin cancer” with
a score of 0.55, “excessive drinking → alcohol”
with a score of 0.43, and “excessive drinking →
sunburn” with a score of 0.31. The above exam-
ples show that our system can provide reasonable
insights from biomedical text.

10 Conclusion

We build an end-to-end system for insight extrac-
tion on biomedical literature. We develop novel
similarity measurement modeling with deep neu-
ral networks to extract causation/correlation rela-
tions. Our evaluation shows the system is able
to extract insights with competitive human accep-

Case 1: Scalp recorded direct current potential
shifts associated with the transition to sleep in
man. Abstract: Cortical direct current (DC)
potentials are considered to reflect the state of
cortical excitability which may change char-
acteristically from wakefulness to sleep. The
present experiments examined changes in the
scalp recorded DC potential in 10 healthy hu-
mans ... It is reasonable to assume that the slow
negative shift of the DC potential at the transi-
tion from wakefulness to sleep reflects increased
cortical excitability.

Case 2: Alcohol consumption and self-reported
sunburn: a cross-sectional, population-based
survey. Abstract: Heavy drinking has been asso-
ciated with several cancers, including melanoma
and basal cell carcinoma. ... 299,658 adults
reported their use of alcohol in the preceding
month and a history of sunburn in the preceding
year. Approximately 33.5% of respondents re-
ported a sunburn within the past year. ... Exces-
sive drinking is associated with higher rates of
sunburn among American adults. The observed
relationship typifies the high-risk behavior asso-
ciated with excessive drinking and suggests one
pathway linking alcohol use with skin cancer.

Example 2: Case Study

tance accuracy and its relation extraction compo-
nent compares favorably against previous work.
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