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Abstract

For accurate entity linking, we need to cap-
ture various information aspects of an en-
tity, such as its description in a KB, con-
texts in which it is mentioned, and struc-
tured knowledge. Additionally, a linking
system should work on texts from different
domains without requiring domain-specific
training data or hand-engineered features.

In this work we present a neural, mod-
ular entity linking system that learns a
unified dense representation for each en-
tity using multiple sources of information,
such as its description, contexts around
its mentions, and its fine-grained types.
We show that the resulting entity link-
ing system is effective at combining these
sources, and performs competitively, some-
times out-performing current state-of-the-
art systems across datasets, without requir-
ing any domain-specific training data or
hand-engineered features. We also show
that our model can effectively “embed” en-
tities that are new to the KB, and is able to
link its mentions accurately.

1 Introduction

Entity linking, the task of identifying the real-world
entity a mention in text refers to, provides the abil-
ity to ground text to existing knowledge bases, and
thus supports multiple natural language understand-
ing, and knowledge acquisition tasks.

A key challenge for successful entity linking
is the need to capture semantic and background
information at various levels of granularity. For
example, to resolve the mention “India” in “India
plays a match in England today” to the correct en-
tity, India cricket team, one needs to use

∗Work performed while these authors were at UIUC.

mention-level context to identify that the sentence
refers to a sports team (using plays and match),
use document-level context to identify the sport,
and information about the entity to realize that
India cricket team is a sports team and the
string “India” may refer to it. The problem has
been studied extensively by employing a variety
of machine learning, and inference methods, in-
cluding a pipeline of deterministic modules (Ling
et al., 2015), simple classifiers (Cucerzan, 2007;
Ratinov et al., 2011), graphical models (Durrett and
Klein, 2014), classifiers augmented with ILP infer-
ence (Cheng and Roth, 2013), and more recently,
neural approaches (He et al., 2013; Sun et al., 2015;
Francis-Landau et al., 2016).

We present a neural approach to linking1 that
learns a dense unified representation of entities by
encoding the semantic and background informa-
tion from multiple sources – encyclopedic entity
descriptions, entity-type information, and the con-
texts the entity occurs in – thus capturing differ-
ent aspects of the “meaning” of an entity. Hence,
we overcome the shortcomings of several existing
models that do not capture all these aspects. For
example, methods, such as Vinculum (Ling et al.,
2015), do not make use of the local context of the
mention (“plays” and “match”) while others, such
as Berkeley-CNN (Francis-Landau et al., 2016), do
not take entity-types into account. Our proposed
model uses compositional training to ensure that
the learned entity representation captures the vari-
ous information sources available to it, making it
quite modular. Specifically, we introduce encoders
for the different sources of information about the
entity, and encourage the entity embedding to be
similar to all of the encoded representations.

A key requirement for information extraction
systems is their ability to work across texts from

1 The source code and the datasets are available at
https://nitishgupta.github.io/neural-el
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various domains. Some methods (Francis-Landau
et al., 2016; Nguyen et al., 2016; Hoffart et al.,
2011) train parameters on domain-specific linked
data, thus hampering their ability to generalize to
new domains. By only making use of indirect su-
pervision that is available in Wikipedia/Freebase,
we refrain from using domain specific training data,
and produce a domain-independent linking system.
Our comprehensive evaluation on recent entity link-
ing benchmarks reveals that the resulting entity
linker compares favorably to state-of-the-art sys-
tems across datasets, even those that have hand-
engineered features or use dataset-specific train-
ing. We hence show that our model not only lever-
ages all the available information for each entity
effectively, but is also robust to missing informa-
tion, such as entities without links/description in
Wikipedia or with incomplete entity types.

In the real-world, new entities are regularly
added to the knowledge bases, thus, it is impor-
tant for any entity linking system to be extendable
to such entities, especially the ones that do not have
any existing linked mentions. By the virtue of our
model’s modular nature, it can easily incorporate
new entities not present during training. Specifi-
cally, we show that our model can perform accurate
linking for new entities, without having to re-train
the existing entity representations, only using their
description and types.

2 Related Work

Existing approaches for entity linking differ in sev-
eral ways, including the machine learning models,
the types of training data, and the kinds of informa-
tion used about the entities.

Many existing approaches use links and informa-
tion from Wikipedia as the only source of supervi-
sion to build the entity linking system. These ap-
proaches use sparse entity and mention-context rep-
resentations, such as, based on the Wikipedia cate-
gories (Cucerzan, 2007), weighted bag of words in
the entity description and mention context (Kulka-
rni et al., 2009; Ratinov et al., 2011), hand crafted
features based on partial string matches, punctua-
tions in entity name (McNamee et al., 2009), etc.
Heuristics (Mihalcea and Csomai, 2007) or linear
classifiers (Bunescu and Pasca, 2006; Cucerzan,
2007; Ratinov et al., 2011; McNamee et al., 2009)
are used over these features to rank entity candi-
dates for linking. Recently, neural models have
been proposed as a way to support better general-

ization over the sparse features; e.g., using feed-
forward networks on bag-of-words of the entity
context (He et al., 2013), or using entity-class in-
formation from KB (Sun et al., 2015).

Some models ignore the entity’s description on
Wikipedia, but rather, only rely on the context from
links to learn entity representations (Lazic et al.,
2015), or use a pipeline of existing annotators to
filter entity candidates (Ling et al., 2015). Our
model is similar to these approaches by only using
information from Wikipedia; however, we do not
use hand-crafted features, and use multiple sources
of information such as local and document-level
entity context, KB descriptions, and entity types,
to learn explicit entity representation.

Few recent entity linking approaches (Hoffart
et al., 2011; Durrett and Klein, 2014; Nguyen et al.,
2016; Francis-Landau et al., 2016) use manually-
annotated domain specific training data to learn
the linking system. AIDA (Hoffart et al., 2011),
for example, evaluate their system on test set
from CoNLL-YAGO dataset but also train on the
training data from the same dataset. Berkeley-
CNN (Francis-Landau et al., 2016), that uses CNNs
operating over different granularity of entity and
mention contexts, also follows this training regime
and trains separate models for each dataset. Such
approaches can be prohibitive in many applications
as it encourages the model to over-fit to the pecu-
liarities of different datasets and domains.

Other forms of information, apart from descrip-
tions, and context from linked data, are also uti-
lized for linking. Many approaches perform joint
inference over the linking decisions in a docu-
ment (Milne and Witten, 2008; Ratinov et al., 2011;
Hoffart et al., 2011; Globerson et al., 2016), iden-
tify mentions that do not link to any existing en-
tity (NIL) (Bunescu and Pasca, 2006; Ratinov
et al., 2011), and cluster NIL-mentions (Wick et al.,
2013; Lazic et al., 2015) to discover new entities.
Few approaches jointly model entity linking, and
other related NLP tasks to improve linking, such as,
coreference resolution (Hajishirzi et al., 2013), rela-
tional inference (Cheng and Roth, 2013), and joint
coreference with typing (Durrett and Klein, 2014).
In our model, we use fine-grained type information
of the entity as an auxiliary distant supervision to
improve mention-context representation but do not
use intermediate typing decisions for linking.

Many approaches that learn entity embeddings
for other applications have also been proposed,
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Figure 1: Overview of the Model (§ 3): Each entity has a Wikipedia description, linked mentions in
Wikipedia (only one shown), and fine-grained types from Freebase (only one shown). We encode local
and document-level mention contexts (§ 3.1), entity-description (§ 3.2), and fine-grained entity-types
(§ 3.3 & § 3.4). Joint optimization (§ 3.5) over these provides the unified entity representations {ve}.

such as, from the structured KB for KB comple-
tion (Bordes et al., 2011, 2013; Yang et al., 2014;
Lin et al., 2015), or from both structured KBs, and
text for relation extraction (Toutanova et al., 2016;
Verga et al., 2016a). However, since it is not trivial
for these models to incorporate new entities to the
KB, few recent approaches alleviate this issue by
representing entities as a composition of words in
their names (Socher et al., 2013), relations they par-
ticipate in (Verga et al., 2016b), or their types (Das
et al., 2017), but do not use multiple sources of
information jointly. In our work, we use struc-
tured knowledge (types) as well as unstructured
knowledge (description and context) to learn en-
tity embeddings for entity linking, and show that it
extends to new entities.

3 Jointly Embedding Entity Information

Knowledge bases contain different kinds of infor-
mation about entities such as textual description,
linked mentions (in Wikipedia), and types (in Free-
base). For accurate linking, it is often necessary to
combine information from these various sources.
Here, we describe our model that encodes informa-
tion about the set of entities E using dense unified
representation for linking (ve ∈ Rd,∀e ∈ E). In
particular, we use existing mentions in Wikipedia
to encode the context (§ 3.1), textual descriptions
from Wikipedia to encode background information
(§ 3.2), and fine-grained types from Freebase as
structured topical knowledge (§ 3.3). Figure 1 pro-
vides an overview of our model.

3.1 Encoding the Mention Context, C

Consider the example mention in Figure 1 that con-
tains two mentions, “India” and “England”. In
order to disambiguate “India” to the correct entity,
a linking system would need to utilize both the
local context (played and match), and the docu-
ment context (to identify the sport). However, the
model needs to represent context such that the se-
mantics are preserved, e.g. “England” should not
be linked to a sports team even though it shares the
context with “India”. In this section, we describe
how we encode these two types of context, using
a LSTM-based encoder to capture the lexical and
syntactical local-context of a mention (vlocal

m ), and
a feed-forward network to encode the document-
level topical knowledge (vdoc

m ), and combine them
in a single representation for each mention (vm).

Local-Context Encoder Given a mention m in
the sentence s = w1, . . . ,m, . . . , wN , we use
LSTM encoders on the left (w1, . . . ,m) and right
(m, . . . , wN ) contexts of the mention separately,
and then combine it to form the local context
representation of the mention (Fig. 2). More
precisely, we formulate an LSTM as hi, si =
LSTM(ui, hi−1, si−1), ui ∈ Rdw is the input em-
bedding of the i-th token in the sequence, and
hi−1, si−1 ∈ Rl is the previous output and the cell
state of the LSTM, respectively. The left-LSTM
is applied to the sequence (w1, . . . ,m) with the

last output
−→
hl

m, while a different right-LSTM is ap-
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Figure 2: Overview of the mention context encoder

plied to the sequence (wN , . . . ,m)2 to produce
←−
hr

m.

We concatenate these output [
−→
hl

m,
←−
hr

m] and pass
it through a single layer feed-forward network3

to produce the local context representation of the
mention (vlocal

m ), where vlocal
m ∈ RDm . Note that

this encoder will produce different representations
for different mentions in the same sentence.

Document-Context Encoder To represent the
document context of a mention m, we use a bag-of-
mention surfaces representation, vD ∈ {0, 1}|VG|,
of the document, similar to Lazic et al. (2015). The
vocabulary VG consists of all mention surfaces seen
in our training data, e.g. USA, Nasser Hussain,
Pearl Jam etc. Such a representation helps cap-
ture the topical and entity coherence information in
the document by utilizing co-occurrence between
entity surface forms. This sparse vector vD of
bag-of-mention surfaces is compressed to a low-
dimensional representation vdoc

m ∈ RDm using a
single layer feed-forward network.

Mention-Context Encoder We combine the lo-
cal (vlocal

m ) and document (vdoc
m ) level context vec-

tors by concatenating them, and passing them
through a single-layer feed-forward network to ob-
tain the mention context embedding vm ∈ Rd. In
order to learn the entity representation ve such that
it encodes all of its mentions’ contexts, we intro-
duce an objective that encourages the context rep-
resentation vm to be similar to ve (where mention
m is a link to entity e), and dissimilar to other can-
didates4. Precisely, we maximize the probability
of predicting the correct entity from the mention-
context vector as Ptext(e|m) = exp (vm·ve)∑

ck∈Cm

exp (vm·vck
) ,

2We reverse the token sequence in the right context so that
right-LSTM starts at the last token and ends at the mention.

3We use rectified linear unit (ReLU) as the non-linear
activation throughout this paper.

4Details on candidate generation in Sec 4

where Cm is the set of candidate entities. Given all
the mentions in Wikipedia, we jointly optimize the
entity representations, and the context encoders by
maximizing the following log-likelihood:

Ltext =
1
M

M∑
i=1

logPtext(em(i) |m(i)) (1)

where m(i) is the ith mention in the linked data,
and em(i) is the entity the mention refers to.

3.2 Encoding Entity Description, D

The textual description about entities in Wikipedia
can provide a useful source of background infor-
mation about the entity, and thus has been used
in many existing linking systems. Given the de-
scription as a sequence of words, we first embed
each word to a dw-dimensional vector resulting
in a sequence of vectors w1, . . . , wn. To encode
this description as a fixed size vector, we use a
Convolution Neural Network (CNN), similar to
Francis-Landau et al. (2016), with global average
pooling, to obtain ve

desc ∈ Rd.
In order for the entity representation ve to encode

its description, we use a similar objective as in
the previous section § 3.1, i.e. we maximize the
probability Pdesc(e|ve

desc), and learn the parameters
by maximizing the log-likelihood Ldesc, defined
similarly as (1).

3.3 Encoding Fine-Grained Types, E

Fine-grained types provide a source of structured
information that is quite readily available, often
more easily than the description or linked data (e.g.
Freebase contains tens of millions of entities with
types but Wikipedia only contains descriptions for
a few million). These types have been shown to be
quite useful for linking (Ling et al., 2015), since an
accurate prediction of types from the mention, and
its match with the entity types can often resolve
many challenging ambiguities.

Here, we focus on being able to represent the
different types at the entity level, leaving mention-
level type information to the next section. Each
entity has multiple types Te ⊂ T from the type set
T introduced by Ling and Weld (2012). We com-
pute the probability P (t|e) of type t being relevant
to entity e as σ(vt · ve), where σ is the sigmoid
function, ve ∈ Rd is the entity representation, and
vt ∈ Rd is the embedding of type t in T . We maxi-
mize the log-likelihood of the type information to
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jointly learn entity and type representations:

Letype =
1
|E|

∑
e∈E

log
∏
t∈Te

P (t|e)
∏

t′ /∈Te

(1− P (t′|e))

3.4 Type-Aware Context Representation, T

Apart from being able to represent the types of the
entities, it is also important for our linker to be
able to represent the type information at the men-
tion level. In the example in Fig. 1, although the
mention “India” is prominently used to refer to
the country, it is evident from the sentence that it
refers to a Sports Team. The context-encoder cap-
tures this information in an unstructured manner,
thus it will be useful for the encoder to directly
utilize this supervision. This is a similar setup as
Ling et al. (2015) and Shimaoka et al. (2017) that
use noisy distant supervision to train a fine-grained
type predictor for mentions.

In order for the context encoders, and type em-
beddings to directly inform each other, we intro-
duce an objective Lmtype between every vm and vt

if type t belongs to Te for the entity e that m refers
to. This objective is similar to Letype from § 3.3.

3.5 Learning Unified Entity Representations

In the sections above we described different en-
coder models to capture entity-context informa-
tion (local- and document-level), entity-description
from a KB, and fine-grained types in a single entity
representation vector. To learn the entity represen-
tations, and parameters of the encoders, we jointly
maximize the total objective:

{ve},Θ = argmax
{ve},Θ

Ltext + Ldesc + Letype + Lmtype

where {ve} is the set of entity representations, and
Θ is set of parameters for the different encoders.
One advantage of having such a joint, modular ob-
jective is that it is robust to missing information,
i.e. entities with missing mentions, types, or de-
scriptions will still obtain accurate representations
learned using other sources of information.

4 Entity Linking

Given a document, and mentions marked in it for
disambiguation, we perform a two-step procedure
to link them to an entity. First, we find a set of
candidate entities, and their prior scores using a
pre-computed dictionary. We then use our mention-
context encoder to estimate the semantic similarity

of each mention with the vector representations of
each entity candidate, and combine the results from
the two sources for making linking decisions.

A typical KB contains millions of entities, which
makes it prohibitively expensive to compute a sim-
ilarity score between each mention and all entities
in the KB. Prior work has shown that, for a given
mention, aggressively pruning the set of possible
entities to a small subset hurts performance only
negligibly, while making the linker extremely ef-
ficient. For each mention m, we generate a set of
candidate entities Cm = {cj} ⊂ E using Cross-
Wikis (Spitkovsky and Chang, 2012), a dictionary
computed from a Google crawl of the web that
stores the frequency with which a mention links
to a particular entity. To generate Cm we choose
the top−30 entities for each mention string, and
normalize this frequency across the chosen candi-
dates to compute Pprior(e|m). In the literature, such
a dictionary is often built from the anchor links
in Wikipedia (Ratinov et al., 2011; Hoffart et al.,
2011) but Ling et al. (2015) show using CrossWikis
gives improved prior scores and candidate recall.

For each mention m, we use our learned
mention-context encoder from § 3.1 to encode the
mention’s context as vm, and estimate the distribu-
tion over the candidates using Ptext(e|m). We treat
these two pieces of evidence; pre-computed prior
probability, and the context-based probability, as
independent, disjunctive sources of signal, and thus
combine them to compute P (e|m) as:

P (e|m) = Pprior(e|m) + Ptext(e|m)
− (Pprior(e|m) ∗ Ptext(e|m)) (2)

êm = argmax
e∈Cm

P (e|m) (3)

where êm is the predicted entity that the mention
m should be disambiguated to.

5 Evaluation Setup

Here we provide a detailed description of how we
train our models, benchmark datasets, linking sys-
tems we compare to, and the evaluation metrics.

Training Data Our primary source of informa-
tion about the entities is Wikipedia (dump dated
2016/09/20). We use existing links in Wikipedia,
with the anchors as mentions, and links as the true
entity, as input to the context encoder (see § 3.1).
As the description of each entity (§ 3.2), we use
the first 100 tokens of the entity’s Wikipedia page

2685



(same as Francis-Landau et al. (2016)). To ob-
tain entity types (see § 3.3), we extract the types
for each entity from Freebase and map them to
the 112 fine-grained types introduced by Ling and
Weld (2012). For context and description encoders,
we use pre-trained 300-dimensional case-sensitive
word embeddings by Pennington et al. (2014) as
the first layer that is not updated during training.

Hyper-parameters We perform coarse-grained
tuning of the hyper-parameters using a fraction
of the training data. The vectors for the enti-
ties, types, contexts, and descriptions are of size
d = 200. The size of the local context encoder
LSTM hidden layer l, local context output, and
the document-context encoder output Dm is set to
100(= l = Dm). The document context vocabu-
lary contains |VG| = 1.5 million strings. We use
dropout (Srivastava et al., 2014) with a probability
of 0.4. Additionally, we use word-dropout where
we replace a random subset of tokens (mention-
strings) in the local (document) context with “unk”
(rate of 0.4 and 0.6 for local and document con-
text respectively). We use Adam (Kingma and Ba,
2014) for optimization, with learning rate 0.005
and mini-batches of size 1000.

Existing Approaches We compare our ap-
proach to the following five entity-linking mod-
els: (1) Plato (Lazic et al., 2015), an unsupervised
generative model that uses indirect-supervision
from Wikipedia and an additional corpus of 50
million unlabeled webpages, (2) Wikifier (Rati-
nov et al., 2011), an unsupervised linker that uses
hand-crafted features to rank candidates, (3) Vin-
culum (Ling et al., 2015), a modular, unsupervised
pipeline system, (4) AIDA (Hoffart et al., 2011), a
supervised linker trained on CoNLL data and uses
hand-crafted features, and (5) BerkCNN (Francis-
Landau et al., 2016), a recent neural supervised
approach that has variants that use hand-crafted
features.

Evaluation Setup We evaluate our approach on
the following four datasets: CoNLL-YAGO (Hof-
fart et al., 2011), ACE 2004 (NIST, 2004; Rati-
nov et al., 2011), ACE 2005 (NIST, 2005; Ben-
tivogli et al., 2010), and Wikipedia (Ratinov et al.,
2011). For each of these datasets, we use the stan-
dard test/development splits, but do not use any
information from the training splits. End-to-end
entity linking systems such as Vinculum and Wik-
ifier perform an NER-style F1 evaluation where

CoNLL ACE05 WikiTest Dev

Plato (Sup) 79.7 - - -
Plato (Semi-Sup) 86.4 - - -
AIDA* 81.8 - - -
BerkCNN:Sparse* 74.9 - 83.6 81.5
BerkCNN:CNN* 81.2 86.91 84.5 75.7
BerkCNN:Full* 85.5 - 89.9 82.2

Priors 68.5 70.9 81.1 78.1
Model C 81.4 83.4 83.7 86.1
Model CD 81.0 83.2 85.8 86.1
Model CT 82.3 83.9 86.5 88.2
Model CDT 82.5 85.6 86.8 88.0
Model CDTE 82.9 84.9 85.6 89.0

Table 1: Entity Linking Performance: Accuracy
of existing systems, and variations of our model on
gold mentions. The model using context informa-
tion is labeled C, entity-description as D, context-
typing as T, and entity-type encoding as E. Existing
models marked in Italics* train domain-specific
linkers for each dataset. Our system performs
competitively to these systems, and outperforms
Plato (Sup) that uses the same indirect supervision.

a prediction is only considered correct if the sys-
tem mention boundaries match the gold annota-
tion, and the predicted link is correct (we compare
against these by extracting mentions with Stanford-
NER). On the other hand, systems like Plato, AIDA,
and Berkeley-CNN assume mentions are provided,
and evaluate using the linking accuracy for gold-
mentions. Further, the approaches we compare
here (including ours) do not predict NIL entities
for the datasets evaluated on.

6 Results

In this section we present various experiments to
evaluate the performance of our proposed entity-
linking system. Specifically, we focus on the fol-
lowing questions: (1) how effective is our model in
combining different information on standard link-
ing benchmarks, without requiring domain specific
information (§ 6.1), (2) is our model able to ac-
commodate unseen entities by using their types, or
description, without re-training the entity represen-
tations (§ 6.2), and (3) how does the model perform
on fine-grained mention typing, a task it is not di-
rectly trained for, compared to approaches designed
for the task (§ 6.3). Further, Sec 6.4 presents exam-
ples to show the effect of encoding different kinds
of information in a unified entity representation.
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F1 Accuracy

AIDA 77.8 -
Wikifier 85.1 -
Vinculum 88.5 -

Model C 88.9 93.1
Model CDT 89.8 93.9
Model CDTE 90.7 94.3

Table 2: Results for ACE-2004: F1 is calcu-
lated for predicted mentions, and accuracy on gold-
mentions. Results for Wikifier and AIDA are from
(Ling et al., 2015). All systems use the same men-
tion extraction protocol showing the difference in
F1 is due to linking performance.

6.1 Entity Linking

In Table 1 we present linking accuracy for our
models that vary in the information they use. We
see that the model that only encodes the context-
information, Model C (L = Ltext) consistently per-
forms better than picking the entity with the high-
est prior probability from CrossWikis, indicating
that the model is able to utilize the context across
datasets. On incorporating the description with
context (Model CD) we see improvement in the
performance on ACE-2005, but slight decrease in
CoNLL, suggesting the entity descriptions are not
extremely useful for the latter (it contains rare en-
tities, many short and incomplete sentences, and
specific entities as annotations for metonymic men-
tions, as also observed by Ling et al. (2015)). On
introducing the entity type-aware loss in Model
CT to the context-only model, we see significantly
improved results for all datasets, demonstrating
that explicitly modeling fine-grained types helps
learning a better context encoder and, in turn, type-
aware entity representations. Combining descrip-
tions with this model (Model CDT) shows further
gains in accuracy indicating that our model is able
to exploit complementary information from the two
sources. Finally, on introducing explicit entity-type
encoding, Model CDTE performs the best on two
of the four datasets. As we will see in § 6.2, encod-
ing entity-type information also allows our models
to easily generalize to new entities.

On comparison to existing systems we see
that all our variants outperform Plato’s indirectly-
supervised model trained on Wikipedia, which is
the same information our Model C and CD use.
Their semi-supervised model, that is additionally
trained on 50 million web-pages, performs much

Method Accuracy

Random Guessing 16.7
Random Embeddings 34.0
Entity Description 65.1
Fine-Grained Types 73.7
Description + Types 79.5

Table 3: Cold-Start Entities: Linking new enti-
ties by using different information to learn their
embeddings. Our model is able to jointly utilize
description and type information better.

better. In comparison to AIDA and Berkeley-CNN,
that train separate models on respective datasets,
we perform better than AIDA and Berkeley-CNN’s
sparse and neural model. On combining features
from CNN to the sparse model, the Berkeley-CNN
models for each dataset outperform our model, but
are unlikely to generalize across the datasets5.

In Table 2 we present results for our models on
ACE-2004. Our model outperforms the Wikifier
and Vinculum systems that only use information
from Wikipedia, and AIDA, by a significant margin,
indicating its possible over-fitting to the CoNLL
domain. Hence, it shows our model’s ability to
perform accurate linking across different datasets
without using domain-specific information.

6.2 Cold-Start Entities

In realistic situations, new entities are regularly
added to the knowledge base with little or no linked
data for them. Hence, it is important for any infor-
mation extraction system that learns entity repre-
sentations to be easily extendable for such entities
without needing to be re-trained. In this section,
we consider the use of our approach to this setting.

In particular, for each such new entity, we need
to determine their embedding using only their de-
scription and/or type information. For a new entity
for which only the description is available, we di-
rectly set its embedding to be the output of the
entity-description encoder without any need for
learning. If only fine-grained types are available,
we learn the new entity-embedding by optimizing
the objective Letype. In case both description and
types are available, we jointly maximize the simi-
larity of the entity embedding with the output of the
entity-description, and the type encoders (i.e. opti-
mize Ldesc and Letype). Note that we only learn the
embeddings of each new entity, keeping all other

5Ling et al. (2015) show that AIDA is unable to perform
well on datasets it has not been trained on.
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Models Acc. Macro F1 Micro F1

FIGER 47.4 69.2 65.5
SSIR-LSTM 55.6 75.1 71.7
SSIR-Full 59.6 78.9 75.3
Our Model 57.7 72.8 72.1

Table 4: Typing Prediction: Performance on the
FIGER (GOLD) dataset. Our performance is com-
petitive with FIGER (Ling and Weld, 2012) and
neural-LSTM model of Shimaoka et al. (2017).
Their SSIR-Full model that uses a biLSTM layer,
an attention layer, combined with hand-crafted fea-
tures is state-of-art for this task.

parameters of our model (Model CDTE) fixed.
To evaluate this setting of new entities, we ran-

domly select 1000 rare entities from Wikipedia that
are not used during training. Among all mentions
of these entities in Wikipedia, we only keep the
mentions for which our candidate generation gen-
erates more than one candidate, resulting in 3791
mentions. On average, each mention had 6 candi-
date entities, and further, as priors are not available
in this setting, we only rely on the context proba-
bility for linking, making this a challenging task.

We present the results of using different types of
information about the entity for this data in Table 3.
It is surprising that randomly initialized embed-
dings for these new entities perform better than ran-
dom guessing, suggesting our model is sometimes
able to eliminate the wrong candidates purely based
on their learned embedding, i.e. an entity with a
random embedding has a higher likelihood of being
the correct entity. More importantly, we see that
our model variants that utilize the available entity
information are able to link much more accurately
(47-60% error reduction). Further, using both de-
scription and types results in the best embeddings
for these new entities (∼ 80% accuracy).

6.3 Fine-Grained Typing
Since entity embeddings are trained to be both,
context and type-aware, we evaluate whether they
can be used to predict fine-grained types for men-
tions from context (using vm and vt). Compared to
existing systems trained specifically for this task,
embeddings from our approach (Model CDTE) per-
forms competitively (see Table 4). In particular,
our model performs better than the neural-LSTM
model of Shimaoka et al. (2017), suggesting that
our multi-task linking, and typing loss facilitates
effective encoding of mention contexts.

12th Asian Nations Cup finals are hosted by Lebanon until
this October 29.
Model CD: Lebanon football team
Model CT: Lebanon (correct)
Model CDTE: Lebanon (correct)

Yugoslav midfielder Petrovic scored twice as PSV Eind-
hoven romped to a 6-0 win.
Model CD: Zeljko Petrovic (correct)
Model CT: Vladimir Petrovic
Model CDTE: Zeljko Petrovic (correct)

Ince was clambering over a wall at the Republican stadium
during an under-21 clash.
Model CD: Ince
Model CT: Tom Ince
Model CDTE: Paul Ince (correct)

Table 5: Example predictions by our models:
Model CT (Ex.1) and CD (Ex.2) predict correctly
when correct type prediction or background knowl-
edge is sufficient, respectively. Only Model CDTE
(Ex.3) predicts correctly when combination of con-
text, types, and background knowledge is required.

6.4 Example Predictions

In Table 5 we show the prediction from different
variants of our model for a few example mentions.
In the first example, detecting the type of the men-
tion is crucial, and thus we see both Model CT
and CDTE are able to predict accurately. On the
other hand, predicting the type of the mention is not
especially useful in Example 2, and background
factual knowledge from the entity description is
needed (which models CD and CDTE are able to
encode). Example 3 shows a challenging example
where the appropriate combination of context, type
prediction, and background knowledge is needed,
that our Model CDTE is able to combine.

7 Conclusion

Motivated by the need to provide accurate entity-
linking systems that are able to incorporate mul-
tiple sources of information, and do not require
domain-specific datasets or hand-crafted features,
we presented a novel neural approach to linking.
We proposed a compositional training objective to
learn unified entity embeddings that encode the va-
riety of information available for each entity: its un-
structured textual description, local and document
contexts for its mentions, and sets of fine-grained
types attached to it. The joint formulation allows
the model to fruitfully combine the various sources
of information, providing accurate linking on mul-
tiple datasets, generalization to new entities with
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missing linked data, and the use of entity embed-
dings for related tasks such as type prediction.

There are a number of avenues for future work.
Further research will include encoding more struc-
tured knowledge about the entities, such as their
relations to other entities, to make their representa-
tions semantically richer. We will investigate how
we can use unstructured resources, such as the cor-
pus of unlabeled webpages used by Plato, and noisy
supervision from the Wikilinks corpus (Singh et al.,
2012) in order to further improve the model. We
will also evaluate our approach on substantially var-
ied domains, such as discussion forums, and social
media posts.
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