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Abstract

The majority of NLG evaluation relies
on automatic metrics, such as BLEU. In
this paper, we motivate the need for
novel, system- and data-independent au-
tomatic evaluation methods: We inves-
tigate a wide range of metrics, includ-
ing state-of-the-art word-based and novel
grammar-based ones, and demonstrate that
they only weakly reflect human judge-
ments of system outputs as generated by
data-driven, end-to-end NLG. We also
show that metric performance is data- and
system-specific. Nevertheless, our results
also suggest that automatic metrics per-
form reliably at system-level and can sup-
port system development by finding cases
where a system performs poorly.

1 Introduction

Automatic evaluation measures, such as BLEU (Pa-
pineni et al., 2002), are used with increasing fre-
quency to evaluate Natural Language Generation
(NLG) systems: Up to 60% of NLG research
published between 2012–2015 relies on automatic
metrics (Gkatzia and Mahamood, 2015). Auto-
matic evaluation is popular because it is cheaper
and faster to run than human evaluation, and it is
needed for automatic benchmarking and tuning of
algorithms. The use of such metrics is, however,
only sensible if they are known to be sufficiently
correlated with human preferences. This is rarely
the case, as shown by various studies in NLG
(Stent et al., 2005; Belz and Reiter, 2006; Reiter
and Belz, 2009), as well as in related fields, such
as dialogue systems (Liu et al., 2016), machine
translation (MT) (Callison-Burch et al., 2006), and
image captioning (Elliott and Keller, 2014; Kilick-
aya et al., 2017). This paper follows on from the

above previous work and presents another evalu-
ation study into automatic metrics with the aim
to firmly establish the need for new metrics. We
consider this paper to be the most complete study
to date, across metrics, systems, datasets and do-
mains, focusing on recent advances in data-driven
NLG. In contrast to previous work, we are the first
to:
• Target end-to-end data-driven NLG, where we
compare 3 different approaches. In contrast to
NLG methods evaluated in previous work, our sys-
tems can produce ungrammatical output by (a)
generating word-by-word, and (b) learning from
noisy data.
• Compare a large number of 21 automated met-
rics, including novel grammar-based ones.
• Report results on two different domains and
three different datasets, which allows us to draw
more general conclusions.
• Conduct a detailed error analysis, which sug-
gests that, while metrics can be reasonable indi-
cators at the system-level, they are not reliable at
the sentence-level.
•Make all associated code and data publicly avail-
able, including detailed analysis results.1

2 End-to-End NLG Systems

In this paper, we focus on recent end-to-end, data-
driven NLG methods, which jointly learn sentence
planning and surface realisation from non-aligned
data (Dušek and Jurčı́ček, 2015; Wen et al., 2015;
Mei et al., 2016; Wen et al., 2016; Sharma et al.,
2016; Dušek and Jurčı́ček, 2016, Lampouras and
Vlachos, 2016). These approaches do not require
costly semantic alignment between Meaning Rep-
resentations (MR) and human references (also re-
ferred to as “ground truth” or “targets”), but are

1Available for download at: https://github.com/
jeknov/EMNLP_17_submission
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System Dataset TotalBAGEL SFREST SFHOTEL

LOLS 202 581 398 1,181
RNNLG - 600 477 1,077
TGEN 202 - - 202
Total 404 1,181 875 2,460

Table 1: Number of NLG system outputs from dif-
ferent datasets and systems used in this study.

based on parallel datasets, which can be collected
in sufficient quality and quantity using effective
crowdsourcing techniques, e.g. (Novikova et al.,
2016), and as such, enable rapid development of
NLG components in new domains. In particular,
we compare the performance of the following sys-
tems:
• RNNLG:2 The system by Wen et al. (2015) uses
a Long Short-term Memory (LSTM) network to
jointly address sentence planning and surface re-
alisation. It augments each LSTM cell with a gate
that conditions it on the input MR, which allows it
to keep track of MR contents generated so far.
• TGEN:3 The system by Dušek and Jurčı́ček
(2015) learns to incrementally generate deep-
syntax dependency trees of candidate sentence
plans (i.e. which MR elements to mention and the
overall sentence structure). Surface realisation is
performed using a separate, domain-independent
rule-based module.
• LOLS:4 The system by Lampouras and Vlachos
(2016) learns sentence planning and surface reali-
sation using Locally Optimal Learning to Search
(LOLS), an imitation learning framework which
learns using BLEU and ROUGE as non-decomposable
loss functions.

3 Datasets

We consider the following crowdsourced datasets,
which target utterance generation for spoken dia-
logue systems. Table 1 shows the number of sys-
tem outputs for each dataset. Each data instance
consists of one MR and one or more natural lan-
guage references as produced by humans, such
as the following example, taken from the BAGEL

dataset:5

2https://github.com/shawnwun/RNNLG
3https://github.com/UFAL-DSG/tgen
4https://github.com/glampouras/JLOLS_

NLG
5Note that we use lexicalised versions of SFHOTEL and

SFREST and a partially lexicalised version of BAGEL, where
proper names and place names are replaced by placeholders
(“X”), in correspondence with the outputs generated by the

MR: inform(name=X, area=X, pricerange=moderate,
type=restaurant)
Reference: “X is a moderately priced restaurant in X.”

• SFHOTEL & SFREST (Wen et al., 2015) pro-
vide information about hotels and restaurants in
San Francisco. There are 8 system dialogue act
types, such as inform, confirm, goodbye etc. Each
domain contains 12 attributes, where some are
common to both domains, such as name, type,
pricerange, address, area, etc., and the others are
domain-specific, e.g. food and kids-allowed for
restaurants; hasinternet and dogs-allowed for ho-
tels. For each domain, around 5K human refer-
ences were collected with 2.3K unique human ut-
terances for SFHOTEL and 1.6K for SFREST. The
number of unique system outputs produced is
1181 for SFREST and 875 for SFHOTEL.
• BAGEL (Mairesse et al., 2010) provides informa-
tion about restaurants in Cambridge. The dataset
contains 202 aligned pairs of MRs and 2 corre-
sponding references each. The domain is a subset
of SFREST, including only the inform act and 8 at-
tributes.

4 Metrics

4.1 Word-based Metrics (WBMs)

NLG evaluation has borrowed a number of au-
tomatic metrics from related fields, such as MT,
summarisation or image captioning, which com-
pare output texts generated by systems to ground-
truth references produced by humans. We refer to
this group as word-based metrics. In general, the
higher these scores are, the better or more simi-
lar to the human references the output is.6 The
following order reflects the degree these metrics
move from simple n-gram overlap to also consid-
ering term frequency (TF-IDF) weighting and se-
mantically similar words.
•Word-overlap Metrics (WOMs): We consider
frequently used metrics, including TER (Snover
et al., 2006), BLEU (Papineni et al., 2002), ROUGE

(Lin, 2004), NIST (Doddington, 2002), LEPOR (Han
et al., 2012), CIDEr (Vedantam et al., 2015), and
METEOR (Lavie and Agarwal, 2007).
• Semantic Similarity (SIM): We calculate the Se-
mantic Text Similarity measure designed by Han
et al. (2013). This measure is based on distri-
butional similarity and Latent Semantic Analysis

systems, as provided by the system authors.
6Except for TER whose scale is reversed.
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(LSA) and is further complemented with semantic
relations extracted from WordNet.

4.2 Grammar-based metrics (GBMs)

Grammar-based measures have been explored in
related fields, such as MT (Giménez and Màrquez,
2008) or grammatical error correction (Napoles
et al., 2016), and, in contrast to WBMs, do not rely
on ground-truth references. To our knowledge, we
are the first to consider GBMs for sentence-level
NLG evaluation. We focus on two important prop-
erties of texts here – readability and grammatical-
ity:

• Readability quantifies the difficulty with which
a reader understands a text, as used for e.g. eval-
uating summarisation (Kan et al., 2001) or text
simplification (Francois and Bernhard, 2014). We
measure readability by the Flesch Reading Ease
score (RE) (Flesch, 1979), which calculates a ra-
tio between the number of characters per sentence,
the number of words per sentence, and the num-
ber of syllables per word. Higher RE score indi-
cates a less complex utterance that is easier to read
and understand. We also consider related mea-
sures, such as characters per utterance (len) and
per word (cpw), words per sentence (wps), syl-
lables per sentence (sps) and per word (spw), as
well as polysyllabic words per utterance (pol) and
per word (ppw). The higher these scores, the more
complex the utterance.

• Grammaticality: In contrast to previous NLG
methods, our corpus-based end-to-end systems
can produce ungrammatical output by (a) gener-
ating word-by-word, and (b) learning from noisy
data. As a first approximation of grammatical-
ity, we measure the number of misspellings (msp)
and the parsing score as returned by the Stanford
parser (prs). The lower the msp, the more gram-
matically correct an utterance is. The Stanford
parser score is not designed to measure grammat-
icality, however, it will generally prefer a gram-
matical parse to a non-grammatical one.7 Thus,
lower parser scores indicate less grammatically-
correct utterances. In future work, we aim to use
specifically designed grammar-scoring functions,
e.g. (Napoles et al., 2016), once they become pub-
licly available.

7http://nlp.stanford.edu/software/
parser-faq.shtml

5 Human Data Collection

To collect human rankings, we presented the MR
together with 2 utterances generated by differ-
ent systems side-by-side to crowdworkers, which
were asked to score each utterance on a 6-point
Likert scale for:
• Informativeness: Does the utterance provide all
the useful information from the meaning represen-
tation?
• Naturalness: Could the utterance have been
produced by a native speaker?
• Quality: How do you judge the overall quality
of the utterance in terms of its grammatical cor-
rectness and fluency?

Each system output (see Table 1) was scored by
3 different crowdworkers. To reduce participants’
bias, the order of appearance of utterances pro-
duced by each system was randomised and crowd-
workers were restricted to evaluate a maximum of
20 utterances. The crowdworkers were selected
from English-speaking countries only, based on
their IP addresses, and asked to confirm that En-
glish was their native language.

To assess the reliability of ratings, we calculated
the intra-class correlation coefficient (ICC), which
measures inter-observer reliability on ordinal data
for more than two raters (Landis and Koch, 1977).
The overall ICC across all three datasets is 0.45
(p < 0.001), which corresponds to a moderate
agreement. In general, we find consistent differ-
ences in inter-annotator agreement per system and
dataset, with lower agreements for LOLS than for
RNNLG and TGEN. Agreement is highest for the
SFHOTEL dataset, followed by SFREST and BAGEL

(details provided in supplementary material).

6 System Evaluation

Table 2 summarises the individual systems’ over-
all corpus-level performance in terms of automatic
and human scores (details are provided in the sup-
plementary material).

All WOMs produce similar results, with SIM

showing different results for the restaurant domain
(BAGEL and SFREST). Most GBMs show the same
trend (with different levels of statistical signifi-
cance), but RE is showing inverse results. System
performance is dataset-specific: For WBMs, the
LOLS system consistently produces better results
on BAGEL compared to TGEN, while for SFREST

and SFHOTEL, LOLS is outperformed by RNNLG in
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BAGEL SFHOTEL SFREST

metric TGEN LOLS RNNLG LOLS RNNLG LOLS

WOMs More overlap More overlap* More overlap*
SIM More similar More similar* More similar
GBMs Better grammar(*) Better grammar(*) Better grammar
RE More complex* More complex* More complex*
inform 4.77(Sd=1.09) 4.91(Sd=1.23) 5.47*(Sd=0.81) 5.27(Sd=1.02) 5.29*(Sd=0.94) 5.16(Sd=1.07)
natural 4.76(Sd=1.26) 4.67(Sd=1.25) 4.99*(Sd=1.13) 4.62(Sd=1.28) 4.86 (Sd=1.13) 4.74(Sd=1.23)
quality 4.77(Sd=1.19) 4.54(Sd=1.28) 4.54 (Sd=1.18) 4.53(Sd=1.26) 4.51 (Sd=1.14) 4.58(Sd=1.33)

Table 2: System performance per dataset (summarised over metrics), where “*” denotes p < 0.05 for all
the metrics and “(*)” shows significance on p < 0.05 level for the majority of the metrics.

terms of WBMs. We observe that human informa-
tiveness ratings follow the same pattern as WBMs,
while the average similarity score (SIM) seems to
be related to human quality ratings.

Looking at GBMs, we observe that they seem
to be related to naturalness and quality ratings.
Less complex utterances, as measured by read-
ability (RE) and word length (cpw), have higher
naturalness ratings. More complex utterances, as
measured in terms of their length (len), number
of words (wps), syllables (sps, spw) and polysyl-
lables (pol, ppw), have lower quality evaluation.
Utterances measured as more grammatical are on
average evaluated higher in terms of naturalness.

These initial results suggest a relation between
automatic metrics and human ratings at system
level. However, average scores can be mislead-
ing, as they do not identify worst-case scenarios.
This leads us to inspect the correlation of human
and automatic metrics for each MR-system output
pair at utterance level.

7 Relation of Human and Automatic
Metrics

7.1 Human Correlation Analysis

We calculate the correlation between automatic
metrics and human ratings using the Spearman
coefficient (ρ). We split the data per dataset
and system in order to make valid pairwise com-
parisons. To handle outliers within human rat-
ings, we use the median score of the three human
raters.8 Following Kilickaya et al. (2017), we use
the Williams’ test (Williams, 1959) to determine
significant differences between correlations. Ta-
ble 3 summarises the utterance-level correlation

8As an alternative to using the median human judgment
for each item, a more effective way to use all the human
judgments could be to use Hovy et al. (2013)’s MACE tool
for inferring the reliability of judges.

results between automatic metrics and human rat-
ings, listing the best (i.e. highest absolute ρ) re-
sults for each type of metric (details provided in
supplementary material). Our results suggest that:
• In sum, no metric produces an even moderate
correlation with human ratings, independently of
dataset, system, or aspect of human rating. This
contrasts with our initially promising results on the
system level (see Section 6) and will be further dis-
cussed in Section 8. Note that similar inconsisten-
cies between document- and sentence-level eval-
uation results are observed in MT (Specia et al.,
2010).
• Similar to our results in Section 6, we find that
WBMs show better correlations to human ratings
of informativeness (which reflects content selec-
tion), whereas GBMs show better correlations to
quality and naturalness.
• Human ratings for informativeness, naturalness
and quality are highly correlated with each other,
with the highest correlation between the latter two
(ρ = 0.81) reflecting that they both target surface
realisation.
• All WBMs produce similar results (see Figure 1
and 2): They are strongly correlated with each
other, and most of them produce correlations with
human ratings which are not significantly different
from each other. GBMs, on the other hand, show
greater diversity.
• Correlation results are system- and dataset-
specific (details provided in supplementary mate-
rial). We observe the highest correlation for TGEN

on BAGEL (Figures 1 and 2) and LOLS on SFREST,
whereas RNNLG often shows low correlation be-
tween metrics and human ratings. This lets us
conclude that WBMs and GBMs are sensitive to
different systems and datasets.
• The highest positive correlation is observed be-
tween the number of words (wps) and informative-
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BAGEL SFHOTEL SFREST

TGEN LOLS RNNLG LOLS RNNLG LOLS

Best inform. 0.30* (BLEU-1) 0.20* (ROUGE) 0.09 (BLEU-1) 0.14* (LEPOR) 0.13* (SIM) 0.28* (LEPOR)
WBM natural. -0.19* (TER) -0.19* (TER) 0.10* (METEOR) -0.20* (TER) 0.17* (ROUGE) 0.19* (METEOR)

quality -0.16* (TER) 0.16* (METEOR) 0.10* (METEOR) -0.12* (TER) 0.09* (METEOR) 0.18* (LEPOR)
Best inform. 0.33* (wps) 0.16* (ppw) -0.09 (ppw) 0.13* (cpw) 0.11* (len) 0.21* (len)

GBM natural. -0.25* (len) -0.28* (wps) -0.17* (len) -0.18* (sps) -0.19* (wps) -0.21* (sps)
quality -0.19* (cpw) 0.31* (prs) -0.16* (ppw) -0.17* (spw) 0.11* (prs) -0.16* (sps)

Table 3: Highest absolute Spearman correlation between metrics and human ratings, with “*” denoting
p < 0.05 (metric with the highest absolute value of ρ given in brackets).

Figure 1: Spearman correlation results for TGEN on BAGEL. Bordered area shows correlations between
human ratings and automatic metrics, the rest shows correlations among the metrics. Blue colour of
circles indicates positive correlation, while red indicates negative correlation. The size of circles denotes
the correlation strength.

Figure 2: Williams test results: X represents
a non-significant difference between correlations
(p < 0.05; top: WBMs, bottom: GBMs).

ness for the TGEN system on BAGEL (ρ = 0.33,
p < 0.01, see Figure 1). However, the wps met-
ric (amongst most others) is not robust across sys-
tems and datasets: Its correlation on other datasets
is very weak, (ρ ≤ .18) and its correlation with in-

formativeness ratings of LOLS outputs is insignifi-
cant.
• As a sanity check, we also measure a random
score [0.0, 1.0] which proves to have a close-to-
zero correlation with human ratings (highest ρ =
0.09).

7.2 Accuracy of Relative Rankings

We now evaluate a more coarse measure, namely
the metrics’ ability to predict relative human rat-
ings. That is, we compute the score of each metric
for two system output sentences corresponding to
the same MR. The prediction of a metric is cor-
rect if it orders the sentences in the same way as
median human ratings (note that ties are allowed).
Following previous work (Vedantam et al., 2015;
Kilickaya et al., 2017), we mainly concentrate
on WBMs. Results summarised in Table 4 show
that most metrics’ performance is not significantly
different from that of a random score (Wilcoxon
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signed rank test). While the random score fluc-
tuates between 25.4–44.5% prediction accuracy,
the metrics achieve an accuracy of between 30.6–
49.8%. Again, the performance of the metrics is
dataset-specific: Metrics perform best on BAGEL

data; for SFHOTEL, metrics show mixed perfor-
mance while for SFREST, metrics perform worst.

informat. naturalness quality

BAGEL
raw
data

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR, SIM

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR, SIM

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR, SIM

SFHOTEL
raw
data

TER, BLEU1-4,
ROUGE, LEPOR,
CIDEr, METEOR,
SIM

METEOR N/A

SFREST

raw
data

SIM LEPOR N/A

quant.
data

TER, BLEU1-4,
ROUGE, NIST,
LEPOR, CIDEr,
METEOR

SIM

N/A N/A

Table 4: Metrics predicting relative human rating
with significantly higher accuracy than a random
baseline.

Discussion: Our data differs from the one used
in previous work (Vedantam et al., 2015; Kilick-
aya et al., 2017), which uses explicit relative rank-
ings (“Which output do you prefer?”), whereas we
compare two Likert-scale ratings. As such, we
have 3 possible outcomes (allowing ties). This
way, we can account for equally valid system
outputs, which is one of the main drawbacks of
forced-choice approaches (Hodosh and Hocken-
maier, 2016). Our results are akin to previous
work: Kilickaya et al. (2017) report results be-
tween 60-74% accuracy for binary classification
on machine-machine data, which is comparable to
our results for 3-way classification.

Still, we observe a mismatch between the or-
dinal human ratings and the continuous metrics.
For example, humans might rate system A and
system B both as a 6, whereas BLEU, for exam-
ple, might assign 0.98 and 1.0 respectively, mean-
ing that BLEU will declare system B as the win-
ner. In order to account for this mismatch, we
quantise our metric data to the same scale as the
median scores from our human ratings.9 Applied
to SFREST, where we previously got our worst re-

9Note that this mismatch can also be accounted for by
continuous rating scales, as suggested by Belz and Kow
(2011).

sults, we can see an improvement for predicting
informativeness, where all WBMs now perform
significantly better than the random baseline (see
Table 4). In the future, we will investigate re-
lated discriminative approaches, e.g. (Hodosh and
Hockenmaier, 2016; Kannan and Vinyals, 2017),
where the task is simplified to distinguishing cor-
rect from incorrect output.

8 Error Analysis

In this section, we attempt to uncover why auto-
matic metrics perform so poorly.

8.1 Scales

We first explore the hypothesis that metrics are
good in distinguishing extreme cases, i.e. system
outputs which are rated as clearly good or bad by
the human judges, but do not perform well for ut-
terances rated in the middle of the Likert scale, as
suggested by Kilickaya et al. (2017). We ‘bin’ our
data into three groups: bad, which comprises low
ratings (≤2); good, comprising high ratings (≥5);
and finally a group comprising average ratings.

We find that utterances with low human ratings
of informativeness and naturalness correlate sig-
nificantly better (p < 0.05) with automatic metrics
than those with average and good human ratings.
For example, as shown in Figure 3, the correlation
between WBMs and human ratings for utterances
with low informativeness scores ranges between
0.3 ≤ ρ ≤ 0.5 (moderate correlation), while the
highest correlation for utterances of average and
high informativeness barely reaches ρ ≤ 0.2 (very
weak correlation). The same pattern can be ob-
served for correlations with quality and natural-
ness ratings.

This discrepancy in correlation results between
low and other user ratings, together with the
fact that the majority of system outputs are rated
“good” for informativeness (79%), naturalness
(64%) and quality (58%), whereas low ratings do
not exceed 7% in total, could explain why the
overall correlations are low (Section 7) despite the
observed trends in relationship between average
system-level performance scores (Section 6). It
also explains why the RNNLG system, which con-
tains very few instances of low user ratings, shows
poor correlation between human ratings and auto-
matic metrics.
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No. system MR system output human reference WOMs SIM humans

1 LOLS inform(name = the donatello,
hasinternet = yes)

well there is a hotel with in-
ternet access called the do-
natello

the donatello has internet 1.4 5 6

2 LOLS inform nomatch(area =
embarcadero, kidsallowed=
yes, pricerange = expensive)

i but i but i but i but i but i
but i but i but i but i

unfortunately i could not find
any expensive restaurants in
embarcadero that allow kids.

1.1 1 1

3 TGEN inform(name = X, area =
riverside, eattype =
restaurant, food = fastfood,
pricerange = cheap)

x is a restaurant on the
riverside called located at
the riverside and at is

x is a cheap fastfood restau-
rant located near the riverside

2.4 4 1

4 RNNLG inform nomatch(kidsallowed
= yes, food = moroccan)

i am sorry, i did not find any
restaurants that allows kids
and serve moroccan.

sorry, there are no restau-
rants allowing kids and serv-
ing moroccan food

1.85 4 5

Table 5: Example pairs of MRs and system outputs from our data, contrasting the average of word-
overlap metrics (normalised in the 1-6 range) and semantic similarity (SIM) with human ratings (median
of all measures).

Figure 3: Correlation between automatic metrics
(WBMs) and human ratings for utterances of bad
informativeness (top), and average and good infor-
mativeness (bottom).

8.2 Impact of Target Data

Characteristics of Data: In Section 7.1, we ob-
served that datasets have a significant impact on
how well automatic metrics reflect human ratings.
A closer inspection shows that BAGEL data differs
significantly from SFREST and SFHOTEL, both in
terms of grammatical and MR properties. BAGEL

has significantly shorter references both in terms
of number of characters and words compared to
the other two datasets. Although being shorter, the
words in BAGEL references are significantly more
often polysyllabic. Furthermore, BAGEL only con-
sists of utterances generated from inform MRs,
while SFREST and SFHOTEL also have less complex
MR types, such as confirm, goodbye, etc. Utter-
ances produced from inform MRs are significantly
longer and have a significantly higher correlation
with human ratings of informativeness and natu-
ralness than non-inform utterance types. In other
words, BAGEL is the most complex dataset to gen-

erate from. Even though it is more complex, met-
rics perform most reliably on BAGEL here (note that
the correlation is still only weak). One possible
explanation is that BAGEL only contains two human
references per MR, whereas SFHOTEL and SFREST

both contain 5.35 references per MR on average.
Having more references means that WBMs natu-
rally will return higher scores (‘anything goes’).
This problem could possibly be solved by weight-
ing multiple references according to their quality,
as suggested by (Galley et al., 2015), or following
a reference-less approach (Specia et al., 2010).
Quality of Data: Our corpora contain crowd-
sourced human references that have grammatical
errors, e.g. “Fifth Floor does not allow childs”
(SFREST reference). Corpus-based methods may
pick up these errors, and word-based metrics will
rate these system utterances as correct, whereas
we can expect human judges to be sensitive to
ungrammatical utterances. Note that the pars-
ing score (while being a crude approximation of
grammaticality) achieves one of our highest cor-
relation results against human ratings, with |ρ| =
.31. Grammatical errors raise questions about the
quality of the training data, especially when be-
ing crowdsourced. For example, Belz and Reiter
(2006) find that human experts assign low rank-
ings to their original corpus text. Again, weighting
(Galley et al., 2015) or reference-less approaches
(Specia et al., 2010) might remedy this issue.

8.3 Example-based Analysis

As shown in previous sections, word-based met-
rics moderately agree with humans on bad quality
output, but cannot distinguish output of good or
medium quality. Table 5 provides examples from
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Dimension of human ratings
Study Sentence Planning Surface Realisation Domain

this paper weak positive (ρ = 0.33, WPS) weak negative (ρ = 0.− 31, parser) NLG, restaurant/hotel search
(Reiter and Belz, 2009) none strong positive (Pearson’s r = 0.96, NIST) NLG, weather forecast

(Stent et al., 2005) weak positive (ρ = 0.47, LSA) negative (ρ = −0.56, NIST) paraphrasing of news
(Liu et al., 2016) weak positive (ρ = 0.35, BLEU-4) N/A dialogue/Twitter pairs

(Elliott and Keller, 2014) positive (ρ = 0.53, METEOR) N/A image caption
(Kilickaya et al., 2017) positive (ρ = 0.64, SPICE) N/A image caption

(Cahill, 2009) N/A negative (ρ = −0.64, ROUGE) NLG, German news texts
(Espinosa et al., 2010) weak positive (ρ = 0.43, TER) positive (ρ = 0.62, BLEU-4) NLG, news texts

Table 6: Best correlation results achieved by our and previous work. Dimensions targeted towards Sen-
tence Planning include ‘accuracy’, ‘adequacy’, ‘correctness’, ‘informativeness’. Dimensions for Surface
Realisation include ‘clarity’, ‘fluency’, ‘naturalness’.

our three systems.10 Again, we observe differ-
ent behaviour between WOMs and SIM scores. In
Example 1, LOLS generates a grammatically cor-
rect English sentence, which represents the mean-
ing of the MR well, and, as a result, this utter-
ance received high human ratings (median = 6) for
informativeness, naturalness and quality. How-
ever, WOMs rate this utterance low, i.e. scores of
BLEU1-4, NIST, LEPOR, CIDEr, ROUGE and METEOR nor-
malised into the 1-6 range all stay below 1.5. This
is because the system-generated utterance has low
overlap with the human/corpus references. Note
that the SIM score is high (5), as it ignores human
references and computes distributional semantic
similarity between the MR and the system output.
Examples 2 and 3 show outputs which receive low
scores from both automatic metrics and humans.
WOMs score these system outputs low due to lit-
tle or no overlap with human references, whereas
humans are sensitive to ungrammatical output and
missing information (the former is partially cap-
tured by GBMs). Examples 2 and 3 also illus-
trate inconsistencies in human ratings since sys-
tem output 2 is clearly worse than output 3 and
both are rated by human with a median score of 1.
Example 4 shows an output of the RNNLG system
which is semantically very similar to the reference
(SIM=4) and rated high by humans, but WOMs fail
to capture this similarity. GBMs show more accu-
rate results for this utterance, with mean of read-
ability scores 4 and parsing score 3.5.

9 Related Work

Table 6 summarises results published by previous
studies in related fields which investigate the re-
lation between human scores and automatic met-

10Please note that WBMs tend to match against the refer-
ence that is closest to the generated output. Therefore, we
only include the closest match in Table 5 for simplicity.

rics. These studies mainly considered WBMs,
while we are the first study to consider GBMs.
Some studies ask users to provide separate ratings
for surface realisation (e.g. asking about ‘clarity’
or ‘fluency’), whereas other studies focus only on
sentence planning (e.g. ‘accuracy’, ‘adequacy’, or
‘correctness’). In general, correlations reported by
previous work range from weak to strong. The re-
sults confirm that metrics can be reliable indica-
tors at system-level (Reiter and Belz, 2009), while
they perform less reliably at sentence-level (Stent
et al., 2005). Also, the results show that the met-
rics capture realization better than sentence plan-
ning. There is a general trend showing that best-
performing metrics tend to be the more complex
ones, combining word-overlap, semantic similar-
ity and term frequency weighting. Note, however,
that the majority of previous works do not report
whether any of the metric correlations are signifi-
cantly different from each other.

10 Conclusions

This paper shows that state-of-the-art automatic
evaluation metrics for NLG systems do not suf-
ficiently reflect human ratings, which stresses the
need for human evaluations. This result is opposed
to the current trend of relying on automatic evalua-
tion identified in (Gkatzia and Mahamood, 2015).

A detailed error analysis suggests that auto-
matic metrics are particularly weak in distinguish-
ing outputs of medium and good quality, which
can be partially attributed to the fact that hu-
man judgements and metrics are given on differ-
ent scales. We also show that metric performance
is data- and system-specific.

Nevertheless, our results also suggest that auto-
matic metrics can be useful for error analysis by
helping to find cases where the system is perform-
ing poorly. In addition, we find reliable results on
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system-level, which suggests that metrics can be
useful for system development.

11 Future Directions

Word-based metrics make two strong assump-
tions: They treat human-generated references as
a gold standard, which is correct and complete.
We argue that these assumptions are invalid for
corpus-based NLG, especially when using crowd-
sourced datasets. Grammar-based metrics, on the
other hand, do not rely on human-generated ref-
erences and are not influenced by their quality.
However, these metrics can be easily manipulated
with grammatically correct and easily readable
output that is unrelated to the input. We have
experimented with combining WBMs and GBMs
using ensemble-based learning. However, while
our model achieved high correlation with humans
within a single domain, its cross-domain perfor-
mance is insufficient.

Our paper clearly demonstrates the need for
more advanced metrics, as used in related fields,
including: assessing output quality within the di-
alogue context, e.g. (Dušek and Jurčı́ček, 2016);
extrinsic evaluation metrics, such as NLG’s con-
tribution to task success, e.g. (Rieser et al., 2014;
Gkatzia et al., 2016; Hastie et al., 2016); building
discriminative models, e.g. (Hodosh and Hock-
enmaier, 2016), (Kannan and Vinyals, 2017); or
reference-less quality prediction as used in MT,
e.g. (Specia et al., 2010). We see our paper as
a first step towards reference-less evaluation for
NLG by introducing grammar-based metrics. In
current work (Dušek et al., 2017), we investigate a
reference-less quality estimation approach based
on recurrent neural networks, which predicts a
quality score for a NLG system output by compar-
ing it to the source meaning representation only.

Finally, note that the datasets considered in this
study are fairly small (between 404 and 2.3k hu-
man references per domain). To remedy this, sys-
tems train on de-lexicalised versions (Wen et al.,
2015), which bears the danger of ungrammatical
lexicalisation (Sharma et al., 2016) and a possi-
ble overlap between testing and training set (Lam-
pouras and Vlachos, 2016). There are ongoing ef-
forts to release larger and more diverse data sets,
e.g. (Novikova et al., 2016, 2017).
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