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Abstract

We present a sequential model for tem-
poral relation classification between intra-
sentence events. The key observation
is that the overall syntactic structure and
compositional meanings of the multi-word
context between events are important for
distinguishing among fine-grained tempo-
ral relations. Specifically, our approach
first extracts a sequence of context words
that indicates the temporal relation be-
tween two events, which well align with
the dependency path between two event
mentions. The context word sequence,
together with a parts-of-speech tag se-
quence and a dependency relation se-
quence that are generated corresponding
to the word sequence, are then provided
as input to bidirectional recurrent neural
network (LSTM) models. The neural nets
learn compositional syntactic and seman-
tic representations of contexts surrounding
the two events and predict the temporal
relation between them. Evaluation of the
proposed approach on TimeBank corpus
shows that sequential modeling is capa-
ble of accurately recognizing temporal re-
lations between events, which outperforms
a neural net model using various discrete
features as input that imitates previous fea-
ture based models.

1 Introduction

Identifying temporal relations between events is
crucial to constructing events timeline. It has di-
rect application in tasks such as question answer-
ing, event timeline generation and document sum-
marization.

Bush said he saw little reason to be optimistic
about a settlement of the dispute, which stems
from Iraq’s invasion of oil-wealthy Kuwait and
its subsequent military buildup on the border of
Saudi Arabia.
Relations: (dispute after rel1 invasion, invasion
ibefore rel2 buildup, dispute after rel3 buildup)

Figure 1: Example sentence to illustrate the tem-
poral context for event pairs.

Previous works studied this task as the classifi-
cation problem based on discrete features defined
over lexico-syntactic, semantic and discourse fea-
tures. However, these features are often derived
from local contexts of two events and are only ca-
pable of capturing direct evidences indicating the
temporal relation. Specifically, when two events
are distantly located or are separated by other
events in between, feature based approaches often
fail to utilize compositional evidences, which are
hard to encode using discrete features.

Consider the example sentence in Fig-
ure 1. Here, the first two temporal re-
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lations, dispute after rel1 invasion and
invation ibefore rel2 buildup, involve events
that are close by and discrete features, such
as dependency relations and bag-of-words
extracted from local contexts of two events,
might be sufficient to correctly detect their
relations. However, for the temporal relation
dispute after rel3 buildup, the context between
the two events is long, complex and involves
another event (invasion) as well, which makes it
challenging for any individual feature or feature
combinations to capture the temporal relation.

We propose that the overall syntactic structure
of in-between contexts including the linear order
of words as well as the compositional semantics
of multi-word contexts are critical for predicting
the temporal relation between two events. Further-
more, the most important syntactic and semantic
structures are derived along dependency paths be-
tween two event mentions1. This aligns well with
the observation that semantic composition relates
to grammatical dependency relations (Monroe and
Wang, 2014; Reddy et al., 2016).

Our approach defines rules on dependency parse
trees to extract temporal relation indicating con-
texts. First, we extract the dependency path be-
tween two event mentions. Then we apply two
heuristic rules to enrich extracted dependency
paths and deal with complex syntactic structures
such as punctuations. Empirically, we found that
parts-of-speech tags (POS) and dependency se-
quences generated following the dependency path
provide evidences to predict the temporal relation
as well.

We use neural net sequence models to cap-
ture structural and semantic compositionality in
describing temporal relations between events.
Specifically, we generate three sequences for each
dependency path, the word sequence, the POS tag
sequence and the dependency relation sequence.
Using the three types of sequences as input, we
train bi-directional LSTM models that consume
each of the three sequences and model compo-
sitional structural information, both syntactically
and semantically.

The evaluation shows that each type of se-
quences is useful to temporal relation classifica-
tion between events. Our complete neural net
model taking all the three types of sequences per-

1In this paper, we restrict ourselves to study temporal re-
lation classification between event mentions that are within
one sentence.

forms the best, which clearly outperforms feature
based models.

2 Related Works

Most of the previous works on temporal relation
classification are based on feature-based classi-
fiers. Mani et al. (2006) built MaxEnt classifier
on hand-tagged features in the corpus, including
tense, aspect, modality, polarity and event class for
classifying temporal relations. Later Chambers
et al. (2007) used a two-stage classifier which first
learned imperfect event attributes and then com-
bined them with other linguistic features in the
second stage to perform the classification.

The following works mostly expanded the fea-
ture sets (Cheng et al., 2007; Bethard and Mar-
tin, 2007; UzZaman et al., 2012; Bethard, 2013;
Kolomiyets et al., 2012; Chambers, 2013; Laokul-
rat et al., 2013). Specifically, Chambers (2013)
used direct dependency path between event pairs
to capture syntactic context. Laokulrat et al.
(2013) used 3-grams of paths between two event
mentions in a dependency tree as features instead
of full paths as those are too sparse. We found that
modeling the entire path as one sequence provides
greater compositional evidence on the temporal re-
lation. In addition, modifiers attached to the words
in a path with specific dependency relations like
nmod:tmod are also informative.

Ng (2013) proposed a hybrid system for tempo-
ral relation classification that combines the learned
classifier with 437 hand-coded rules. Their sys-
tem first applied high-accuracy rules and then used
the learned classifier, trained on rich features in-
cluding those high-accuracy rules as features, to
classify the cases that were not handled by the
rules. Ng et al. (2013) also showed the ef-
fectiveness of different discourse analysis frame-
works for this task. Later Mirza and Tonelli
(2014) showed that a simpler approach based on
lexico-syntactic features achieved results compa-
rable to Ng (2013). They also reported that de-
pendency order between events, either governor-
dependent or dependent-governor, was not useful
in their experiments. However, we show that de-
pendency relations, when modeled as a sequence,
contribute significantly to this task.

3 Temporal Link Labeling

In this section, we describe the task of temporal
relation classification, dataset, context words se-
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quence extraction model and the used recurrent
neural net based classifier.

3.1 Task description

Early works on temporal relation classification
Mani et al. (2006); Chambers et al. (2007) and
the first two versions of TempEval (Verhagen
et al., 2007, 2010) simplified the task by consid-
ering only six relation types. They combined the
pair of relation types that are the inverse of each
other and ignored the relations during and dur-
ing inv. Then TempEval-3 (Uzzaman et al., 2013)
extended the task to complete 14 class classifica-
tion problem and all later works have considered
all 14 relations. Our model performs 14-class clas-
sification following the recent works, as this is ar-
guably more challenging (Ng, 2013). Also, we
consider gold annotated event pairs, mainly be-
cause the corpus is small and distribution of re-
lations is very skewed. All previous works focus-
ing on the problem of classifying temporal relation
types assumed gold annotation.

3.2 Dataset

Relations Train Validate Test
After 419 60 120
Before 337 48 97
Simultaneous 288 41 83
Identity 147 21 43
Includes 141 20 41
IS included 93 13 27
Ended by 66 9 19
During inv 26 4 8
Begun by 25 3 7
Begins 22 3 7
IBefore 16 2 5
IAfter 12 2 4
During 11 1 3
Ends 9 2 3
Total 1612 229 467

Table 1: Distribution of temporal relations in
TimeBank v1.2.

We have used TimeBank corpus v1.2 for train-
ing and evaluating our model. The corpus con-
sists of 14 temporal relations between 2308 event
pairs, which are within the same sentence. These
relations (Saurı et al., 2006) are simultaneous,
before, after, ibefore, iafter, begins, begun by,
ends, ended by, includes, is included, during, dur-
ing inv, identity. Six pairs among them are inverse
of each other and other two types are commuta-
tive (e1Re2 ≡ e2Re1, R ∈ {identical, simultane-
ous}). Our sequential model requires that relation

should always be between e1 and e2, where e1 oc-
curs before e2 in the sentence. Therefore, before
extracting the sequence, we inverted the relation
types in cases where relation type was annotated
in opposite order. Final distribution of dataset is
given in Table 1.

3.3 Extracting Context Word Sequence
First, we extract words that are in the dependency
path between two event mentions. However, event
pairs can be very far in a sentence and are in-
volved in complex syntactic structures. Therefore,
we also apply two heuristic rules to deal with com-
plex syntactic structures, e.g., two event mentions
are in separate clauses and have a punctuation sign
in their context. We describe our specific rules be-
low. We used the Stanford parser (Chen and Man-
ning, 2014) for generating dependency relations
and parts-of-speech tags and all notations follow
enhanced universal dependencies (De Marneffe
and Manning, 2008).

Rule 1 (punctuation): Comma directly influ-
ences the meaning in text and omitting it may alter
the meaning of phrase. Therefore, include comma
if it precedes or follows e1, e2 or their modifiers.

Rule 2 (children): Modifiers like now, then, will,
yesterday, subsequent, when, was, etc. contains
information on the temporal order of events and
help in grounding events to the timeline. These
modifiers are often related to event mentions with
a specific class of dependency relations. Include
all such children of e1, e2 and other words in the
path between them, which are connected with de-
pendency relations nmod:tmod, mark, case, aux,
conj, expl, cc, cop, amod, advmod, punct, ref.

3.4 Sequences and Classifier
We form three sequences on the extracted con-
text words (with t words), which are based on (i)
parts-of-speech tags: PT = p1, p2, ..., pt (ii) de-
pendency relations: DT = d1, d2, ..., dn

2 and (iii)
word forms: WT = w1, w2, ..., wt.

We transform each pi and di to a one-hot vec-
tor and each wi to a pre-trained embedding vector
(Pennington et al., 2014). Then each sequence of
vectors are encoded using their corresponding for-
ward (LSTMf ) and backward (LSTMb) LSTM
layers.

Classifier: Figure 2 shows an overview of our
model. It consists of six LSTM (Hochreiter and

2we only consider dependency relations for words in path
connecting e1 and e2.
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Figure 2: Bi-directional LSTM based classifier
used for temporal relations classification.

Schmidhuber, 1997) layers, three of them encode
feature sequences in forward order and remain-
ing in reverse order. LSTM layers for POS tag
and dependency relation have 50 neurons and have
dropouts of 0.20. LSTM layers for word form
have 100 neurons and have dropout of 0.25. All
LSTM layers use ’tanh’ activation function. For-
ward and backward embeddings of all sequences
are concatenated and fed into another neural layer
with 14 neurons corresponding to 14 fine-grained
temporal relations. This neural layer uses soft-
max activation function. We train model for 100
iterations using rmsprop optimizer on batch size
of 100 and error defined by categorical cross-
entropy (Chollet, 2015) .

4 Evaluation

We evaluate our model using accuracy which has
been used in previous research works for tempo-
ral relation classification. We also compare model
performance using per-class F-score and macro F-
score. We briefly describe all the systems we have
used for evaluation.

Majority Class: assigns “after” relation to all
event pairs.

Unidirectional LSTMs: use single LSTM layer
to encode each sequence (POS tags, dependency
relation and word forms) individually for extracted
phrase in forward order.

Bidirectional LSTMs: use two LSTM layers
to encode each sequence individually, taken from
POS tags, dependency and word forms sequences.
The first layer encodes sequence in forward and
second in reverse order.

2 Sequences: bi-directional LSTM based mod-
els considering all combinations of two sequences
taken from POS tags, dependency and word forms
sequences.

Full model: our complete sequential model con-
sidering POS, dependency and word forms se-
quences.

Direct dependency path: the same as Full
model except that the two heuristic rules were not
applied in extracting sequences.

Baseline I: a neural network classifier us-
ing discrete features described in Mirza and
Tonelli (2014); Ng (2013). The features used
are: POS tag, dependency relation, token and
lemma of e1(e2); dependency relations between
e1(e2) and their children; binary features indicat-
ing if e1 and e2 are related with the ’happens-
before’ or the ’similar’ relation according to Ver-
bOcean (Chklovski and Pantel, 2004), if e1 and
e2 have the same POS tag, or if e1(e2) is the root
and e1 modifies (or governs) e2; the dependency
relation between e1 and e2 if they are directly con-
nected in the dependency parse tree; prepositions
that modify (or govern) e1(e2); signal words (Der-
czynski and Gaizauskas, 2012) and entity distance
between e1 and e2. These features are concate-
nated and fed into an output neural layer with 14
neurons.

Baseline II: a neural network classifier using
POS tags and word forms of words in the surface
path as input. The surface path consists of words
that lie in between two event mentions based on
the original sentence. The classifier uses four
LSTM layers to encode both POS tag and word
sequences in forward and backward order. The
output neural layer and parameters for all LSTM
layers are kept the same as the Full model.

Baseline III: a neural network classifier based
on event embeddings for both event mentions that
were learned using bidirectional LSTMs (Kiper-
wasser and Goldberg, 2016). The learning uses
two LSTM layers, each with 150 neurons and
dropout of 0.2, to embed the forward and back-
ward representations for each event mention. The
input to LSTM layers are sequences of concate-
nated word embeddings and POS tags; each se-
quence corresponding to 19 context words to the
left or to the right side of an event mention for the
forward or the backward LSTM layer respectively.
Event embeddings are then concatenated and fed
into an output neural layer with 14 neurons.
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All baselines are trained using rmsprop opti-
mizer on an objective function defined by cate-
gorical cross entropy and their output layer uses
softmax activation function.

4.1 Results and Discussion

Models Accuracy
Majority Class 25.69
Baseline I 41.97
Unidirectional LSTM: only POS 34.90

only Word 35.12
only Dependency 34.48

Bidirectional LSTMs: only POS 39.19
only Word 37.69
only Dependency 40.04

2 Sequences: POS + Word 44.54
Dependency + Word 45.18
Dependency + POS 47.75

Full Model 53.32
Direct dependency path 49.25
Baseline II 43.90
Baseline III 44.75

Table 2: Temporal relation classification result on
TimeBank corpus.

Relations OurSystem BaselineI
P R F P R F

After 0.62 0.68 0.65 0.56 0.48 0.45
Before 0.56 0.52 0.53 0.37 0.45 0.41
Simultan. 0.44 0.51 0.47 0.32 0.43 0.37
Identity 0.47 0.56 0.51 0.45 0.53 0.49
Includes 0.59 0.39 0.47 0.43 0.30 0.35
IS includ. 0.5 0.56 0.53 0.61 0.51 0.56
Ended by 0.48 0.63 0.55 0.41 0.47 0.44
During in. 0 0 0 0 0 0
Begun by 0.75 0.43 0.55 0 0 0
Begins 1.0 0.29 0.44 0 0 0
IBefore 0.4 0.4 0.4 0 0 0
IAfter 0.33 0.25 0.29 0 0 0
During 0 0 0 0 0 0
Ends 0 0 0 0 0 0
Macro Av. 0.44 0.37 0.40 0.23 0.22 0.22

Table 3: Per-class results of our best system and
the baseline I.

Table 2 reports accuracy scores for all the sys-
tems. We see that simple sequential models out-
perform the strong feature based system, Base-
line I, which used various discrete features. Note
that dependency relation and POS tag sequences
alone achieve reasonably high accuracies. This
implies that an important aspect of temporal rela-
tion is contained in the syntactic context of event
mentions. Moreover, Mirza and Tonelli (2014)
observed that discrete features based on depen-
dency parse tree did not contribute to improving
their classifier’s accuracy. On the contrary, using

the sequence of dependency relations yields a high
accuracy in our setting which signifies the advan-
tages of using sequential representations for this
task. Our Full Model achieves a performance gain
of 11.35% over Baseline I.

We developed two more baselines (Baseline II
and III) that do not require syntactic information
as well as the Direct dependency path model that
used no rules. The Full Model outperformed them
by 9.42%, 8.57% and 4.07% respectively. This af-
firms that the most useful syntactic and semantic
structures are derived along dependency paths and
additional context words, including prepositions,
signal words and punctuations that are indirectly
attached to event words, entail evidence on tem-
poral relations as well.

Table 3 compares precision, recall and F1

scores of our Full Model with Baseline I. Our
model performs reasonably well compared to the
baseline system for most of the classes. In ad-
dition, it is able to identify relations present in
small proportion like begun by, ibefore, iafter
etc., which the baseline system couldn’t iden-
tify. A similar observation was also reported by
Mirza and Tonelli (2014) that relation types be-
gins, ibefore, ends and during are difficult to iden-
tify using feature based systems, which often gen-
erate false positives for before and after relations.

5 Conclusion and Future work

In this paper, we have focused on modeling syn-
tactic structural information and compositional se-
mantics of contexts in predicting temporal rela-
tions between events in the same sentence. Our
approach extracts lexical and syntactic sequences
from contexts between two events and feed them
to recurrent neural nets. The evaluation shows
that our sequential models are promising in distin-
guishing among fine-grained temporal relations.

In the future, we will extend our sequential
models to predict temporal relations for event
pairs spanning across multiple sentences, for in-
stance by incorporating discourse relations be-
tween sentences in a sequence.
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