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Abstract

NLP tasks are often limited by scarcity of
manually annotated data. In social me-
dia sentiment analysis and related tasks,
researchers have therefore used binarized
emoticons and specific hashtags as forms
of distant supervision. Our paper shows
that by extending the distant supervision
to a more diverse set of noisy labels, the
models can learn richer representations.
Through emoji prediction on a dataset of
1246 million tweets containing one of 64
common emojis we obtain state-of-the-
art performance on 8 benchmark datasets
within emotion, sentiment and sarcasm de-
tection using a single pretrained model.
Our analyses confirm that the diversity of
our emotional labels yield a performance
improvement over previous distant super-
vision approaches.

1 Introduction

A variety of NLP tasks are limited by scarcity of
manually annotated data. Therefore, co-occurring
emotional expressions have been used for dis-
tant supervision in social media sentiment anal-
ysis and related tasks to make the models learn
useful text representations before modeling these
tasks directly. For instance, the state-of-the-art ap-
proaches within sentiment analysis of social me-
dia data use positive/negative emoticons for train-
ing their models (Deriu et al., 2016; Tang et al.,
2014). Similarly, hashtags such as #anger, #joy,
#happytweet, #ugh, #yuck and #fml have in pre-
vious research been mapped into emotional cate-
gories for emotion analysis (Mohammad, 2012).

Distant supervision on noisy labels often en-
ables a model to obtain better performance on the
target task. In this paper, we show that extend-

ing the distant supervision to a more diverse set of
noisy labels enables the models to learn richer rep-
resentations of emotional content in text, thereby
obtaining better performance on benchmarks for
detecting sentiment, emotions and sarcasm. We
show that the learned representation of a single
pretrained model generalizes across 5 domains.

Table 1: Example sentences scored by our model.
For each text the top five most likely emojis are
shown with the model’s probability estimates.

I love mom's cooking
49.1% 8.8% 3.1% 3.0% 2.9%

I love how you never reply back..
14.0% 8.3% 6.3% 5.4% 5.1%

I love cruising with my homies
34.0% 6.6% 5.7% 4.1% 3.8%

I love messing with yo mind!!
17.2% 11.8% 8.0% 6.4% 5.3%

I love you and now you're just gone..
39.1% 11.0% 7.3% 5.3% 4.5%

This is shit
7.0% 6.4% 6.0% 6.0% 5.8%

This is the shit
10.9% 9.7% 6.5% 5.7% 4.8%

Emojis are not always a direct labeling of emo-
tional content. For instance, a positive emoji may
serve to disambiguate an ambiguous sentence or to
complement an otherwise relatively negative text.
Kunneman et al. (2014) discuss a similar duality
in the use of emotional hashtags such as #nice and
#lame. Nevertheless, our work shows that emo-
jis can be used to classify the emotional content
of texts accurately in many cases. For instance,
our DeepMoji model captures varied usages of the
word ‘love’ as well as slang such as ‘this is the
shit’ being a positive statement (see Table 1). We
provide an online demo at deepmoji.mit.edu to al-
low others to explore the predictions of our model.

Contributions We show how millions of read-
ily available emoji occurrences on Twitter can be
used to pretrain models to learn a richer emotional
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representation than traditionally obtained through
distant supervision. We transfer this knowledge to
the target tasks using a new layer-wise fine-tuning
method, obtaining improvements over the state-
of-the-art within a range of tasks: emotion, sar-
casm and sentiment detection. We present multi-
ple analyses on the effect of pretraining, including
results that show that the diversity of our emoji set
is important for the transfer learning potential of
our model. Our pretrained DeepMoji model is re-
leased with the hope that other researchers can use
it for various NLP tasks1.

2 Related work

Using emotional expressions as noisy labels in
text to counter scarcity of labels is not a new
idea (Read, 2005; Go et al., 2009). Originally, bi-
narized emoticons were used as noisy labels, but
later also hashtags and emojis have been used.
To our knowledge, previous research has always
manually specified which emotional category each
emotional expression belong to. Prior work has
used theories of emotion such as Ekman’s six
basic emotions and Plutchik’s eight basic emo-
tions (Mohammad, 2012; Suttles and Ide, 2013).

Such manual categorization requires an under-
standing of the emotional content of each expres-
sion, which is difficult and time-consuming for
sophisticated combinations of emotional content.
Moreover, any manual selection and categoriza-
tion is prone to misinterpretations and may omit
important details regarding usage. In contrast, our
approach requires no prior knowledge of the cor-
pus and can capture diverse usage of 64 types of
emojis (see Table 1 for examples and Figure 3 for
how the model implicitly groups emojis).

Another way of automatically interpreting the
emotional content of an emoji is to learn emoji
embeddings from the words describing the emoji-
semantics in official emoji tables (Eisner et al.,
2016). This approach, in our context, suffers from
two severe limitations: a) It requires emojis at test
time while there are many domains with limited
or no usage of emojis. b) The tables do not cap-
ture the dynamics of emoji usage, i.e., drift in an
emoji’s intended meaning over time.

Knowledge can be transferred from the emoji
dataset to the target task in many different ways.
In particular, multitask learning with simultaneous

1Available with preprocessing code, examples of usage,
benchmark datasets etc. at github.com/bfelbo/DeepMoji
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Figure 1: Illustration of the DeepMoji model with
S being text length and C the number of classes.

training on multiple datasets has shown promis-
ing results (Collobert and Weston, 2008). How-
ever, multitask learning requires access to the
emoji dataset whenever the classifier needs to be
tuned for a new target task. Requiring access
to the dataset is problematic in terms of violat-
ing data access regulations. There are also is-
sues from a data storage perspective as the dataset
used for this research contains hundreds of mil-
lions of tweets (see Table 2). Instead we use trans-
fer learning (Bengio et al., 2012) as described in
§3.3, which does not require access to the original
dataset, but only the pretrained classifier.

3 Method

3.1 Pretraining

In many cases, emojis serve as a proxy for the
emotional contents of a text. Therefore, pretrain-
ing on the classification task of predicting which
emoji were initially part of a text can improve per-
formance on the target task (see §5.3 for an anal-
ysis of why our pretraining helps). Social media
contains large amounts of short texts with emojis
that can be utilized as noisy labels for pretraining.
Here, we use data from Twitter from January 1st
2013 to June 1st 2017, but any dataset with emoji
occurrences could be used.

Only English tweets without URL’s are used for
the pretraining dataset. Our hypothesis is that the
content obtained from the URL is likely to be im-
portant for understanding the emotional content of
the text in the tweet. Therefore, we expect emo-
jis associated with these tweets to be noiser labels
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than for tweets without URLs, and the tweets with
URLs are thus removed.

Proper tokenization is important for generaliza-
tion. All tweets are tokenized on a word-by-word
basis. Words with 2 or more repeated characters
are shortened to the same token (e.g. ‘loool’ and
‘looooool’ are tokenized such that they are treated
the same). Similarly, we use a special token for all
URLs (only relevant for benchmark datasets), user
mentions (e.g. ‘@acl2017’ and ‘@emnlp2017’ are
thus treated the same) and numbers. To be in-
cluded in the training set the tweet must contain
at least 1 token that is not a punctuation symbol,
emoji or special token2.

Many tweets contain multiple repetitions of the
same emoji or multiple different emojis. In the
training data, we address this in the following way.
For each unique emoji type, we save a separate
tweet for the pretraining with that emoji type as the
label. We only save a single tweet for the pretrain-
ing per unique emoji type regardless of the number
of emojis associated with the tweet. This data pre-
processing allows the pretraining task to capture
that multiple types of emotional content are asso-
ciated with the tweet while making our pretraining
task a single-label classification instead of a more
complicated multi-label classification.

To ensure that the pretraining encourages the
models to learn a rich understanding of emotional
content in text rather than only emotional content
associated with the most used emojis, we create
a balanced pretraining dataset. The pretraining
data is split into a training, validation and test set,
where the validation and test set is randomly sam-
pled in such a way that each emoji is equally repre-
sented. The remaining data is upsampled to create
a balanced training dataset.

3.2 Model

With the millions of emoji occurrences available,
we can train very expressive classifiers with lim-
ited risk of overfitting. We use a variant of the
Long Short-Term Memory (LSTM) model that has
been successful at many NLP tasks (Hochreiter
and Schmidhuber, 1997; Sutskever et al., 2014).
Our DeepMoji model uses an embedding layer of
256 dimensions to project each word into a vector
space. A hyperbolic tangent activation function is
used to enforce a constraint of each embedding di-
mension being within [−1, 1]. To capture the con-

2Details available at github.com/bfelbo/deepmoji

text of each word we use two bidirectional LSTM
layers with 1024 hidden units in each (512 in each
direction). Finally, an attention layer that take all
of these layers as input using skip-connections is
used (see Figure 1 for an illustration).

The attention mechanism lets the model decide
the importance of each word for the prediction task
by weighing them when constructing the represen-
tation of the text. For instance, a word such as
‘amazing’ is likely to be very informative of the
emotional meaning of a text and it should thus be
treated accordingly. We use a simple approach
inspired by (Bahdanau et al., 2014; Yang et al.,
2016) with a single parameter pr. input channel:

et = htwa

at =
exp(et)∑T
i=1 exp(ei)

v =
T∑

i=1

aihi

Here ht is the representation of the word at time
step t and wa is the weight matrix for the atten-
tion layer. The attention importance scores for
each time step, at, are obtained by multiplying the
representations with the weight matrix and then
normalizing to construct a probability distribution
over the words. Lastly, the representation vector
for the text, v, is found by a weighted summation
over all the time steps using the attention impor-
tance scores as weights. This representation vec-
tor obtained from the attention layer is a high-level
encoding of the entire text, which is used as input
to the final Softmax layer for classification. We
find that adding the attention mechanism and skip-
connections improves the model’s capabilities for
transfer learning (see §5.2 for more details).

The only regularization used for the pretrain-
ing task is a L2 regularization of 1E−6 on the
embedding weights. For the finetuning additional
regularization is applied (see §4.2). Our model is
implemented using Theano (Theano Development
Team, 2016) and we make an easy-to-use version
available that uses Keras (Chollet et al., 2015).

3.3 Transfer learning

Our pretrained model can be fine-tuned to the tar-
get task in multiple ways with some approaches
‘freezing’ layers by disabling parameters updates
to prevent overfitting. One common approach is
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to use the network as a feature extractor (Don-
ahue et al., 2014), where all layers in the model are
frozen when fine-tuning on the target task except
the last layer (hereafter referred to as the ‘last’ ap-
proach). Alternatively, another common approach
is to use the pretrained model as an initializa-
tion (Erhan et al., 2010), where the full model is
unfrozen (hereafter referred to as ‘full’).

We propose a new simple transfer learning ap-
proach, ‘chain-thaw’, that sequentially unfreezes
and fine-tunes a single layer at a time. This ap-
proach increases accuracy on the target task at the
expense of extra computational power needed for
the fine-tuning. By training each layer separately
the model is able to adjust the individual patterns
across the network with a reduced risk of overfit-
ting. The sequential fine-tuning seems to have a
regularizing effect similar to what has been exam-
ined with layer-wise training in the context of un-
supervised learning (Erhan et al., 2010).

More specifically, the chain-thaw approach first
fine-tunes any new layers (often only a Softmax
layer) to the target task until convergence on a
validation set. Then the approach fine-tunes each
layer individually starting from the first layer in
the network. Lastly, the entire model is trained
with all layers. Each time the model converges
as measured on the validation set, the weights
are reloaded to the best setting, thereby prevent-
ing overfitting in a similar manner to early stop-
ping (Sjöberg and Ljung, 1995). This process is
illustrated in Figure 2. Note how only perform-
ing step a) in the figure is identical to the ‘last’
approach, where the existing network is used as
a feature extractor. Similarly, only doing step d)
is identical to the ‘full’ approach, where the pre-
trained weights are used as an initialization for a
fully trainable network. Although the chain-thaw
procedure may seem extensive it is easily imple-
mented with only a few lines of code. Similarly,
the additional time spent on fine-tuning is limited
when the target task uses GPUs on small datasets
of manually annotated data as is often the case.

A benefit of the chain-thaw approach is the abil-
ity to expand the vocabulary to new domains with
little risk of overfitting. For a given dataset up to
10000 new words from the training set are added
to the vocabulary. §5.3 contains analysis on the
added word coverage gained from this approach.

1st layer

Text
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3rd layer

a) b) c)

1st layer

Text

2nd layer

3rd layer

1st layer

Text

2nd layer

3rd layer
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Figure 2: Illustration of the chain-thaw transfer
learning approach, where each layer is fine-tuned
separately. Layers covered with a blue rectangle
are frozen. Step a) tunes any new layers, b) then
tunes the 1st layer and c) the next layer until all
layers have been fine-tuned individually. Lastly,
in step d) all layers are fine-tuned together.

Table 2: The number of tweets in the pretraining
dataset associated with each emoji in millions.

233.7 82.2 79.5 78.1 60.8 54.7 54.6 51.7 50.5 44.0 39.5 39.1 34.8 34.4 32.1 28.1

24.8 23.4 21.6 21.0 20.5 20.3 19.9 19.6 18.9 17.5 17.0 16.9 16.1 15.3 15.2 15.0

14.9 14.3 14.2 14.2 12.9 12.4 12.0 12.0 11.7 11.7 11.3 11.2 11.1 11.0 11.0 10.8

10.2 9.6 9.5 9.3 9.2 8.9 8.7 8.6 8.1 6.3 6.0 5.7 5.6 5.5 5.4 5.1

4 Experiments

4.1 Emoji prediction

We use a raw dataset of 56.6 billion tweets, which
is then filtered to 1.2 billion relevant tweets (see
details in §3.1). In the pretraining dataset a copy
of a single tweet is stored once for each unique
emoji, resulting in a dataset consisting of 1.6 bil-
lion tweets. Table 2 shows the distribution of
tweets across different emoji types. To evaluate
performance on the pretraining task a validation
set and a test set both containing 640K tweets
(10K of each emoji type) are used. The remain-
ing tweets are used for the training set, which is
balanced using upsampling.

The performance of the DeepMoji model is
evaluated on the pretraining task with the results
shown in Table 3. Both top 1 and top 5 accuracy
is used for the evaluation as the emoji labels are
noisy with multiple emojis being potentially cor-
rect for any given sentence. For comparison we
also train a version of our DeepMoji model with
smaller LSTM layers and a bag-of-words classi-
fier, fastText, that has recently shown competitive
results (Joulin et al., 2016). We use 256 dimen-
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Table 3: Accuracy of classifiers on the emoji
prediction task. d refers to the dimensionality of
each LSTM layer. Parameters are in millions.

Params Top 1 Top 5

Random − 1.6% 7.8%
fasttext 12.8 12.8% 36.2%
DeepMoji (d = 512) 15.5 16.7% 43.3%
DeepMoji (d = 1024) 22.4 17.0% 43.8%

sions for this fastText classifier, thereby making it
almost identical to only using the embedding layer
from the DeepMoji model. The difference in top
5 accuracy between the fastText classifier (36.2%)
and the largest DeepMoji model (43.8%) under-
lines the difficulty of the emoji prediction task. As
the two classifiers only differ in that the DeepMoji
model has LSTM layers and an attention layer be-
tween the embedding and Softmax layer, this dif-
ference in accuracy demonstrates the importance
of capturing the context of each word.

4.2 Benchmarking

We benchmark our method on 3 different NLP
tasks using 8 datasets across 5 domains. To make
for a fair comparison, we compare DeepMoji
to other methods that also utilize external data
sources in addition to the benchmark dataset. An
averaged F1-measure across classes is used for
evaluation in emotion analysis and sarcasm detec-
tion as these consist of unbalanced datasets while
sentiment datasets are evaluated using accuracy.

An issue with many of the benchmark datasets
is data scarcity, which is particularly problem-
atic within emotion analysis. Many recent pa-
pers proposing new methods for emotion analysis
such as (Staiano and Guerini, 2014) only evaluate
performance on a single benchmark dataset, Se-
mEval 2007 Task 14, that contains 1250 observa-
tions. Recently, criticism has been raised concern-
ing the use of correlation with continuous ratings
as a measure (Buechel and Hahn, 2016), making
only the somewhat limited binary evaluation pos-
sible. We only evaluate the emotions {Fear, Joy,
Sadness} as the remaining emotions occur in less
than 5% of the observations.

To fully evaluate our method on emotion analy-
sis against the current methods we thus make use
of two other datasets: A dataset of emotions in
tweets related to the Olympic Games created by
Sintsova et al. that we convert to a single-label

classification task and a dataset of self-reported
emotional experiences created by a large group
of psychologists (Wallbott and Scherer, 1986).
See the supplementary material for details on the
datasets and the preprocessing. As these two
datasets do not have prior evaluations, we eval-
uate against a state-of-the-art approach, which
is based on a valence-arousal-dominance frame-
work (Buechel and Hahn, 2016). The scores ex-
tracted using this approach are mapped to the
classes in the datasets using a logistic regres-
sion with parameter optimization using cross-
validation. We release our preprocessing code and
hope that these 2 two datasets will be used for fu-
ture benchmarking within emotion analysis.

We evaluate sentiment analysis performance on
three benchmark datasets. These small datasets
are chosen to emphasize the importance of the
transfer learning ability of the evaluated models.
Two of the datasets are from SentiStrength (Thel-
wall et al., 2010), SS-Twitter and SS-Youtube,
and follow the relabeling described in (Saif et al.,
2013) to make the labels binary. The third dataset
is from SemEval 2016 Task4A (Nakov et al.,
2016). Due to tweets being deleted from Twitter,
the SemEval dataset suffers from data decay, mak-
ing it difficult to compare results across papers. At
the time of writing, roughly 15% of the training
dataset for SemEval 2016 Task 4A was impossible
to obtain. We choose not to use review datasets for
sentiment benchmarking as these datasets contain
so many words pr. observation that even bag-of-
words classifiers and unsupervised approaches can
obtain a high accuracy (Joulin et al., 2016; Rad-
ford et al., 2017).

The current state of the art for sentiment analy-
sis on social media (and winner of SemEval 2016
Task 4A) uses an ensemble of convolutional neu-
ral networks that are pretrained on a private dataset
of tweets with emoticons, making it difficult to
replicate (Deriu et al., 2016). Instead we pretrain
a model with the hyperparameters of the largest
model in their ensemble on the positive/negative
emoticon dataset from Go et al. (2009). Using
this pretraining as an initialization we finetune
the model on the target tasks using early stop-
ping on a validation set to determine the amount
of training. We also implemented the Sentiment-
Specific Word Embedding (SSWE) using the em-
beddings available on the authors’ website (Tang
et al., 2014), but found that it performed worse
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Table 4: Description of benchmark datasets. Datasets without pre-existing training/test splits are split by
us (with splits publicly available). Data used for hyperparameter tuning is taken from the training set.

Identifier Study Task Domain Classes Ntrain Ntest

SE0714 (Strapparava and Mihalcea, 2007) Emotion Headlines 3 250 1000
Olympic (Sintsova et al., 2013) Emotion Tweets 4 250 709
PsychExp (Wallbott and Scherer, 1986) Emotion Experiences 7 1000 6480

SS-Twitter (Thelwall et al., 2012) Sentiment Tweets 2 1000 1113
SS-Youtube (Thelwall et al., 2012) Sentiment Video Comments 2 1000 1142
SE1604 (Nakov et al., 2016) Sentiment Tweets 3 7155 31986

SCv1 (Walker et al., 2012) Sarcasm Debate Forums 2 1000 995
SCv2-GEN (Oraby et al., 2016) Sarcasm Debate Forums 2 1000 2260

Table 5: Comparison across benchmark datasets. Reported values are averages across five runs. Varia-
tions refer to transfer learning approaches in §3.3 with ‘new’ being a model trained without pretraining.

Dataset Measure State of the art DeepMoji
(new)

DeepMoji
(full)

DeepMoji
(last)

DeepMoji
(chain-thaw)

SE0714 F1 .34 [Buechel] .21 .31 .36 .37
Olympic F1 .50 [Buechel] .43 .50 .61 .61
PsychExp F1 .45 [Buechel] .32 .42 .56 .57

SS-Twitter Acc .82 [Deriu] .62 .85 .87 .88
SS-Youtube Acc .86 [Deriu] .75 .88 .92 .93
SE1604 Acc .51 [Deriu] .51 .54 .58 .58

SCv1 F1 .63 [Joshi] .67 .65 .68 .69
SCv2-GEN F1 .72 [Joshi] .71 .71 .74 .75

than the pretrained convolutional neural network.
These results are therefore excluded.

For sarcasm detection we use the sarcasm
dataset version 1 and 2 from the Internet Argu-
ment Corpus (Walker et al., 2012). Note that
results presented on these benchmarks in e.g.
Oraby et al. (2016) are not directly comparable
as only a subset of the data is available online.3

A state-of-the-art baseline is found by modeling
the embedding-based features from Joshi et al.
(2016) alongside unigrams, bigrams and trigrams
with an SVM. GoogleNews word2vec embed-
dings (Mikolov et al., 2013) are used for comput-
ing the embedding-based features. A hyperparam-
eter search for regularization parameters is carried
out using cross-validation. Note that the sarcasm
dataset version 2 contains both a quoted text and a
sarcastic response, but to keep the models identi-
cal across the datasets only the response is used.

For training we use the Adam opti-
mizer (Kingma and Ba, 2015) with gradient
clipping of the norm to 1. Learning rate is set to
1E−3 for training of all new layers and 1E−4

3We contacted the authors, but were unable to obtain the
full dataset for neither version 1 or version 2.

for finetuning any pretrained layers. To prevent
overfitting on the small datasets, 10% of the
channels across all words in the embedding layer
are dropped out during training. Unlike e.g. (Gal
and Ghahramani, 2016) we do not drop out entire
words in the input as some of our datasets contain
observations with so few words that it could
change the meaning of the text. In addition to
the embedding dropout, L2 regularization for the
embedding weights is used and 50% dropout is
applied to the penultimate layer.

Table 5 shows that the DeepMoji model out-
performs the state of the art across all benchmark
datasets and that our new ‘chain-thaw’ approach
consistently yields the highest performance for the
transfer learning, albeit often only slightly better
or equal to the ‘last’ approach. Results are aver-
aged across 5 runs to reduce the variance. We test
the statistical significance of our results by com-
paring the performance of DeepMoji (chain-thaw)
vs. the state of the art. Bootstrap testing with
10000 samples is used. On all datasets are our re-
sults statistically significantly better than the state
of the art with p < 0.001.

Our model is able to out-perform the state-of-
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the-art on datasets that originate from domains that
differ substantially from the tweets on which it
was pretrained. A key difference between the pre-
training dataset and the benchmark datasets is the
length of the observations. The average number of
tokens pr. tweet in the pretraining dataset is 11,
whereas e.g. the board posts from the Internet Ar-
gument Corpus version 1 (Oraby et al., 2016) has
an average of 66 tokens with some observations
being much longer.

5 Model Analysis

5.1 Importance of emoji diversity

One of the major differences between this work
compared to previous papers using distant super-
vision is the diversity of the noisy labels used (see
§2). For instance, both Deriu et al. (2016) and
Tang et al. (2014) only used positive and negative
emoticons as noisy labels. Other instances of pre-
vious work have used slightly more nuanced sets
of noisy labels (see §2), but to our knowledge our
set of noisy labels is the most diverse yet. To an-
alyze the effect of using a diverse emoji set we
create a subset of our pretraining data containing
tweets with one of 8 emojis that are similar to
the positive/negative emoticons used by Tang et al.
(2014) and Hu et al. (2013) (the set of emoticons
and corresponding emojis are available in the sup-
plemental material). As the dataset based on this
reduced set of emojis contains 433M tweets, any
difference in performance on benchmark datasets
is likely linked to the diversity of labels rather than
differences in dataset sizes.

We train our DeepMoji model to predict
whether the tweets contain a positive or negative
emoji and evaluate this pretrained model across
the benchmark datasets. We refer to the model
trained on the subset of emojis as DeepMoji-
PosNeg (as opposed to DeepMoji). To test the
emotional representations learned by the two pre-
trained models the ‘last’ transfer learning ap-
proach is used for the comparison, thereby only
allowing the models to map already learned fea-
tures to classes in the target dataset. Table 6 shows
that DeepMoji-PosNeg yields lower performance
compared to DeepMoji across all 8 benchmarks,
thereby showing that the diversity of our emoji
types encourage the model to learn a richer repre-
sentation of emotional content in text that is more
useful for transfer learning.

Many of the emojis carry similar emotional

Table 6: Benchmarks using a smaller emoji set
(Pos/Neg emojis) or a classic architecture (stan-
dard LSTM). Results for DeepMoji from Table 5
are added for convenience. Evaluation metrics are
as in Table 5. Reported values are the averages
across five runs.

Dataset Pos/Neg
emojis

Standard
LSTM DeepMoji

SE0714 .32 .35 .36
Olympic .55 .57 .61
PsychExp .40 .49 .56

SS-Twitter .86 .86 .87
SS-Youtube .90 .91 .92
SE1604 .56 .57 .58

SCv1 .66 .66 .68
SCv2-GEN .72 .73 .74

content, but have subtle differences in usage that
our model is able to capture. Through hierar-
chical clustering on the correlation matrix of the
DeepMoji model’s predictions on the test set we
can see that the model captures many similarities
that one would intuitively expect (see Figure 3).
For instance, the model groups emojis into overall
categories associated with e.g. negativity, positiv-
ity or love. Similarly, the model learns to differen-
tiate within these categories, mapping sad emojis
in one subcategory of negativity, annoyed in an-
other subcategory and angry in a third one.

5.2 Model architecture

Our DeepMoji model architecture as described
in §3.2 use an attention mechanism and skip-
connections to ease the transfer of the learned rep-
resentation to new domains and tasks. Here we
compare the DeepMoji model architecture to that
of a standard 2-layer LSTM, both compared using
the ‘last’ transfer learning approach. We use the
same regularization and training parameters.

As seen in Table 6 the DeepMoji model per-
forms better than a standard 2-layer LSTM across
all benchmark datasets. The two architectures per-
formed equally on the pretraining task, suggesting
that while the DeepMoji model architecture is in-
deed better for transfer learning, it may not neces-
sarily be better for single supervised classification
task with ample available data.

A reasonable conjecture is that the improved
transfer learning performance is due to two fac-
tors: a) the attention mechanism with skip-
connections provide easy access to learned low-
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Figure 3: Hierarchical clustering of the DeepMoji model’s predictions across categories on the test set.
The dendrogram shows how the model learns to group emojis into overall categories and subcategories
based on emotional content. The y-axis is the distance on the correlation matrix of the model’s predic-
tions measured using average linkage. More details are available in the supplementary material.

level features for any time step, making it easy to
use this information if needed for a new task b)
the improved gradient-flow from the output layer
to the early layers in the network due to skip-
connections (Graves, 2013) is important when ad-
justing parameters in early layers as part of trans-
fer learning to small datasets. Detailed analysis of
whether these factors actually explain why our ar-
chitecture outperform a standard 2-layer LSTM is
left for future work.

5.3 Analyzing the effect of pretraining

Performance on the target task benefits strongly
from pretraining as shown in Table 5 by compar-
ing DeepMoji (new) to DeepMoji (chain-thaw).
In this section we experimentally decompose the
benefit of pretraining into 2 effects: word coverage
and phrase coverage. These two effects help regu-
larize the model by preventing overfitting (see the
supplementary details for an visualization of the
effect of this regularization).

There are numerous ways to express a specific
sentiment, emotion or sarcastic comment. Conse-
quently, the test set may contain specific language
use not present in the training set. The pretraining
helps the target task models attend to low-support
evidence by having previously observed similar
usage in the pretraining dataset. We first exam-
ine this effect by measuring the improvement in
word coverage on the test set when using the pre-
training with word coverage being defined as the
% of words in the test dataset seen in the train-
ing/pretraining dataset (see Table 7). An impor-
tant reason why the ‘chain-thaw’ approach outper-
forms other transfer learning approaches is can be
used to tune the embedding layer with limited risk
of overfitting. Table 7 shows the increased word

coverage from adding new words to the vocabu-
lary as part of that tuning.

Note that word coverage can be a misleading
metric in this context as for many of these small
datasets a word will often occur only once in the
training set. In contrast, all of the words in the
pretraining vocabulary are present in thousands (if
not millions) of observations in the emoji pretrain-
ing dataset thus making it possible for the model
to learn a good representation of the emotional
and semantic meaning. The added benefit of pre-
training for learning word representations there-
fore likely extends beyond the differences seen in
Table 7.

Table 7: Word coverage on benchmark test sets
using only the vocabulary generated by finding
words in the training data (‘own’), the pretrain-
ing vocabulary (‘last’) or a combination of both
vocabularies (‘full / chain-thaw’).

Dataset Own Last Full /
Chain-thaw

SE0714 41.9% 93.6% 94.0%
Olympic 73.9% 90.3% 96.0%
PsychExp 85.4% 98.5% 98.8%

SS-Twitter 80.1% 97.1% 97.2%
SS-Youtube 79.6% 97.2% 97.3%
SE1604 86.1% 96.6% 97.0%

SCv1 88.7% 97.3% 98.0%
SCv2-GEN 86.5% 97.2% 98.0%

To examine the importance of capturing phrases
and the context of each word, we evaluate the ac-
curacy on the SS-Youtube dataset using a fastText
classifier pretrained on the same emoji dataset as
our DeepMoji model. This fastText classifier is al-
most identical to only using the embedding layer
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from the DeepMoji model. We evaluate the rep-
resentations learned by fine-tuning the models as
feature extractors (i.e. using the ‘last’ transfer
learning approach). The fastText model achieves
an accuracy of 63% as compared to 93% for our
DeepMoji model, thereby emphasizing the im-
portance of phrase coverage. One concept that
the LSTM layers likely learn is negation, which
is known to be important for sentiment analy-
sis (Wiegand et al., 2010).

5.4 Comparing with human-level agreement

To understand how well our DeepMoji classi-
fier performs compared to humans, we created a
new dataset of random tweets annotated for senti-
ment. Each tweet was annotated by a minimum of
10 English-speaking Amazon Mechanical Turkers
(MTurk’s) living in USA. Tweets were rated on a
scale from 1 to 9 with a ‘Do not know’ option, and
guidelines regarding how to rate the tweets were
provided to the human raters. The tweets were
selected to contain only English text, no men-
tions and no URL’s to make it possible to rate
them without any additional contextual informa-
tion. Tweets where more than half of the eval-
uators chose ‘Do not know’ were removed (98
tweets).

For each tweet, we select a MTurk rating ran-
dom to be the ‘human evaluation’, and average
over the remaining nine MTurk ratings are av-
eraged to form the ground truth. The ‘senti-
ment label’ for a given tweet is thus defined as
the overall consensus among raters (excluding the
randomly-selected ‘human evaluation’ rating). To
ensure that the label categories are clearly sep-
arated, we removed neutral tweets in the inter-
val [4.5, 5.5] (roughly 29% of the tweets). The
remaining dataset consists of 7 347 tweets. Of
these tweets, 5000 are used for training/validation
and the remaining are used as the test set. Our
DeepMoji model is trained using the chain-thaw
transfer learning approach.

Table 8 shows that the agreement of the random
MTurk rater is 76.1%, meaning that the randomly
selected rater will agree with the average of the
nine other MTurk-ratings of the tweet’s polarity
76.1% of the time. Our DeepMoji model achieves
82.4% agreement, which means it is better at cap-
turing the average human sentiment-rating than a
single MTurk rater.

Table 8: Comparison of agreement between clas-
sifiers and the aggregate opinion of Amazon
Mechanical Turkers on sentiment prediction of
tweets.

Agreement

Random 50.1%
fastText 71.0%
MTurk 76.1%
DeepMoji 82.4%

6 Conclusion

We have shown how the millions of texts on so-
cial media with emojis can be used for pretrain-
ing models, thereby allowing them to learn repre-
sentations of emotional content in texts. Through
comparison with an identical model pretrained on
a subset of emojis, we find that the diversity of
our emoji set is important for the performance of
our method. We release our pretrained DeepMoji
model with the hope that other researchers will
find good use of them for various emotion-related
NLP tasks4.
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