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Abstract

Neural Machine Translation (NMT) has
shown remarkable progress over the past
few years, with production systems now
being deployed to end-users. As the
field is moving rapidly, it has become un-
clear which elements of NMT architec-
tures have a significant impact on trans-
lation quality. In this work, we present
a large-scale analysis of the sensitivity
of NMT architectures to common hyper-
parameters. We report empirical results
and variance numbers for several hundred
experimental runs, corresponding to over
250,000 GPU hours on a WMT English to
German translation task. Our experiments
provide practical insights into the relative
importance of factors such as embedding
size, network depth, RNN cell type, resid-
ual connections, attention mechanism, and
decoding heuristics. As part of this con-
tribution, we also release an open-source
NMT framework in TensorFlow to make
it easy for others to reproduce our results
and perform their own experiments.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014) is an end-to-end approach to
machine translation. NMT has shown impressive
results (Jean et al., 2015; Luong et al., 2015b;
Sennrich et al., 2016a; Wu et al., 2016) surpass-
ing those of phrase-based systems while address-
ing shortcomings, such as the need for hand-
engineered features. The most popular approaches
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to NMT are based on sequence-to-sequence mod-
els, an encoder-decoder architecture consisting
of two recurrent neural networks (RNNs) and
an attention mechanism that aligns target with
source tokens (Bahdanau et al., 2015; Luong et al.,
2015a).

One drawback of current NMT architectures
is the huge amount of compute required to train
them. Training on real-world datasets of sev-
eral million examples typically requires dozens of
GPUs and convergence time is on the order of days
to weeks (Wu et al., 2016). While sweeping across
large hyperparameter spaces is common in Com-
puter Vision (Huang et al., 2016b), such explo-
ration would be prohibitively expensive for NMT
models, limiting researchers to well-established
architecture and hyperparameter choices. Further-
more, there have been no large-scale studies of
how these hyperparameters affect the performance
of NMT systems. As a result, it remains unclear
why these models perform as well as they do or
how we might improve them.

In this work, we present an extensive analysis of
architectural hyperparameters for NMT systems.
Using a total of more than 250,000 GPU hours,
we explore common variations of NMT architec-
tures and provide insights into which architectural
choices matter most. We report BLEU scores, per-
plexities, model sizes, and convergence time for
all experiments, including variance numbers cal-
culated across several runs of each experiment. In
addition, we release the software framework that
we wrote to facilitate this exploration.

In summary, the main contributions of this work
are as follows:

• We provide immediately applicable insights
into the optimization of NMT models, as well
as promising directions for future research.
For example, we found that deep encoders are

1442



more difficult to optimize than decoders, that
dense residual connections yield better per-
formance than regular residual connections,
and that a well-tuned beam search is sur-
prisingly critical to obtaining state-of-the-art
results. By presenting practical advice for
choosing baseline architectures, we help re-
searchers avoid wasting time on unpromising
model variations.

• We also establish the extent to which met-
rics such as BLEU are influenced by ran-
dom initialization and slight hyperparameter
variation, allowing researchers to better dis-
tinguish statistically significant results from
noise.

• Finally, we release an open-source Ten-
sorFlow package, specifically designed
to implement reproducible state-of-the-art
sequence-to-sequence models. All experi-
ments were run using this framework and we
include all configuration files and processing
scripts needed to reproduce the experiments
in this paper. We hope to accelerate future
research by releasing this framework to the
public.

2 Background and Preliminaries

2.1 Neural Machine Translation

Our models are based on an encoder-decoder ar-
chitecture with attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015a), as shown in fig-
ure 1. An encoder function fenc takes as input a
sequence of source tokens x = (x1, ..., xm) and
produces a sequence of states h = (h1, ..., hm).
In our base model, fenc is a bi-directional RNN
and the state hi corresponds to the concatenation
of the states produced by the backward and for-
ward RNNs, hi = [

−→
hi ;
←−
hi ]. The decoder fdec is

an RNN that predicts the probability of a target
sequence y = (y1, ..., yk) based on h. The proba-
bility of each target token yi ∈ 1, ...V is predicted
based on the recurrent state in the decoder RNN
si, the previous words, y<i, and a context vector
ci. The context vector ci is also called the atten-
tion vector and is calculated as a weighted average
of the source states.

ci =
∑

j

aijhj (1)

aij =
âij∑
j âij

(2)

âij = att(si, hj) (3)

Here, att(si, hj) is an attention function that
calculates an unnormalized alignment score be-
tween the encoder state hj and the decoder state
si. In our base model, we use a function of the
form att(si, hj) = 〈Whhj , Wssi〉, where the ma-
trices W are used to transform the source and tar-
get states into a representation of the same size.

The decoder outputs a distribution over a vocab-
ulary of fixed-size V :

P (yi|y1, ..., yi−1,x)
= softmax(W [si; ci] + b)

The whole model is trained end-to-end by min-
imizing the negative log likelihood of the target
words using stochastic gradient descent.

3 Experimental Protocols

3.1 Datasets and Preprocessing

We run all experiments on the WMT’15
English→German task consisting of 4.5M sen-
tence pairs, obtained by combining the Europarl
v7, News Commentary v10, and Common Crawl
corpora. We use newstest2013 as our validation
set and newstest2014 and newstest2015 as our
test sets. We focus on WMT English→German
because it is a morphologically rich language
therefore has been a standard benchmark in
previous important work in Neural Machine
Translation (Jean et al., 2015; Luong et al., 2015a;
Sennrich et al., 2016b; Zhou et al., 2016; Wu
et al., 2016)

To test for generality, we also ran a small num-
ber of experiments on English→French transla-
tion, and we found that the performance was
highly correlated with that of English→German
but that it took much longer to train models on the
larger English→French dataset. Given that trans-
lation from the morphologically richer German is
also considered a more challenging task, we felt
justified in using the English→German translation
task for this hyperparameter sweep.

1443



Figure 1: Encoder-Decoder architecture with attention module. Section numbers reference experiments
corresponding to the components.

We tokenize and clean all datasets with the
scripts in Moses1 and learn shared subword units
using Byte Pair Encoding (BPE) (Sennrich et al.,
2016b) using 32,000 merge operations for a final
vocabulary size of approximately 37k. We discov-
ered that data preprocessing can have a large im-
pact on final numbers, and since we wish to enable
reproducibility, we release our data preprocessing
scripts together with the NMT framework to the
public. For more details on data preprocessing pa-
rameters, we refer the reader to the code release.

3.2 Training Setup and Software

All of the following experiments are carried out
using our own implementation based on Tensor-
Flow (Abadi et al., 2016). We built this framework
to enable reproducible state-of-the-art implemen-
tations of Neural Machine Translation architec-
tures. As part of our contribution, we are releasing
the framework and all configuration files needed
to reproduce our results. Training is performed
on Nvidia Tesla K40m and Tesla K80 GPUs, dis-
tributed over 8 parallel workers and 6 parameter
servers per experiment. We use a batch size of
128 and decode using beam search with a beam
width of 10 and the length normalization penalty
of 0.6 described in (Wu et al., 2016). BLEU scores
are calculated on tokenized data using the multi-

1https://github.com/moses-smt/mosesdecoder/

bleu.perl script in Moses.2 Each experiment is
run for a maximum of 2.5M steps and replicated
4 times with different initializations. We save
model checkpoints every 30 minutes and choose
the best checkpoint based on the validation set
BLEU score. We report mean and standard de-
viation as well as highest scores (as per cross val-
idation) for each experiment.

3.3 Baseline Model

Based on a review of recent literature, we chose a
baseline model that we knew would perform rea-
sonably well. Our goal was to keep the baseline
model simple and standard, not to advance the
start of the art. The model (described in 2.1) con-
sists of a 2-layer bidirectional encoder (1 layer in
each direction), and a 2 layer decoder with a mul-
tiplicative (Luong et al., 2015a) attention mecha-
nism. We use 512-unit GRU (Cho et al., 2014)
cells for both the encoder and decoder and apply
Dropout of 0.2 at the input of each cell. We train
using the Adam optimizer and a fixed learning rate
of 0.0001 without decay. The embedding dimen-
sionality is set to 512. A more detailed description
of all model hyperparameters can be found in the
supplementary material.

In each of the following experiments, the hy-

2https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl
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perparameters of the baseline model are held con-
stant, except for the one hyperparameter being
studied. We hope that this allows us to isolate the
effect of various hyperparameter changes. We rec-
ognize that this procedure does not account for in-
teractions between hyperparameters, and we per-
form additional experiments when we believe such
interactions are likely to occur (e.g., skip connec-
tions and number of layers).

4 Experiments and Results

For the sake of brevity, we only report mean
BLEU, standard deviation, highest BLEU in
parentheses, and model size in the following ta-
bles. Log perplexity, tokens/sec and convergence
times can be found in the supplementary material
tables. All reported p-values were calculated with
a two-sample t-test that assumed equal variances.

4.1 Embedding Dimensionality

With a large vocabulary, the embedding layer may
account for a significant fraction of the model
parameters. Historically, researchers have used
620-dimensional (Bahdanau et al., 2015) or 1024-
dimensional (Luong et al., 2015a) embeddings.
We expected larger embeddings to result in bet-
ter BLEU scores, or at least lower perplexities,
but this wasn’t always the case. While table 1
shows that 2048-dimensional embeddings yielded
the overall best result, they only outperformed the
smallest 128-dimensional embeddings by a nar-
row yet statistically significant margin (p = 0.01),
but took nearly twice as long to converge. Gradi-
ent updates to both small and large embeddings
did not differ significantly from each other and
the norm of gradient updates to the embedding
matrix stayed approximately constant throughout
training, regardless of size. We did not observe
overfitting with large embeddings and training log
perplexity was almost equal across experiments,
suggesting that the model does not make efficient
use of the extra parameters and that there may be a
need for better optimization techniques. Alterna-
tively, it could be the case that models with large
embeddings simply need far more than 2.5M steps
to converge to the best solution.

4.2 RNN Cell Variant

Both LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Cho et al., 2014) cells are commonly
used in NMT architectures. While there exist stud-

Dim newstest2013 Params
128 21.50± 0.16 (21.66) 36.13M
256 21.73± 0.09 (21.85) 46.20M
512 21.78± 0.05 (21.83) 66.32M
1024 21.36± 0.27 (21.67) 106.58M
2048 21.86± 0.17 (22.08) 187.09M

Table 1: BLEU scores on newstest2013, varying
the embedding dimensionality.

ies (Greff et al., 2016) that explore cell variants on
small sequence tasks of a few thousand examples,
we are not aware of any such studies in large-scale
NMT settings.

The vanishing gradient problem is a motiva-
tion for gated cells, such as the GRU and LSTM.
Using vanilla RNN cells, deep networks cannot
efficiently propagate information and gradients
through multiple layers and time steps. We ini-
tialize the decoder state to zero instead of passing
the encoder state, and we experiment with using a
vanilla RNN cell in the decoder only (Vanilla-Dec
below). For the LSTM and GRU variants, we vary
cell types in both the encoder and decoder. We use
LSTM cells without peephole connections and ini-
tialize the forget bias of both LSTM and GRU cells
to 1.

Cell newstest2013 Params
LSTM 22.22± 0.08 (22.33) 68.95M
GRU 21.78± 0.05 (21.83) 66.32M
Vanilla-Dec 15.38± 0.28 (15.73) 63.18M

Table 2: BLEU scores on newstest2013, varying
the type of encoder and decoder cell.

In our experiments, LSTM cells consistently
outperformed GRU cells, a result which was sta-
tistically significant (p < 0.00001). Since the
computational bottleneck in our architecture is the
softmax operation, we did not observe large differ-
ences in training speed between LSTM and GRU
cells. Somewhat to our surprise, we found that the
vanilla decoder is unable to learn nearly as well as
the gated variant. This suggests that the decoder
indeed passes information in its own state through
multiple time steps instead of relying solely on the
attention mechanism and current input (which in-
cludes the previous attention context). It could
also be the case that the gating mechanism is nec-
essary to mask out irrelevant parts of the input.
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4.3 Encoder and Decoder Depth
We generally expect deeper networks to converge
to better solutions than shallower ones (He et al.,
2016). While some work (Luong et al., 2015b;
Zhou et al., 2016; Luong and Manning, 2016; Wu
et al., 2016) has achieved state-of-the-art results
using deep networks, others (Jean et al., 2015;
Chung et al., 2016; Sennrich et al., 2016b) have
produced similar results with far shallower ones.
Therefore, it is unclear how important depth is,
and whether shallow networks are capable of pro-
ducing results competitive with those of deep net-
works. Here, we explore the effect of both encoder
and decoder depth up to 8 layers. For the bidi-
rectional encoder, we separately stack the RNNs
in both directions. For example, the Enc-8 model
corresponds to one forward and one backward 4-
layer RNN. For deeper networks, we also exper-
iment with two variants of residual connections
(He et al., 2016; Srivastava et al., 2015) to encour-
age gradient flow. In the standard variant, shown
in equation (4), we insert residual connections be-
tween consecutive layers. If h

(l)
t (x(l)

t , h
(l)
t−1) is the

RNN output of layer l at time step t, then:

x
(l+1)
t = h

(l)
t (x(l)

t , h
(l)
t−1) + x

(l)
t (4)

where x
(0)
t are the embedded input tokens.

We also explore a dense (”ResD” below) variant
of residual connections similar to those used by
(Huang et al., 2016a) in Image Recognition. In
this variant, we add skip connections from each
layer to all other layers:

x
(l+1)
t = h

(l)
t (x(l)

t , h
(l)
t−1) +

l∑
j=0

x
(j)
t (5)

Our implementation differs from (Huang et al.,
2016a) in that we use addition instead of concate-
nation in order to keep the state size constant.

Table 3 shows results of varying encoder and
decoder depth with and without residual connec-
tion. We found no benefit to increasing encoder
depth beyond two layers, as we observed no statis-
tically significant improvement from going to four
layers and even deeper models generally diverged
during training. The best deep residual models
achieved good results, but only one of four runs
converged, as suggested by the large standard de-
viation.

Depth newstest2013 Params
Enc-2 21.78± 0.05 (21.83) 66.32M
Enc-4 21.85± 0.32 (22.23) 69.47M
Enc-8 21.32± 0.14 (21.51) 75.77M
Enc-8-Res 19.23± 1.96 (21.97) 75.77M
Enc-8-ResD 17.30± 2.64 (21.03) 75.77M
Dec-1 21.76± 0.12 (21.93) 64.75M
Dec-2 21.78± 0.05 (21.83) 66.32M
Dec-4 22.37± 0.10 (22.51) 69.47M
Dec-4-Res 17.48± 0.25 (17.82) 68.69M
Dec-4-ResD 21.10± 0.24 (21.43) 68.69M
Dec-8 01.42± 0.23 (1.66) 75.77M
Dec-8-Res 16.99± 0.42 (17.47) 75.77M
Dec-8-ResD 20.97± 0.34 (21.42) 75.77M

Table 3: BLEU scores on newstest2013, varying
the encoder and decoder depth and type of residual
connections.

On the decoder side, deeper models outper-
formed shallower ones by a small but statisti-
cally significant margin (p < 0.00001), but with-
out residual connections, we were unable to train
decoders with 8 or more layers. Across the deep
decoder experiments, dense residual connections
consistently outperformed regular residual con-
nections (p < 0.00001) and converged much faster
in terms of step count, as shown in figure 2. We ex-
pected deep models to perform better (Sutskever
et al., 2014; Zhou et al., 2016; Wu et al., 2016)
across the board, and we believe that our experi-
ments demonstrate the need for more robust tech-
niques for optimizing deep sequential models. For
example, we may need a better-tuned SGD opti-
mizer or some form of batch normalization, in or-
der to robustly train deep networks with residual
connections.

4.4 Unidirectional vs. Bidirectional Encoder

In the literature, we see bidirectional encoders
(Bahdanau et al., 2015), unidirectional encoders
(Luong et al., 2015a), and a mix of both (Wu
et al., 2016) being used. Bidirectional encoders
are able to create representations that take into ac-
count both past and future inputs, while unidirec-
tional encoders can only take past inputs into ac-
count. The benefit of unidirectional encoders is
that their computation can be easily parallelized on
GPUs, allowing them to run faster than their bidi-
rectional counterparts. We are not aware of any
studies that explore the necessity of bidirectional-
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Figure 2: Training plots for deep decoder with and
without residual connections, showing log per-
plexity on the eval set.

ity. In this set of experiments, we explore unidirec-
tional encoders of varying depth with and without
reversed source inputs, as this is a commonly used
trick that allows the encoder to create richer repre-
sentations for earlier words. Given that errors on
the decoder side can easily cascade, the correct-
ness of early words has disproportionate impact.

Cell newstest2013 Params
Bidi-2 21.78± 0.05 (21.83) 66.32M
Uni-1 20.54± 0.16 (20.73) 63.44M
Uni-1R 21.16± 0.35 (21.64) 63.44M
Uni-2 20.98± 0.10 (21.07) 65.01M
Uni-2R 21.76± 0.21 (21.93) 65.01M
Uni-4 21.47± 0.22 (21.70) 68.16M
Uni-4R 21.32± 0.42 (21.89) 68.16M

Table 4: BLEU scores on newstest2013, varying
the type of encoder. The ”R” suffix indicates a
reversed source sequence.

Table 4 shows that bidirectional encoders gen-
erally outperform unidirectional encoders, but not
by a statistically significant margin. The encoders
with reversed source consistently outperform their
non-reversed counterparts (p = 0.009 for one layer
models, p = 0.0003 for two layers, p = 0.2751
for four layers), but do not beat shallower bidirec-
tional encoders.

4.5 Attention Mechanism
The two most commonly used attention mecha-
nisms are the additive (Bahdanau et al., 2015) vari-
ant, equation (6) below, and the computationally
less expensive multiplicative variant (Luong et al.,
2015a), equation (7) below. Given an attention key
hj (an encoder state) and attention query si (a de-

coder state), the attention score for each pair is cal-
culated as follows:

score(hj , si) = 〈v, tanh(W1hj + W2si)〉 (6)

score(hj , si) = 〈W1hj , W2si〉 (7)

We call the dimensionality of W1hj and W2si

the ”attention dimensionality” and vary it from
128 to 1024 by changing the layer size. We also
experiment with using no attention mechanism by
initializing the decoder state with the last encoder
state (None-State), or concatenating the last en-
coder state to each decoder input (None-Input).
The results are shown in table 5.

Attention newstest2013 Params
Mul-128 22.03± 0.08 (22.14) 65.73M
Mul-256 22.33± 0.28 (22.64) 65.93M
Mul-512 21.78± 0.05 (21.83) 66.32M
Mul-1024 18.22± 0.03 (18.26) 67.11M
Add-128 22.23± 0.11 (22.38) 65.73M
Add-256 22.33± 0.04 (22.39) 65.93M
Add-512 22.47± 0.27 (22.79) 66.33M
Add-1024 22.10± 0.18 (22.36) 67.11M
None-State 9.98± 0.28 (10.25) 64.23M
None-Input 11.57± 0.30 (11.85) 64.49M

Table 5: BLEU scores on newstest2013, varying
the type of attention mechanism.

We found that the parameterized additive atten-
tion mechanism slightly but consistently outper-
formed the multiplicative one (p = 0.013 for 128
units, p = 0.5 for 256 units, p = 0.0012 for 512
units, and p < 0.00001 for 1024/8 units), with the
attention dimensionality having little effect.

While we did expect the attention-based mod-
els to significantly outperform those without an
attention mechanism, we were surprised by just
how poorly the ”Non-Input” models fared, given
that they had access to encoder information at
each time step. Furthermore, we found that
the attention-based models exhibited significantly
larger gradient updates to decoder states through-
out training. This suggests that the attention mech-
anism acts more like a ”weighted skip connection”
that optimizes gradient flow than like a ”memory”
that allows the encoder to access source states, as
is commonly stated in the literature. We believe
that further research in this direction is necessary
to shed light on the role of the attention mecha-
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nism and whether it may be purely a vehicle for
easier optimization.

4.6 Beam Search Strategies

Beam Search is a commonly used technique to
find target sequences that maximize some scoring
function s(y,x) through tree search. In the sim-
plest case, the score to be maximized is the log
probability of the target sequence given the source.
Recently, extensions such as coverage penalties
(Tu et al., 2016) and length normalizations (Wu
et al., 2016) have been shown to improve decod-
ing results. It has also been observed (Tu et al.,
2017) that very large beam sizes, even with length
penalty, perform worse than smaller ones. Thus,
choosing the correct beam width can be crucial to
achieving the best results.

Beam newstest2013 Params
B1 20.66± 0.31 (21.08) 66.32M
B3 21.55± 0.26 (21.94) 66.32M
B5 21.60± 0.28 (22.03) 66.32M
B10 21.57± 0.26 (21.91) 66.32M
B25 21.47± 0.30 (21.77) 66.32M
B100 21.10± 0.31 (21.39) 66.32M
B10-LP-0.5 21.71± 0.25 (22.04) 66.32M
B10-LP-1.0 21.80± 0.25 (22.16) 66.32M

Table 6: BLEU scores on newstest2013, varying
the beam width and adding length penalties (LP).

Table 6 shows the effect of varying beam widths
and adding length normalization penalties. A
beam width of 1 corresponds to greedy search. We
found that a well-tuned beam search is crucial to
achieving good results, and that it leads to consis-
tent gains of more than one BLEU point. Similar
to (Tu et al., 2017) we found that very large beams
yield worse results and that there is a ”sweet spot”
of optimal beam width. We believe that further re-
search into the robustness of hyperparameters in
beam search is crucial to progress in NMT. We
also experimented with a coverage penalty, but
found no additional gain over a sufficiently large
length penalty.

4.7 Final System Comparison

Finally, we compare our best performing model
across all experiments, as chosen on the new-
stest2013 validation set, to historical results found
in the literature in Table 8. Interestingly, the best
performing model turned out to be nearly equiva-

lent to the base model (described in Section 3.3),
differing only in that it used 512-dimensional ad-
ditive attention. While not the focus on this work,
we were able to achieve further improvements by
combining all of our insights into a single model
described in Table 7.

Hyperparameter Value
embedding dim 512
rnn cell variant LSTMCell
encoder depth 4
decoder depth 4
attention dim 512
attention type Bahdanau
encoder bidirectional
beam size 10
length penalty 1.0

Table 7: Hyperparameter settings for our final
combined model, consisting of all of the individu-
ally optimized values.

Model newstest14 newstest15
Ours (best performing) 22.03 24.75
Ours (combined) 22.19 25.23
OpenNMT 19.34 -
Luong 20.9 -
BPE-Char 21.5 23.9
BPE - 20.5
RNNSearch-LV 19.4 -
RNNSearch - 16.5
Deep-Att* 20.6 -
GNMT* 24.61 -
Deep-Conv* - 24.3

Table 8: Comparison to RNNSearch (Jean et al.,
2015), RNNSearch-LV (Jean et al., 2015), BPE
(Sennrich et al., 2016b), BPE-Char (Chung et al.,
2016), Deep-Att (Zhou et al., 2016), Luong (Lu-
ong et al., 2015a), Deep-Conv (Gehring et al.,
2016), GNMT (Wu et al., 2016), and OpenNMT
(Klein et al., 2017). Systems with an * do not have
a public implementation.

Although we do not offer architectural innova-
tions, we do show that through careful hyperpa-
rameter tuning and good initialization, it is pos-
sible to achieve state-of-the-art performance on
standard WMT benchmarks. Our model is outper-
formed only by (Wu et al., 2016), a model which
is significantly more complex and lacks a public
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implementation.
To test whether our findings generalize to other

languages, we also trained a model with the
same hyperparameter configurations on the AS-
PEC Japanese to English translation task and
achieved a BLEU score of 38.87, which is state-
of-the-art.

5 Open-Source Release

We demonstrated empirically how small changes
to hyperparameter values and different initializa-
tion can affect results, and how factors such as a
well-tuned beam search are critical to high qual-
ity translation results. To move towards repro-
ducible research, we believe it is important that
researchers start building upon common frame-
works and data processing pipelines. With this
goal in mind, we built a modular software frame-
work that allows researchers to explore novel ar-
chitectures with minimal code changes, and define
experimental parameters in a reproducible man-
ner. While our initial experiments are in Ma-
chine Translation, our framework can easily be
adapted to problems in Summarization (e.g., Nal-
lapati et al. (2016)), Conversational Modeling
(e.g., Vinyals and Le (2015); Shang et al. (2015);
Sordoni et al. (2015); Li et al. (2015)) or Image-
To-Text (e.g., Vinyals et al. (2015); Karpathy and
Fei-Fei (2015); Xu et al. (2015)).

Although there exist open-source libraries such
as OpenNMT (Klein et al., 2017) that share simi-
lar goals, they have not yet achieved state-of-the-
art results (see table 8) and lack some important
features, such as support for distributed training.
We hope that by open sourcing our experimental
toolkit, we can help to accelerate research in neu-
ral machine translation and sequence-to-sequence
modeling.

6 Conclusion

We conducted a large-scale empirical analysis of
architecture variations for Neural Machine Trans-
lation, teasing apart the key factors to achieving
state-of-the-art results. We demonstrated a num-
ber of surprising insights, including the fact that
beam search tuning is just as crucial as most archi-
tectural variations, and that with current optimiza-
tion techniques deep models do not always out-
perform shallow ones. Here, we summarize our
practical findings:

• Large embeddings with 2048 dimensions
achieved the best results, but only by a small
margin. Even small embeddings with 128 di-
mensions seem to have sufficient capacity to
capture most of the necessary semantic infor-
mation.

• LSTM Cells consistently outperformed GRU
Cells.

• Bidirectional encoders with 2 to 4 layers per-
formed best. Deeper encoders were signifi-
cantly more likely to diverge, but show po-
tential if they can be optimized well.

• Deep 4-layer decoders slightly outperformed
shallower decoders. Residual connections
were necessary to train decoders with 8 lay-
ers and dense residual connections offer ad-
ditional robustness.

• Parameterized additive attention yielded the
overall best results.

• A well-tuned beam search with length
penalty is crucial. Beam widths of 5 to 10
along with a length penalty of 1.0 seemed to
work well.

We highlighted several important research ques-
tions, including the efficient use of embedding pa-
rameters (4.1), the role of attention mechanisms
as weighted skip connections (4.5) as opposed to
memory units, the need for better optimization
methods for deep recurrent networks (4.3), and the
need for a better beam search (4.6) robust to hyper-
parameter variations.

Finally, given the recent surge in new applica-
tions for sequence-to-sequence models, we believe
our new findings and state-of-the-art open-source
package can significantly accelerate the pace of re-
search in this domain.
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