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Abstract

This paper proposes to tackle the AMR
parsing bottleneck by improving two com-
ponents of an AMR parser: concept iden-
tification and alignment. We first build a
Bidirectional LSTM based concept iden-
tifier that is able to incorporate richer
contextual information to learn sparse
AMR concept labels. We then extend an
HMM-based word-to-concept alignment
model with graph distance distortion and
a rescoring method during decoding to in-
corporate the structural information in the
AMR graph. We show integrating the two
components into an existing AMR parser
results in consistently better performance
over the state of the art on various datasets.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic representation
where the meaning of a sentence is encoded as a
rooted, directed graph. A number of AMR parsers
have been developed in recent years (Flanigan
et al., 2014; Wang et al., 2015b; Artzi et al.,
2015; Pust et al., 2015; Peng et al., 2015; Zhou
et al., 2016; Goodman et al., 2016a), and the
initial benefit of AMR parsing has been demon-
strated in various downstream applications such as
Information Extraction (Pan et al., 2015; Huang
et al., 2016), Machine Comprehension (Sachan
and Xing, 2016), and Language Generation (Flani-
gan et al., 2016b; Butler, 2016). However, AMR
parsing parsing accuracy is still in the high 60%,
as measured by the SMatch score (Cai and Knight,
2013), and a significant improvement is needed in
order for it to positively impact a larger number of
applications.

Previous research has shown that concept iden-
tification is the bottleneck to further improvement
of AMR parsing. For example, JAMR (Flani-
gan et al., 2014), the first AMR parser, is able
to achieve an F-score of 80% (close to the inter-
annotator agreement of 83) if gold concepts are
provided. Its parsing accuracy drops sharply to
62.3% when the concepts are identified automat-
ically.

One of the challenges in AMR concept iden-
tification is data sparsity. A large portion of
AMR’s concepts are either word lemmas or
sense-disambiguated lemmas drawn from Prop-
bank (Palmer et al., 2005). Since the AMR Bank
is relatively small, many of the concept labels in
the development or test set only occur a few times
or never appear in the training set. Werling et
al. (2015) addresses this problem by defining a
set of generative actions that maps words in the
sentence to their AMR concepts and use a local
classifier to learn these actions. Given such sparse
data, making full use of contextual information is
crucial to accurate concept labeling. Bidirectional
LSTM has shown its success on many sequence la-
beling tasks since it is able to combine contextual
information from both directions and avoid man-
ual feature engineering. However, it is non-trivial
to formalize concept identification as a sequence
labeling problem because of the large concept la-
bel set. Inspired by Foland and Martin (2016;
2017), who first apply the Bidirectional LSTM to
AMR concept identification by categorizing the
large labels into a finite set of predefined types,
we propose to address concept identification us-
ing Bidirectional LSTM with Factored Concept
Labels (FCL), where we re-group the concept la-
bel set based on their shared graph structure. This
makes it possible for different concepts to be rep-
resented by one common label that captures the
shared semantics of these concepts.
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Accurate concept identification also crucially
depends on the word-to-AMR-concept alignment.
Since there is no manual alignment in the AMR
annotation, typically either a rule-based or un-
supervised aligner is applied to the training data
to extract the mapping between words and con-
cepts. This mapping will then be used as ref-
erence data to train concept identification mod-
els. The JAMR aligner (Flanigan et al., 2014)
greedily aligns a span of words to graph frag-
ments using a set of heuristics. While it can easily
incorporate information from additional linguis-
tic sources such as WordNet, it is not adaptable
to other domains. Unsupervised aligners borrow
techniques from Machine Translation and treat
sentence-to-AMR alignment as a word alignment
problem between a source sentence and its lin-
earized AMR graph (Pourdamghani et al., 2014)
and solve it with IBM word alignment models
(Brown et al., 1993). However, the distortion
model in the IBM models is based on the lin-
ear distance between source side words while the
linear order of the AMR concepts has no lin-
guistic significance, unlike word order in natural
language. A more appropriate sentence-to-AMR
alignment model should be one that takes the hi-
erarchical structure of the AMR into account. We
develop a Hidden Markov Model (HMM)-based
sentence-to-AMR alignment method with a novel
Graph Distance distortion model to take advan-
tage of the structural information in AMR, and ap-
ply a structural constraint to re-score the posterior
during decoding time.

We present experimental results that show
incorporating these two improvements to
CAMR (Wang et al., 2016), a state-of-the-art
transition-based AMR parser, results in consis-
tently better Smatch scores over the state of the art
on various datasets. The rest of paper is organized
as follows. Section 2 describes related work on
AMR parsing. Section 3 describes our improved
LSTM based concept identification model, and
Section 4 describes our alignment method. We
present experimental results in Section 5, and
conclude in Section 6.

2 Related Work

Existing AMR parsers are either transition-based
or graph-based. Transition-based AMR parsers
(Wang et al., 2015b,a; Goodman et al., 2016a,b),
focus on modeling the correspondence between

the dependency tree and the AMR graph of a sen-
tence by designing a small set of actions that trans-
form the dependency tree into the AMR graph.
Pust et al. (2015) formulates AMR parsing as a
machine translation problem in which the sen-
tence is the source language input and the AMR
is the target language output. AMR parsing sys-
tems that focus on modeling the graph aspect of
the AMR includes JAMR (Flanigan et al., 2014,
2016a; Zhou et al., 2016), which treats AMR pars-
ing as a procedure for searching for the Maxi-
mum Spanning Connected Subgraphs (MSCGs)
from an edge-labeled, directed graph of all pos-
sible relations. Parsers based on Hyperedge Re-
placement Grammars (HRG) (Chiang et al., 2013;
Björklund et al., 2016; Groschwitz et al., 2015) put
more emphasis on modeling the formal properties
of the AMR graph. One practical implementation
of HRG-based parsing is that of (Peng et al., 2015;
Peng and Gildea, 2016). The adoption of Combi-
natory Categorical Grammar (CCG) in AMR pars-
ing has also been explored in (Artzi et al., 2015;
Misra and Artzi, 2016), where a number of exten-
sions have been proposed to enable CCG to work
on the broad-coverage AMR corpus.

More recently, Foland and Martin (2016; 2017)
describe a neural network based model that de-
composes the AMR parsing task into a series
of subproblems. Their system first identifies
the concepts using a Bidirectional LSTM Recur-
rent Neural Network (Hochreiter and Schmidhu-
ber, 1997), and then locates and labels the argu-
ments and attributes for each predicate, and fi-
nally constructs the AMR using the concepts and
relations identified in previous steps. (Barzdins
and Gosko, 2016) first applies the sequence-to-
sequence model (Sutskever et al., 2014) typically
used in neural machine translation to AMR pars-
ing by simply treating the pre-order traversal of
AMR as foreign language strings. (Peng et al.,
2017) also adopts the sequence-to-sequence model
for neural AMR parsing and focuses on reducing
data sparsity in neural AMR parsing with cate-
gorization of the concept and relation labels. In
contrast, (Konstas et al., 2017) adopts a differ-
ent approach and tackles the data sparsity prob-
lem with a self-training procedure that can utilize
a large set of unannotated external corpus. (Buys
and Blunsom, 2017) design a generic transition-
based system for semantic graph parsing and ap-
ply sequence-to-sequence framework to learn the
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transformation from natural language sequences to
action sequences.

3 Concept Identification with
Bidirectional LSTM

In this section, we first introduce how we catego-
rize AMR concepts using Factored Concept La-
bels. We then integrate character-level informa-
tion into a Bidirectional LSTM through Convolu-
tional Neural Network (CNN)-based embeddings.

3.1 Background and Notation
Given a pair of AMR graph G and English sen-
tence S, a look-up tableM is first generated which
maps a span of tokens to concepts using an aligner.
Although there are differences among results gen-
erated by different aligners, in general, the aligned
AMR concepts can be classified into the following
types:

• PREDICATE. Concepts with sense tags,
which are frames borrowed from Propbank,
belong to this case. Most of the tokens
aligned to this type are verbs and nouns that
have their own argument structures.
• NON-PREDICATE. This type of concepts

are mostly lemmatized word tokens from the
original English sentences.
• CONST. Most of the numerical expressions

in English sentences are aligned to this type,
where AMR concepts are normalized numer-
ical expressions.
• MULTICONCEPT. In this type, one or more

word tokens in an English sentence are
aligned to multiple concepts that form a
sub-structure in an AMR graph. The most
frequent case is named entity subgraphs.
For example, in Figure 1, “Mr. Vinken”
is aligned to subgraph (p / person
:name (m / name :op1 "Mr."
:op2 "Vinken").

3.2 Factored Concept Labels
To be able to fit AMR’s large concept label space
into a sequence labeling framework, redefining the
label set is necessary in order to make the learning
process feasible. While it is trivial to categorize
the PREDICATE, NON-PREDICATE, CONST cases,
there is no straightforward way to deal with the
MULTICONCEPT type. Foland and Martin (2016)
only handle named entities, which constitute the

Figure 1: An example AMR graph for sentence:
“Mr. Vinken is chairman of Elsevier N.V., the
Dutch publishing group.”.

majority of the MULTICONCEPT cases, where they
adopt BIOES tags to detect the boundary and use
an additional Bidirectional LSTM to learn the fine-
grained named entity concept types. For other
MULTICONCEPT cases, they only use the leaf con-
cepts and ignore other parts of the subgraphs. Fig-
ure 2 shows the concept label distribution on de-
velopment set of LDC2015E86, where we can see
nearly half of the MULTICONCEPTcases are not
named entities.
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Figure 2: AMR concept label distribution for de-
velopment set of LDC2015E86

Based on the observation that many of the
MULTICONCEPT cases are actually similarly
structured subgraphs that only differ in the lexical
items, we choose to factor the lexical items out of
the subgraph fragments and use the skeletal struc-
ture as the fine-grained labels, which we refer as
Factored Concept Label (FCL).

Figure 4 shows that although English words
“visitor” and “worker” have been aligned to differ-
ent subgraph fragments, after replacing the lexical
items, in this case the leaf concepts visit-01
and work-01 with a placeholder “x”, we are able
to arrive at the same FCL. The strategy for deter-
mining the FCL for a word is simple: for each En-
glish word w and the subgraph s it aligns to, if
the length of the longest overlapping substring be-
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Figure 3: One example of generating FCL for sentence “NATO allies said the cyber attack was unprece-
dented.”

Figure 4: One example of generating FCL

tween w and the leaf concept c of s is greater than
4, we replace c with a placeholder.

Despite this simple strategy, our results show
that it can capture a wide range of MULTICON-
CEPT cases while keeping the new label space
manageable. While the named entity can be
easily categorized using FCL, it can also cover
some other common cases such as morphologi-
cal expressions of negation (e.g., “inadequate”)
and comparatives (e.g., “happier”). Setting a fre-
quency threshold to prune out the noisy labels,
we are able to extract 91 canonical FCL labels
on the training set. Our empirical results show
that this canonical FCL label set can cover 96%
of the MULTICONCEPT cases on the development
set. Figure 3 gives one full example of FCLs gen-
erated for one sentence. For the PREDICATE cases,
following (Foland and Martin, 2016), we only use
the sense tag as its label.

We use label 〈other〉 to label stop words that
do not map to AMR concepts. The MULTICON-
CEPT cases are handled by FCL. The FCL label
set generated by this procedure can be treated as
an abstraction of the original AMR concept label
space, where it groups concepts that have similar
AMR subgraphs into the same category.

3.3 CNN-based Character-level Embedding

After constructing the new label set with FCL, we
set up a baseline Bidirectional LSTM using the
concatenation of word and NER embeddings as
the input. For each input word w and its NER tag
t, their embeddings ew and et are extracted from a
word embedding matrix Wwd ∈ Rdwd×|Vwd| and a
NER tag embedding matrix Wt ∈ Rdt×|Vt| respec-
tively, where dwd and dt are the dimensions of the
word and NER tag embedding matricies, |Vwd| and
|Vt| are the sizes of the word and NER tag vocab-
ulary.

Although this architecture is able to capture
long-range contextual information, it fails to ex-
tract information originating from the word form
itself. As we have discussed above, in some of
the MULTICONCEPT cases the concepts are asso-
ciated with the word forms themselves and won’t
benefit from its contextual information. For ex-
ample, in “unprecedented”, the prefix “un” itself
already gives enough information to predict the
FCL label 〈x〉 : polarity -, which indicates neg-
ative polarity. In order to incorporate such mor-
phological and shape information, we choose to
add a convolutional layer to extract character-level
representations. A similar technique has been ap-
plied to Named Entity Recognition (Santos and
Guimaraes, 2015; Chiu and Nichols, 2015) and
we only provide a brief description of the archi-
tecture here. For a word w composed of charac-
ters {c1, c2, . . . , cl}, where l is the length of word
w, we learn a character embedding matrix Wc ∈
Rdc×|Vc|, where dc is the character embedding di-
mension defined by the user and Vc is character
vocabulary size. After retrieving the character em-
bedding chi for each character ci in word w, we
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obtain a sequence of vectors {ch1, ch2, . . . , chl}.
This serves as the input to convolutional layer.

Figure 5: The architecture of the CNN-based
character-level embedding.

The convolutional layer applies a linear trans-
formation to the local context of a character in the
input sequence, where the local context is parame-
terized by window size k. Here we define the local
context of the character embedding chi to be:

fi = (chi−(k−1)/2, . . . , chi+(k−1)/2)> (1)

The j-th element of the convolutional layer out-
put vector ewch is computed by element-wise max-
pooling (Ranzato et al., 2007):

[ewch]j = max
1≤i≤l

[W 0fi + b0]j (2)

W 0 and b0 are the parameters of the convolutional
layer. And the output vector ewch is the character
level representation of the word w. The architec-
ture of the model is shown in Figure 5.

The final input to the Bidirectional LSTM is the
concatenation of three embeddings [ew, et, ewch]
for each word position.

4 Aligning an English Sentence to its
AMR graph

Given an AMR graph G and English sentence
e = {e1, e2, . . . , ei, . . . , eI}, in order to fit them
into the traditional word alignment framework, the
AMR graph G is normally linearized using depth
first search by printing each node as soon as it
it visited. The re-entrance node is printed but
not expanded to preserve the multiple mentions of

concept. The relation (also called AMR role to-
ken) between concepts are preserved in the unsu-
pervised aligner (Pourdamghani et al., 2014) be-
cause they also try to align relations to English
words. We ignore the relations here since we
focus on aligning concepts. Therefore the lin-
earized concept sequences can be represented as
g = {g1, g2, . . . , gj , . . . , gJ}. However, although
this configuration makes it easy to adopt existing
word alignment models, it also ignores the struc-
tural information in the AMR graph.

In this section, we proposes a method that in-
corporates the structural information in the AMR
graph through a distortion model inside an HMM-
based word aligner. We then further improve the
model with a re-scoring method during decoding
time.

4.1 HMM-based Aligner with Graph
Distance Distortion

Given a sequence pair (e, g), the HMM-based
word alignment model assumes that each source
word is assigned to exactly one target word, and
defines an asymmetric alignment for the sentence
pair as a = {a1, a2, . . . , ai, . . . , aI}, where each
ai ∈ [0, J ] is an alignment from source position i
to target position ai, ai = 0 means that ei is not
aligned to any target words. Note that in the AMR
to English alignment context, both the alignment
and the graph structure is asymmetric, since we
only have AMR graph annotation on in linearized
AMR sequence g. Unlike the traditional word
alignment for machine translation, here we will
have different formulas for each translation direc-
tion. In this section, we only discuss the transla-
tion from English (source) to linearized AMR con-
cepts (target) and we will discuss the AMR to En-
glish direction in the following section.

The HMM-based model breaks the generative
alignment process into two factors:

P (e,a | g)

=
I∏

i=1

Pd(ai | ai−1, J)Pt(ei|gai)
(3)

where Pd is the distortion model and Pt is the
translation model. Traditionally, the distortion
probability Pd(j | j′, J) is modeled to depend
only on the jump width (j−j′) (Vogel et al., 1996)
and is defined as:

Pd(j | j′, J) =
ct(j − j′)∑J

j′′=1 ct(j′′ − j′)
(4)
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where ct(j − j′) is the count of jump width. This
formula simultaneously satisfies the normalization
constraint and captures the locality assumption
that words that are adjacent in the source sentence
tend to align to words that are closer in the target
sentence.

As the linear locality assumption does not hold
among linearized AMR concepts, we choose in-
stead to encode the distortion probability through
graph distance, which is given by:

Pgd(j | j′, G) =
ct(d(j, j′))∑
j′′ ct(d(j′′, j′))

(5)

The graph distance d(j, j′) is the length of short-
est path on AMR graph G from concept j to con-
cept j′. Note that we have to artificially normal-
ize Pgd(j | j′, G), because unlike the linear dis-
tance between word tokens in a sentence, there can
be multiple concepts that can have the same dis-
tance from the j′-th concept in the AMR graph, as
pointed out in (Kondo et al., 2013).

During training, just like the original HMM-
based aligner, an EM algorithm can be applied to
update the parameters of the model.

4.2 Improved Decoding with Posterior
Rescoring

So far, we have integrated the graph structure
information into the forward direction (English
to AMR). To also improve the reverse direction
model (AMR to English), we choose to use the
graph structure to rescore the posterior during de-
coding time.

Compared with Viterbi decoding, posterior
thresholding has shown better results in word
alignment tasks (Liang et al., 2006). Given thresh-
old γ, for all possible alignments, we select the
final alignment based on the following criteria:

a = {(i, j) : p(aj = i | g, e) > γ} (6)

where the state probability p(aj = i | g, e) is
computed using the forward-backward algorithm.
The forward algorithm is defined as:

αj,i

=
∑
i′
αj−1,i′p(aj = i | aj−1 = i′)p(gj | eaj )

(7)

To incorporate the graph structure, we rescale the
distortion probability in reverse direction model

as:

pnew(aj = i |aj−1 = i′)

= p(aj = i | aj−1 = i′)e∆d (8)

where the scaling factor ∆d = dj − dj−1 is the
graph depth difference between the adjacent AMR
concepts gj and gj−1. We also apply the same pro-
cedure for the backward computation. Note that
since the model is in reverse direction, the distor-
tion p(aj = i | aj−1 = i′) here is still based on
English word distance, jump width.

This rescaling procedure is based on the intu-
ition that after we have processed the last con-
cept gj−1 in some subgraph, the next concept gj’s
aligned English position i is not necessarily re-
lated to the last aligned English position i′. Fig-
ure 6 illustrates this phenomenon: Although we
and current are adjacent concepts in linearized
AMR sequence, they are actually far away from
each other in the graph (with a graph depth differ-
ence of -2). However, the distortion based on the
English word distance mostly tends to choose the
closer word, which may yield a very low proba-
bility for our correct answer here (the jump width
between “Currently” and “our” is -6). By apply-
ing the exponential scaling factor, we are able to
reduce the differences between different distortion
probabilities. On the contrary, when the distor-
tion probability is reliable (the absolute value of
the graph depth difference is small), the model
chooses to trust the distortion and picks the closer
English word.

The rescaling factor can be viewed as a selec-
tion filter for decoding, where it relies on the graph
depth difference ∆d to control the effect of learned
distortion probability. Note that after the rescaling,
the resulting distortion probability no longer sat-
isfies the normalization constraint. However, we
only apply this during decoding time and experi-
ments show that the typical threshold γ = 0.5 still
works well for our case.

4.3 Combining Both Directions

Empirical results show that combining alignments
from both directions improve the alignment qual-
ity (DeNero and Klein, 2007; Och and Ney, 2003;
Liang et al., 2006). To combine the alignments,
we adopt a slightly modified version of posterior
thresholding, competitive thresholding, as pro-
posed in (DeNero and Klein, 2007), which tends
to select alignments that form a contiguous span.
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Figure 6: AMR graph annotation, linearized con-
cepts for sentence “Currently, there is no asbestos
in our products”. The concept we in solid line
is the (j − 1)-th token in linearized AMR. It is
aligned to English word “our” and its depth in
graph dj−1 is 3. While the word distance-based
distortion prefers an alignment near “our”, the cor-
rect alignment needs a longer distortion.

5 Experiments

We first test the performance of our Bidirectional
LSTM concept identifier and HMM-based aligner
as standalone tasks, where we investigate the ef-
fectiveness of each component in AMR parsing.
Then we report the final results by incorporating
both components to CAMR (Wang et al., 2016).
At the model development stage, we mainly use
the dataset LDC2015E86 used in the SemEval
Shared Task (May, 2016). Note that this dataset
includes :wiki relations where every named en-
tity concept is linked to its wikipedia entry. We re-
move this information in the training data through-
out the development of our models. At the final
testing stage, we add wikification using an off-the-
shelf AMR wikifier (Pan et al., 2015) as a post-
processing step. All AMR parsing results are eval-
uated using the Smatch (Cai and Knight, 2013)
scorer.

5.1 Bidirectional LSTM Concept
Identification Evaluation

In order to isolate the effects of our concept iden-
tifier, we first use the official alignments provided
by SemEval. The alignment is generated by the
unsupervised aligner described in (Pourdamghani
et al., 2014). After getting the alignment table, we
generate our FCL label set by filtering out noisy
FCL labels that occur fewer than 30 times in the
training data. The remaining FCL labels account
for 96% of the MULTICONCEPT cases in the de-

velopment set. Adding other labels that include
PREDICATE, NON-PREDICATE and CONST gives
us 116 canonical labels. UNK label is added to
handle the unseen concepts.

In the Bidirectional LSTM, the hyperparameter
settings are as follows: word embedding dimen-
sion dwd = 128, NER tag embedding dimension
dt = 8, character embedding dimension dc = 50,
character level embedding dimension dwch = 50,
convolutional layer window size k = 2.

Input P R F1 Acc
word,NER 81.2 80.6 80.9 85.4
word,NER,CNN 83.3 82.7 83.0 87.0

Table 1: Performance of Bidirectional LSTM with
different input.

Table 1 shows the performance on the develop-
ment set of LDC2015E86, where the precision, re-
call and F-score are computed by treating 〈other〉
as the negative label and accuracy is calculated
using all labels. We include accuracy here since
correctly predicting words that don’t invoke con-
cepts is also important. We can see that utilizing
CNN-based character level embedding yields an
improvement of around 2 percentage points abso-
lute for both F-score and accuracy, which indicates
that morphological and word shape information is
important for concept identification.

Impact on AMR Parsing In order to test the
impact of our concept identification component on
AMR parsing, we add the predicted concept labels
as features to CAMR. Here is the detailed feature
set we add to CAMR’s feature templates. To clar-
ify the notation, we refer the concept labels pre-
dicted by our concept identifier as cpred and the
candidate concept labels in CAMR as ccand:

• pred label. cpred used directly as a fea-
ture.

• is eq sense. A binary feature of whether
a cpred and ccand have the same sense (if ap-
plicable).

One reason why we choose to add the concept la-
bel and sense as features to predict the concept
rather than using the predicted label to recover the
concept directly is that the latter is not a straight-
forward process. For example, since we generalize
all the predicates to a compact form <pred-xx>,
for irregular verbs like “became”⇒ become-01,
simply stemming the inflected verb form will not
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give us the correct concept even if the sense is
predicted correctly. However, since CAMR uses
the alignment table to store all possible concept
candidates for a word, adding our predicated la-
bel as a feature could potentially help the parser
to choose the correct concept. In order to take
full advantage of the predicted concept labels, we
also extend CAMR so that it can discover candi-
date concepts outside of the alignment table. To
achieve this, during the FCL label generation pro-
cess, we first store the string-to-concept mapping
as a template. For example, when we generate
the FCL label (person :ARG0-of <x>-01)
from “worker”, we also store the template <x>er
-> (person :ARG0-of <x>-01). Then
during decoding time, we would enumerate every
template and try to use the left hand side of the
template (which is <x>er) as a regular expres-
sion to match current word. Once we find a match
in all the template entries, we would substitute the
placeholder in right hand side with the matched
substring to get the candidate concept label. As a
result, even we haven’t seen “teacher”, by match-
ing teacher with the regular expression (.?)er,
we could generate the correct answer (person
:ARG0-of teach-01). We refer this process
as unknown concept generation. Table 2 summa-
rizes the impact of our proposed methods on de-
velopment set of LDC2015E86. We can see that
by utilizing the unknown concept generation and
features derived from cpred , both precision and re-
call improve by about 1 percentage point, which
indicates that the new feature brings richer infor-
mation to the concept prediction model to help
correctly score candidate concepts from the align-
ment table.

Parsers P R F1

CAMR (Wang et al., 2016) 72.3 61.4 66.5
CAMR-gen 72.1 62.0 66.6
CAMR-gen-cpred 73.6 62.6 67.6

Table 2: Performance of AMR parsing with
cpred features without wikification on dev set of
LDC2015E86. The first row is performance of the
baseline parser. The second row adds unknown
concept generation and the last row additionally
extends the baseline parser with cpred features.

5.2 HMM-based AMR-to-English Aligner
Evaluation

To validate the effectiveness of our proposed
alignment methods, we first evaluate our for-
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Figure 7: Our improved forward (graph) and re-
verse(rescale) model compared with HMM base-
line on hand aligned development set.

ward (English-to-AMR) and reverse (AMR-to-
English) aligners against the baseline HMM word
alignment model, which is the Berkeley aligner
toolkit (DeNero and Klein, 2007). Then we com-
bine the forward and reverse alignment results us-
ing competitive thresholding. We set the threshold
γ to be 0.5 in the following experiments. To evalu-
ate the alignment quality, we use 200 hand-aligned
sentences from (Pourdamghani et al., 2014) split
equally as the development and test sets. We
process the English sentences by removing stop
words, following similar procedure as in (Pour-
damghani et al., 2014). When linearizing AMR
graphs, we instead remove all the relations and
only keep the concepts. For all models, we run
5 iterations of IBM Model 1 and 2 iterations of
HMM on the whole dataset.

From Figure 7a, we can see that our graph-
distance based model improves both the precision
and recall by a large margin, which indicates the
graph distance distortion better fits the English-
to-AMR alignment task. For the reverse model,
although our HMM rescaling model loses accu-
racy in recall, it is able to improve the precision
by around 4 percentage points, which confirms
our intuition that the rescoring factor is able to
keep reliable alignments and penalize unreliable
ones. We then combine our forward and reverse
alignment result using competitive thresholding.
Table 3 shows the combined result against hand-
aligned dev and test sets.

Datasets P R F1

dev 97.7 84.3 90.5
test 96.9 84.6 90.3

Table 3: Combined HMM alignment result evalu-
ation.
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Dataset Aligner P R F1

Dev
JAMR 73.6 62.6 67.6
ISI 72.8 64.6 68.4
Our HMM 73.6 63.6 68.2

Test
JAMR 71.6 61.3 66.0
ISI 70.6 62.7 66.4
Our HMM 72.1 62.5 67.0

Table 4: AMR parsing result (without wikifica-
tion) with different aligner on development and
test of LDC2015E86, where JAMR is the rule-
based aligner, ISI is the modified IBM Model 4
aligner

Impact on AMR Parsing To investigate our
aligner’s contribution to AMR parsing, we replace
the alignment table generated by the best perform-
ing aligner (the forward and reverse combined) in
the previous section and re-train CAMR with the
predicted concept label features included.

From Table 4, we can see that the unsuper-
vised aligner (ISI and HMM) generally outper-
forms the JAMR rule-based aligner, and our im-
proved HMM aligner is more consistent than the
ISI aligner (Pourdamghani et al., 2014), which is
a modified version of IBM Model 4.

5.3 Comparison with other Parsers

We first add the wikification information to the
parser output using the off-the-shelf AMR wiki-
fier (Pan et al., 2015) and compare results with the
state-of-the-art parsers in 2016 SemEval Shared
Task. We also report our result on the previous
release (LDC2014T12), AMR annotation Release
1.0, which is another popular dataset that most of
the existing parsers report results on. Note that the
Release 1.0 annotation doesn’t include wiki infor-
mation.

Dataset Parsers P R F1

SemEval
Test

CAMR 70.3 63.1 66.5
RIGA - - 67.2
JAMR(2016a) 70 65 67
Our parser 71.7 64.9 68.1

SemEval
Blind
Test

CAMR 67.4 57.3 62.0
RIGA 68.0 57.0 62.0
JAMR(2016a) - - 56
Our parser 68.2 59.5 63.6

Table 5: Comparison with the winning systems in
SemEval (with wikification) on test and blind test
sets

CAMR and RIGA (Barzdins and Gosko, 2016)
are the two best performing parsers that partici-
pated in SemEval 2016 shared task. While we use
CAMR as our baseline system, the parser from
RIGA is also based on a version of CAMR ex-
tended with a error-correction wrapper and an en-
semble with a character-level neural sequence-to-
sequence model. Our parser outperforms both
systems by around 1.5 percentage points, where
the improvement in recall is more significant, at
around 2 percentage points.

Parsers P R F1

CAMR 71.3 62.2 66.5
(Zhou et al., 2016) 70 62 66
(Pust et al., 2015) - - 65.8
Our parser 72.7 64.0 68.07

Table 6: Comparison with the existing parsers on
full test set of LDC2014T12

Table 6 shows the performance of our parser on
the full test set of LDC2014T12. We include the
previous best results on this dataset. The parser
proposed in (Zhou et al., 2016) jointly learns the
concept and relation through an incremental joint
model. We also include the AMR parser by
(Pust et al., 2015) that models AMR parsing as
a machine translation task and incorporates vari-
ous external resources. Our parser still achieves
the best result without incorporating external re-
sources other than the NER information.

6 Conclusion

In this paper, we presents work that improves
AMR parsing performance by focusing on two
components of the parser: concept identification
and alignment. We first build a Bidirectional
LSTM based concept identifier which is able to
incorporate richer context and learn sparse con-
cept labels. Then we extend the HMM-based word
alignment model with a graph distance distortion
and a rescoring method during decoding to incor-
porate the graph structure information. By inte-
grating the two components into an existing AMR
parser, our parser is able to outperform state-of-
the-art AMR parsers and establish a new state of
the art.
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