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Abstract

Sports channel video portals offer an ex-
citing domain for research on multimodal,
multilingual analysis. We present meth-
ods addressing the problem of automatic
video highlight prediction based on joint
visual features and textual analysis of the
real-world audience discourse with com-
plex slang, in both English and tradi-
tional Chinese. We present a novel dataset
based on League of Legends champi-
onships recorded from North American
and Taiwanese Twitch.tv channels (will be
released for further research), and demon-
strate strong results on these using multi-
modal, character-level CNN-RNN model
architectures.

1 Introduction

On-line eSports events provide a new setting for
observing large-scale social interaction focused on
a visual story that evolves over time—a video
game. While watching sporting competitions has
been a major source of entertainment for millen-
nia, and is a significant part of today’s culture, eS-
ports brings this to a new level on several fronts.
One is the global reach, the same games are played
around the world and across cultures by speak-
ers of several languages. Another is the scale of
on-line text-based discourse during matches that is
public and amendable to analysis. One of the most
popular games, League of Legends, drew 43 mil-
lion views for the 2016 world series final matches
(broadcast in 18 languages) and a peak concurrent
viewership of 14.7 million1. Finally, players in-
teract through what they see on screen while fans
(and researchers) can see exactly the same views.

1
http://www.lolesports.com/en_US/articles/

2016-league-legends-world-championship-numbers

(a) Twitch

(b) Youtube

(c) Facebook

Figure 1: Pictures of Broadcasting platforms:(a)
Twitch: League of Legends Tournament
Broadcasting, (b) Youtube: News Channel,
(c)Facebook: Personal live sharing

This paper builds on the wealth of interaction
around eSports to develop predictive models for
match video highlights based on the audience’s
online chat discourse as well as the visual record-
ings of matches themselves. ESports journal-
ists and fans create highlight videos of impor-
tant moments in matches. Using these as ground
truth, we explore automatic prediction of high-
lights via multimodal CNN+RNN models for mul-
tiple languages. Appealingly this task is natural,
as the community already produces the ground
truth and is global, allowing multilingual multi-
modal grounding.

Highlight prediction is about capturing the ex-
citing moments in a specific video (a game match
in this case), and depends on the context, the state
of play, and the players. This task of predicting
the exciting moments is hence different from sum-
marizing the entire match into a story summary.
Hence, highlight prediction can benefit from the
available real-time text commentary from fans,
which is valuable in exposing more abstract back-
ground context, that may not be accessible with
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computer vision techniques that can easily identify
some aspects of the state of play. As an example,
computer vision may not understand why Michael
Jordan’s dunk is a highlight over that of another
player, but concurrent fan commentary might re-
veal this.

We collect our dataset from Twitch.tv, one of
the live-streaming platforms that integrates com-
ments (see Fig. 1), and the largest live-streaming
platform for video games. We record matches of
the game League of Legends (LOL), one of the
largest eSports game in two subsets, 1) the spring
season of the North American League of Leg-
ends Championship Series (NALCS), and 2) the
League of Legends Master Series (LMS) hosted in
Taiwan/Macau/HongKong, with chat comments in
English and traditional Chinese respectively. We
use the community created highlights to label each
frame of a match as highlight or not.

In addition to our new dataset, we present
several experiments with multilingual character-
based models, deep-learning based vision mod-
els either per-frame or tied together with a video-
sequence LSTM-RNN, and combinations of lan-
guage and vision models. Our results indicate
that while surprisingly the visual models gener-
ally outperform language-based models, we can
still build reasonably useful language models that
help disambiguate difficult cases for vision mod-
els, and that combining the two sources is the most
effective model (across multiple languages).

2 Related Work

We briefly discuss a small sample of the related
work on language and vision datasets, summariza-
tion, and highlight prediction. There has been a
surge of vision and language datasets focusing on
captions over the last few years, (Rashtchian et al.,
2010; Ordonez et al., 2011; Lin et al., 2014), fol-
lowed by efforts to focus on more specific parts of
images (Krishna et al., 2016), or referring expres-
sions (Kazemzadeh et al., 2014), or on the broader
context (Huang et al., 2016). For video, simi-
lar efforts have collected descriptions (Chen and
Dolan, 2011), while others use existing descrip-
tive video service (DVS) sources (Rohrbach et al.,
2015; Torabi et al., 2015). Beyond descriptions,
other datasets use questions to relate images and
language (Antol et al., 2015; Yu et al., 2015). This
approach is extended to movies in Tapaswi et al.
(2016).

The related problem of visually summariz-
ing videos (as opposed to finding the high-
lights) has produced datasets of holiday and
sports events with multiple users making summary
videos (Gygli et al., 2014) and multiple users se-
lecting summary key-frames (de Avila et al., 2011)
from short videos. For language-based summa-
rization, Extractive models (Filippova and Altun,
2013; Filippova et al., 2015) generate summaries
by selecting important sentences and then assem-
bling these, while Abstractive models (Chopra
et al., 2016; Mei et al., 2016; Nallapati et al., 2016;
See et al., 2017) generate/rewrite the summaries
from scratch.

Closer to our setting, there has been work on
highlight prediction in football (soccer) and bas-
ketball based on audio of broadcasts (Cheng and
Hsu, 2006) (Wang et al., 2004) where commenta-
tors may have an outsized impact or visual fea-
tures (Bertini et al., 2005). In the spirit of our
study, there has been work looking at tweets dur-
ing sporting events (Hsieh et al., 2012), but the
tweets are not as immediate or as well aligned with
the games as the eSports comments. More closely
related to our work, Song (2016) collects videos
for Heroes of the Storm, League of Legends, and
Dota2 on online broadcasting websites of around
327 hours total. They also provide highlight label-
ing annotated by four annotators. Our method, on
the other hand, has a similar scale of data, but we
use existing highlights, and we also employ tex-
tual audience chat commentary, thus providing a
new resource and task for Language and Vision re-
search. In summary, we present the first language-
vision dataset for video highlighting that contains
audience reactions in chat format, in multiple lan-
guages. The community produced ground truth
provides labels for each frame and can be used
for supervised learning. The language side of this
new dataset presents interesting challenges related
to real-world Internet-style slang.

3 Data Collection

Our dataset covers 218 videos from NALCS and
103 from LMS for a total of 321 videos from week
1 to week 9 in 2017 spring series from each tourna-
ment. Each week there are 10 matches for NALCS
and 6 matches for LMS. Matches are best of 3,
so consist of two games or three games. The first
and third games are used for training. The sec-
ond games in the first 4 weeks are used as valida-

973



Frame	 48-dim	vector 	
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Figure 2: Highlight Labeling: (a) The feature rep-
resentation of each frame is calculated by averag-
ing each color channel in each subregion. (b) Af-
ter template matching, the top bar shows the max-
imum of similarity matching of each frame in the
highlight and the bottom bar is the labeling result
of the video.

tion and the remainder of second games are used
as test. Table 1 lists the numbers of videos in train,
validation, and test subsets.

Dataset Train Val Testing Total
NALCS 128 40 50 218
LMS 57 18 28 103

Table 1: Dataset statistics (number of videos).

Each game’s video ranges from 30 to 50 min-
utes in length which contains image and chat data
linked to the specific timestamp of the game. The
average number of chats per video is 7490 with
a standard deviation of 4922. The high value
of standard deviation is mostly due to the fact
that NALCS simultaneously broadcasts matches
in two different channels (nalcs12 and nalcs23)
which often leads to the majority of users watching
the channel with a relatively more popular team
causing an imbalance in the number of chats. If we
only consider LMS which broadcasts with a sin-
gle channel, the average number of chats are 7210
with standard deviation of 2719. The number of
viewers for each game averages about 21526, and
the number of unique users who type in chat is on
average 2185, i.e., roughly 10% of the viewers.

Highlight Labeling For each game, we col-
lected community generated highlights ranging
from 5 minutes to 7 minutes in length. For the pur-
pose of consistency within our data, we collected
the highlights from a single Youtube channel,

2
https://www.twitch.tv/nalcs1

3
https://www.twitch.tv/nalcs2

Onivia,4 which provided highlights for both cham-
pionship tournaments in a consistent arrangement.
We expect such consistency will aid our model to
better pick up characteristics for determining high-
lights. We next need to align the position of the
frames from the highlight video to frames in the
full game video. For this, we adopted a template
matching approach. For each frame in the video
and the highlight, we divide it into 16 regions of
4 by 4 and use the average value of each color
channel in each region as the feature. The feature
representation of each frame ends up as a 48-dim
vector as shown in Figure 2a. For each frame in
the highlight, we can find the most similar frame
in the video by calculating distance between these
two vectors. However, matching a single frame to
another suffers from noise. Therefore, we alterna-
tively concatenate the following frames to form a
window and use template matching to find the best
matching location in the video. We found out that
when the window size is 60 frames, it gives consis-
tent and high quality results. For each frame, the
result contains not only the best matching score
but also the location of that match in the video.5

Figure 2b illustrates this matching process.

4 Model

In this section, we explain the proposed models
and components. We first describe the notation
and definition of the problem, plus the evaluation
metric used. Next, we explain our vision model V-
CNN-LSTM and language model L-Char-LSTM.
Finally, we describe the joint multimodal model
lv-LSTM.

Problem Definition Our basic task is to deter-
mine if a frame of the full input video should
be labeled as being part of the output high-
light or not. To simplify our notation, we use
X = {x1, x2, ..., xt} to denote a sequence of fea-
tures for frames. Chats are expressed as C =
{(c1, ts1), ..., (cn, tsn)}. where each chat c comes
with a timestamp ts. Methods take the image fea-
tures and/or chats and predict labels for the frames,
Y = {y1, y2, ..., yt}.
Evaluation Metric: We refer to the set of frames
with positive ground truth label as Sgt and the set

4
https://www.youtube.com/channel/

UCPhab209KEicqPJFAk9IZEA
5When the window contains a moment of clip transition

in highlights, the best matching score appears low. This is
used to separate all clips in the highlight. Then we can use
the starting and end locations of each clip to label the video.
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Figure 3: Network architecture of proposed models.

of predicted frames with a positive label as Spred.
Following (Gygli et al., 2014; Song et al., 2015),
we use the harmonic mean F-score in Eq.2 widely
used in video summarization task for evaluation:

P =
Sgt ∩ Spred

|Spred| , R =
Sgt ∩ Spred

|Sgt| (1)

F =
2PR

P + R
× 100% (2)

V-CNN We use the ResNet-34 model (He et al.,
2016) to represent frames, motivated by its strong
results on the ImageNet Challenge (Russakovsky
et al., 2015). Our naive V-CNN model (Fig-
ure 3a) uses features from the pre-trained version
of this network 6 directly to make prediction at
each frame (which are resized to 224x224).

V-CNN-LSTM In order to exploit visual video
information sequentially over time, we use a
memory-based LSTM-RNN on top of the image
features, so as to model long-term dependencies.
All of our videos are 30FPS. As the difference be-
tween consecutive frames is usually minor, we run
prediction every 10th frame during evaluation and
interpolate predictions between these frames. Dur-
ing training, due to the GPU memory constraints,
we unfold the LSTM cell 16 times. Therefore the
image window size is around 5-seconds (16 sam-
ples every 10th frame from 30fps video). The hid-
den state from the last cell is used as the V-CNN-
LSTM feature. This process is shown in Figure 3b.

L-Word-LSTM and L-Char-LSTM Next, we
discuss our language-based models using the
audience chat text. Word-level LSTM-RNN
models (Sutskever et al., 2014) are a common
approach to embedding sentences. Unfortu-
nately, this does not fit our Internet-slang style
language with irregularities, “mispelled” words
(hapy, happppppy), emojis (ˆ ˆ), abbreviations
(LOL), marks (?!?!?!?!), or onomatopoeic cases

6
https://github.com/pytorch/pytorch

(e.g., 4 which sounds like yes in traditional Chi-
nese). People may type variant length of 4, e.g.,,
4444444 to express their remarks.

Therefore, alternatively, we model the audience
chat with a character-level LSTM-RNN model
(Graves, 2013). Characters of the language, Chi-
nese, English, or Emojis, are expanded to multiple
ASCII characters according to the two-character
Unicode or other representations used on the chat
servers. We encode a 1-hot vector for each ASCII
input character. For each frame we use all chats
that occur in the next Wt seconds which are called
text window size to form the input for L-Char-
LSTM. We concatenate all the chats in a window,
separating them by a special stop character, and
then fed to a 3-layer L-Char-LSTM model.7 This
model is shown in Figure 3c. Following the setting
in Sec. 5, we evaluate the text window size from 5
seconds to 9 seconds, and got the following accu-
racies:32.1%, 29.6%, 41.5%, 28.2%, 34.4%. We
achieved best results with text window size as 7
seconds, and used this in rest of the experiments.

Joint lv-LSTM Model Our final lv-LSTM
model combines the best vision and language
models: V-CNN-LSTM and L-Char-LSTM. For
the vision and language models, we can extract
features Fv and Fl from V-CNN-LSTN and L-
Char-LSTM, respectively. Then we concatenate
Fv and Fl, and feed it into a 2-layer MLP. The
completed model is shown in Figure 3d. We ex-
pect there is room to improve this approach, by
using more involved representations, e.g., Bilinear
Pooling (Fukui et al., 2016), Memory Networks
(Xiong et al., 2016), and Attention Models (Lu
et al., 2016); this is future work.

7The number of these stop characters is then an encod-
ing of the number of chats in the window. Therefore, the
L-Char-LSTM could learn to use this #chats information, if
it is a useful feature. Also, some content has been deleted by
Twitch.tv or the channel itself due to the usage of improper
words. We use symbol ”\n” to replace such cases.
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Method Data UF P R F
L-Char-LSTM C 100% 0.11 0.99 19.6
L-Char-LSTM C last 25% 0.35 0.51 41.5
L-Word-LSTM C last 25% 0.10 0.99 19.2
V-CNN V 100% 0.40 0.93 56.2
V-CNN V last 25% 0.57 0.74 64.0
V-CNN-LSTM V last 25% 0.58 0.82 68.3
lv-LSTM C+V last 25% 0.77 0.72 74.8

Table 2: Ablation Study: Effects of various mod-
els. C:Chat, V:Video, UF: % of frames Used in
highlight clips as positive training examples; P:
Precision, R: Recall, F: F-score.

5 Experiments and Results

Training Details In development and ablation
studies, we use train and val splits of the data from
NALCS to evaluate models in Section 3. For the
final results, models are retrained on the combina-
tion of train and val data (following major vision
benchmarks e.g. PASCAL-VOC and COCO), and
performance is measured on the test set. We sepa-
rate the highlight prediction to three different tasks
based on using different input data: videos, chats,
and videos+chats. The details of dataset split are
in Section 3. Our code is implemented in PyTorch.

To deal with the large number of frames total,
we sample only 5k positive and 5k negative exam-
ples in each epoch. We use batch size of 32 and
run 60 epochs in all experiments. Weight decay is
10−4 and learning rate is set as 10−2 in the first 20
epochs and 10−3 after that. Cross entropy loss is
used. Highlights are generated by fans and consist
of clips. We match each clip to when it happened
in the full match and call this the highlight clip
(non-overlapping). The action of interest (kill, ob-
jective control, etc.) often happens in the later part
of a highlight clip, while the clip contains some
additional context before that action that may help
set the stage. For some of our experimental set-
tings (Table 2), we used a heuristic of only includ-
ing the last 25% frames in every highlight clip as
positive training examples. During evaluation, we
used all frames in the highlight clip.

Ablation Study Table 2 shows the performance
of each module separately on the dev set. For
the basic L-Char-LSTM and V-CNN models, us-
ing only the last 25% of frames in highlight clips
in training works best. In order to evaluate the per-
formance of L-Char-LSTM model, we also train a
Word-LSTM model by tokenizing all the chats and

Method Data NALCS LMS
L-Char-LSTM chat 43.2 39.7
V-CNN-LSTM video 72.2 69.2
lv-LSTM chat+video 74.7 70.0

Table 3: Test Results on the NALCS (English) and
LMS (Traditional Chinese) datasets.

only considering the words that appeared more
than 10 times, which results in 10019 words. We
use this vocabulary to encode the words to 1-hot
vectors. The L-Char-LSTM outperforms L-Word-
LSTM by 22.3%.

Test Results Test results are shown in Table 3.
Somewhat surprisingly, the vision only model is
more accurate than the language only model, de-
spite the real-time nature of the comment stream.
This is perhaps due to the visual form of the game,
where highlight events may have similar anima-
tions. However, including language with vision in
the lv-LSTM model significantly improves over
vision alone, as the comments may exhibit addi-
tional contextual information. Comparing results
between ablation and the final test, it seems more
data contributes to higher accuracy. This effect is
more apparent in the vision models, perhaps due
to complexity. Moreover, L-Char-LSTM performs
better in English compared to traditional Chinese.
From the numbers given in Section 3, variation in
the number of chats in NALCS was much higher
than LMS, which one may expect to have a critical
effect in the language model. However, our results
seem to suggest that the L-Char-LSTM model can
pickup other factors of the chat data (e.g. content)
instead of just counting the number of chats. We
expect a different language model more suitable
for the traditional Chinese language should be able
to improve the results for the LMS data.

6 Conclusion

We presented a new dataset and multimodal meth-
ods for highlight prediction, based on visual cues
and textual audience chat reactions in multiple lan-
guages. We hope our new dataset can encourage
further multilingual, multimodal research.
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