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Abstract

In state-of-the-art Neural Machine Trans-
lation (NMT), an attention mechanism is
used during decoding to enhance the trans-
lation. At every step, the decoder uses this
mechanism to focus on different parts of
the source sentence to gather the most use-
ful information before outputting its tar-
get word. Recently, the effectiveness of
the attention mechanism has also been ex-
plored for multimodal tasks, where it be-
comes possible to focus both on sentence
parts and image regions that they describe.
In this paper, we compare several atten-
tion mechanism on the multimodal trans-
lation task (English, image → German)
and evaluate the ability of the model to
make use of images to improve translation.
We surpass state-of-the-art scores on the
Multi30k data set, we nevertheless iden-
tify and report different misbehavior of the
machine while translating.

1 Introduction

In machine translation, neural networks have at-
tracted a lot of research attention. Recently,
the attention-based encoder-decoder framework
(Sutskever et al., 2014; Bahdanau et al., 2014) has
been largely adopted. In this approach, Recurrent
Neural Networks (RNNs) map source sequences
of words to target sequences. The attention mech-
anism is learned to focus on different parts of the
input sentence while decoding. Attention mecha-
nisms have shown to work with other modalities
too, like images, where their are able to learn to
attend the salient parts of an image, for instance
when generating text captions (Xu et al., 2015).
For such applications, Convolutional Neural Net-
works (CNNs) such as Deep Residual (He et al.,

2016) have shown to work best to represent im-
ages.

Multimodal models of texts and images em-
power new applications such as visual question an-
swering or multimodal caption translation. Also,
the grounding of multiple modalities against each
other may enable the model to have a better under-
standing of each modality individually, such as in
natural language understanding applications.

In the field of Machine Translation (MT), the ef-
ficient integration of multimodal information still
remains a challenging task. It requires combining
diverse modality vector representations with each
other. These vector representations, also called
context vectors, are computed in order the capture
the most relevant information in a modality to out-
put the best translation of a sentence.

To investigate the effectiveness of informa-
tion obtained from images, a multimodal machine
translation shared task (Specia et al., 2016) has
been addressed to the MT community1. The best
results of NMT model were those of Huang et al.
(2016) who used LSTM fed with global visual
features or multiple regional visual features fol-
lowed by rescoring. Recently, Calixto et al. (2017)
proposed a doubly-attentive decoder that outper-
formed this baseline with less data and without
rescoring.

Our paper is structured as follows. In section 2,
we briefly describe our NMT model as well as the
conditional GRU activation used in the decoder.
We also explain how multi-modalities can be im-
plemented within this framework. In the following
sections (3 and 4), we detail three attention mech-
anisms and explain how we tweak them to work
as well as possible with images. Finally, we report
and analyze our results in section 5 then conclude
in section 6.

1http://www.statmt.org/wmt16/multimodal-task.html
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2 Neural Machine Translation

In this section, we detail the neural machine trans-
lation architecture by Bahdanau et al. (2014), im-
plemented as an attention-based encoder-decoder
framework with recurrent neural networks (§2.1).
We follow by explaining the conditional GRU
layer (§2.2) - the gating mechanism we chose for
our RNN - and how the model can be ported to a
multimodal version (§2.3).

2.1 Text-based NMT
Given a source sentence X = (x1, x2, . . . , xM ),
the neural network directly models the condi-
tional probability p(Y |X) of its translation Y =
(y1, y2, . . . , yN ). The network consists of one en-
coder and one decoder with one attention mecha-
nism. The encoder computes a representation C
for each source sentence and a decoder generates
one target word at a time and by decomposing the
following conditional probability :

log p(Y |X) =
n∑
t=1

log p(yt|y < t, C) (1)

Each source word xi and target word yi are a col-
umn index of the embedding matrix EX and EY .
The encoder is a bi-directional RNN with Gated
Recurrent Unit (GRU) layers (Chung et al., 2014;
Cho et al., 2014), where a forward RNN

−→
Ψ enc

reads the input sequence as it is ordered (from
x1 to xM ) and calculates a sequence of forward
hidden states (

−→
h 1,
−→
h 2, . . . ,

−→
hM ). A backward

RNN
←−
Ψ enc reads the sequence in the reverse

order (from xM to x1), resulting in a sequence of
backward hidden states (

←−
hM ,

←−
hM−1, . . . ,

←−
h 1).

We obtain an annotation for each word xi by con-
catenating the forward and backward hidden state
ht = [

−→
h t;
←−
h t]. Each annotation ht contains the

summaries of both the preceding words and the
following words. The representation C for each
source sentence is the sequence of annotations
C = (h1,h2, . . . ,hM ).

The decoder is an RNN that uses a condi-
tional GRU (cGRU, more details in §2.2) with
an attention mechanism to generate a word yt at
each time-step t. The cGRU uses it’s previous
hidden state st−1, the whole sequence of source
annotations C and the previously decoded symbol
yt−1 in order to update it’s hidden state st :

st = cGRU (st−1, yt−1, C) (2)

In the process, the cGRU also computes a time-
dependent context vector ct. Both st and ct are
further used to decode the next symbol. We use
a deep output layer (Pascanu et al., 2014) to com-
pute a vocabulary-sized vector :

ot = Lo tanh(Lsst +Lcct +LwEY [yt−1]) (3)

where Lo, Ls, Lc, Lw are model parameters. We
can parameterize the probability of decoding each
word yt as:

p(yt|yt−1, st, ct) = Softmax(ot) (4)

The initial state of the decoder s0 at time-step t =
0 is initialized by the following equation :

s0 = finit(hM ) (5)

where finit is a feedforward network with one hid-
den layer.

2.2 Conditional GRU
The conditional GRU 2 consists of two stacked
GRU activations called REC1 and REC2 and an
attention mechanism fatt in between (called ATT
in the footnote paper). At each time-step t, REC1
firstly computes a hidden state proposal s′t based
on the previous hidden state st−1 and the previ-
ously emitted word yt−1:

z′t = σ
(
W ′

zEY [yt−1] +U ′zst−1

)
r′t = σ

(
W ′

rEY [yt−1] +U ′rst−1

)
s′t = tanh

(
W ′EY [yt−1] + r′t � (U ′st−1)

)
s′t =(1− z′t)� s′t + z′t � st−1 (6)

Then, the attention mechanism computes ct over
the source sentence using the annotations se-
quence C and the intermediate hidden state pro-
posal s′t:

ct = fatt
(
C, s′t

)
(7)

Finally, the second recurrent cell REC2, com-
putes the hidden state st of the cGRU by looking
at the intermediate representation s′t and context
vector ct:

zt =σ
(
Wzct +Uzs′t

)
rt =σ

(
Wrct +Urs′t

)
st =tanh

(
Wct + rt � (Us′t)

)
st =(1− zt)� st + zt � s′t (8)

2https://github.com/nyu-dl/
dl4mt-tutorial/blob/master/docs/cgru.pdf
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2.3 Multimodal NMT
Recently, Calixto et al. (2017) proposed a dou-
bly attentive decoder (referred as the ”MNMT”
model in the author’s paper) which can be seen as
an expansion of the attention-based NMT model
proposed in the previous section. Given a se-
quence of second a modality annotations I =
(a1,a2, . . . ,aL), we also compute a new context
vector based on the same intermediate hidden state
proposal s′t:

it = f ′att
(
I, s′t

)
(9)

This new time-dependent context vector is an ad-
ditional input to a modified version of REC2
which now computes the final hidden state st us-
ing the intermediate hidden state proposal s′t and
both time-dependent context vectors ct and it :

zt =σ
(
Wzct +Wzit +Uzs′t

)
rt =σ

(
Wrct +Writ +Urs′t

)
st =tanh

(
Wct +Wit + rt � (Us′t)

)
st =(1− zt)� st + zt � s′t (10)

The probabilities for the next target word (from
equation 3) also takes into account the new context
vector it:

Lo tanh(Lsst +Lcct +Liit +LwEY [yt−1])
(11)

where Li is a new trainable parameter.
In the field of multimodal NMT, the second
modality is usually an image computed into fea-
ture maps with the help of a CNN. The annotations
a1, a2, . . . , aL are spatial features (i.e. each anno-
tation represents features for a specific region in
the image) . We follow the same protocol for our
experiments and describe it in section 5.

3 Attention-based Models

We evaluate three models of the image attention
mechanism f ′att of equation 7. They have in com-
mon the fact that at each time step t of the de-
coding phase, all approaches first take as input the
annotation sequence I to derive a time-dependent
context vector that contain relevant information
in the image to help predict the current target
word yt. Even though these models differ in how
the time-dependent context vector is derived, they
share the same subsequent steps. For each mech-
anism, we propose two hand-picked illustrations
showing where the attention is placed in an image.

3.1 Soft attention
Soft attention has firstly been used for syntactic
constituency parsing by Vinyals et al. (2015) but
has been widely used for translation tasks ever
since. One should note that it slightly differs
from Bahdanau et al. (2014) where their attention
takes as input the previous decoder hidden state
instead of the current (intermediate) one as shown
in equation 7. This mechanism has also been
successfully investigated for the task of image
description generation (Xu et al., 2015) where
a model generates an image’s description in
natural language. It has been used in multimodal
translation as well (Calixto et al., 2017), for which
it constitutes a state-of-the-art.

The idea of the soft attentional model is to
consider all the annotations when deriving the
context vector it. It consists of a single feed-
forward network used to compute an expected
alignment et between modality annotation al and
the target word to be emitted at the current time
step t. The inputs are the modality annotations
and the intermediate representation of REC1 s′t:

et,l = vT tanh(Uas′t +Waal) (12)

The vector et has length L and its l-th item con-
tains a score of how much attention should be put
on the l-th annotation in order to output the best
word at time t. We compute normalized scores to
create an attention mask αt over annotations:

αt,i =
exp(et,i)∑L
j=1 exp(et,j)

(13)

it =
L∑
i=1

αt,iai (14)

Finally, the modality time-dependent context vec-
tor it is computed as a weighted sum over the an-
notation vectors (equation 14). In the above ex-
pressions, vT , Ua andWa are trained parameters.

Figure 1: Die beiden Kinder spielen auf dem
Spielplatz .
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Figure 2: Ein Junge sitzt auf und blickt aus einem
Mikroskop .

3.2 Hard Stochastic attention
This model is a stochastic and sampling-based
process where, at every timestep t, we are making
a hard choice to attend only one annotation. This
corresponds to one spatial location in the image.
Hard attention has previously been used in the
context of object recognition (Mnih et al., 2014;
Ba et al., 2015) and later extended to image
description generation (Xu et al., 2015). In the
context of multimodal NMT, we can follow Xu
et al. (2015) because both our models involve the
same process on images.

The mechanism f ′att is now a function that
returns a sampled intermediate latent variables
γt,i based upon a multinouilli distribution
parameterized by α:

γt ∼ Multinoulli({α1,...,L}) (15)

where γt,i an indicator one-hot variable which is
set to 1 if the i-th annotation (out of L) is the one
used to compute the context vector it:

p(γt,i = 1|γ < t, I) =αt,i (16)

it =
L∑
i=1

γt,iai (17)

Context vector it is now seen as the random vari-
able of this distribution. We define the variational
lower bound L(γ) on the marginal log evidence
log p(y|I) of observing the target sentence y given
modality annotations I .

L(γ) =
∑
γ

p(γ|I) log p(y|γ, I)

≤ log
∑
γ

p(γ|I)p(y|γ, I)

= log p(y|I) (18)

The learning rules can be derived by taking
derivatives of the above variational free energy

L(γ) with respect to the model parameterW :

∂L
∂W

=
∑
γ

p(γ|I)

[
∂ log p(y|γ, I)

∂W
+

log p(y|γ, I)
∂ log p(γ|I)

∂W

]
(19)

In order to propagate a gradient through this
process, the summation in equation 19 can then be
approximated using Monte Carlo based sampling
defined by equation 16:

∂L
∂W

≈ 1
N

N∑
n=1

[
∂ log p(y|γ̃n, I)

∂W
+

log p(y|γ̃n, I)
∂ log p(γ̃n|I)

∂W

]
(20)

To reduce variance of the estimator in equation
20, we use a moving average baseline estimated
as an accumulated sum of the previous log likeli-
hoods with exponential decay upon seeing the k-th
mini-batch:

bk = 0.9× bk−1 + 0.1× log p(y|γ̃k, I) (21)

Figure 3: Ein Mann sitzt neben einem
Computerbildschirm .

Figure 4: Ein Mann in einem orangefarbenen
Hemd und mit Helm .

3.3 Local Attention
In this section, we propose a local attentional
mechanism that chooses to focus only on a small
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subset of the image annotations. Local Attention
has been used for text-based translation (Luong
et al., 2015) and is inspired by the selective
attention model of Gregor et al. (2015) for image
generation. Their approach allows the model
to select an image patch of varying location
and zoom. Local attention uses instead the
same ”zoom” for all target positions and still
achieved good performance. This model can be
seen as a trade-off between the soft and hard
attentional models. The model picks one patch
in the annotation sequence (one spatial location)
and selectively focuses on a small window of
context around it. Even though an image can’t be
seen as a temporal sequence, we still hope that
the model finds points of interest and selects the
useful information around it. This approach has
an advantage of being differentiable whereas the
stochastic attention requires more complicated
techniques such as variance reduction and rein-
forcement learning to train as shown in section
3.2. The soft attention has the drawback to attend
the whole image which can be difficult to learn,
especially because the number of annotations L
is usually large (presumably to keep a significant
spatial granularity).

More formally, at every decoding step t, the
model first generates an aligned position pt.
Context vector it is derived as a weighted
sum over the annotations within the window
[pt − N ; pt + N ] where N is a fixed model
parameter chosen empirically3. These selected
annotations correspond to a squared region in the
attention maps around pt. The attention mask
αt is of size 2N + 1. The model predicts pt as
an aligned position in the annotation sequence
(referred as Predictive alignment (local-m) in
the author’s paper) according to the following
equation:

pt = S · sigmoid(vT tanh(Uas′t)) (22)

where vT and Ua are both trainable model pa-
rameters and S is the annotation sequence length
|I|. Because of the sigmoid, pt ∈ [0, S]. We use
equation 12 and 13 respectively to compute the ex-
pected alignment vector et and the attention mask
αt. In addition, a Gaussian distribution centered
around pt is placed on the alphas in order to favor

3We pick N = |ai|/4 = 49

annotations near pt:

αt,i = αt,i exp
(
− (i− pt)2

2σ2

)
(23)

where standard deviation σ = D
2 . We obtain con-

text vector it by following equation 14.

Figure 5: Ein Mädchen mit einer Schwimmweste
schwimmt im Wasser .

Figure 6: Ein kleiner schwarzer Hund springt über
Hindernisse .

4 Image attention optimization

Three optimizations can be added to the attention
mechanism regarding the image modality. All
lead to a better use of the image by the model and
improved the translation scores overall.

At every decoding step t, we compute a gat-
ing scalar βt ∈ [0, 1] according to the previous
decoder state st−1:

βt = σ(Wβst−1 + bβ) (24)

It is then used to compute the time-dependent im-
age context vector :

it = βt

L∑
l=1

αt,lal (25)

Xu et al. (2015) empirically found it to put more
emphasis on the objects in the image descriptions
generated with their model.

We also double the output size of trainable
parameters Ua, Wa and vT in equation 12 when
it comes to compute the expected annotations
over the image annotation sequence. More
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formally, given the image annotation sequence
I = (a1,a2, . . . ,aL),ai ∈ RD, the three ma-
trices are of size D × 2D, D × 2D and 2D × 1
respectively. We noticed a better coverage of the
objects in the image by the alpha weights.

Lastly, we use a grounding attention inspired
by Delbrouck and Dupont (2017). The mech-
anism merge each spatial location ai in the
annotation sequence I with the initial decoder
state s0 obtained in equation 5 with non-linearity
:

I ′ =(f(a1 + s0), f(a2 + s0), . . . , f(aL + s0))
(26)

where f is tanh function. The new annota-
tions go through a L2 normalization layer fol-
lowed by two 1 × 1 convolutional layers (of size
D → 512, 512 → 1 respectively) to obtain L × 1
weights, one for each spatial location. We nor-
malize the weights with a softmax to obtain a
soft attention map α. Each annotation ai is then
weighted according to its corresponding αi:

I =(α1a1,α2a2, . . . ,αLaL) (27)

This method can be seen as the removal of unnec-
essary information in the image annotations ac-
cording to the source sentence. This attention is
used on top of the others - before decoding - and
is referred as ”grounded image” in Table 1.

5 Experiments

For this experiments on Multimodal Machine
Translation, we used the Multi30K dataset (Elliott
et al., 2016) which is an extended version of the
Flickr30K Entities. For each image, one of the
English descriptions was selected and manually
translated into German by a professional transla-
tor. As training and development data, 29,000 and
1,014 triples are used respectively. A test set of
size 1000 is used for metrics evaluation.

5.1 Training and model details
All our models are build on top of the nematus
framework (Sennrich et al., 2017). The encoder
is a bidirectional RNN with GRU, one 1024D
single-layer forward and one 1024D single-layer
backward RNN. Word embeddings for source and
target language are of 620D and trained jointly
with the model. Word embeddings and other
non-recurrent matrices are initialized by sampling

from a Gaussian N (0, 0.012), recurrent matrices
are random orthogonal and bias vectors are all
initialized to zero.

To create the image annotations used by our
decoder, we used a ResNet-50 pre-trained on
ImageNet and extracted the features of size
14 × 14 × 1024 at its res4f layer (He et al.,
2016). In our experiments, our decoder operates
on the flattened 196 × 1024 (i.e L × D). We
also apply dropout with a probability of 0.5
on the embeddings, on the hidden states in the
bidirectional RNN in the encoder as well as in the
decoder. In the decoder, we also apply dropout
on the text annotations hi, the image features
ai, on both modality context vector and on all
components of the deep output layer before the
readout operation. We apply dropout using one
same mask in all time steps (Gal and Ghahramani,
2016).

We also normalize and tokenize English and
German descriptions using the Moses tokenizer
scripts (Koehn et al., 2007). We use the byte pair
encoding algorithm on the train set to convert
space-separated tokens into subwords (Sennrich
et al., 2016), reducing our vocabulary size to
9226 and 14957 words for English and German
respectively.

All variants of our attention model were trained
with ADADELTA (Zeiler, 2012), with mini-
batches of size 80 for our monomodal (text-only)
NMT model and 40 for our multimodal NMT. We
apply early stopping for model selection based
on BLEU4 : training is halted if no improvement
on the development set is observed for more than
20 epochs. We use the metrics BLEU4 (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014) and TER (Snover et al., 2006) to evaluate
the quality of our models’ translations.

5.2 Quantitative results

We notice a nice overall progress over Calixto
et al. (2017) multimodal baseline, especially
when using the stochastic attention. With im-
provements of +1.51 BLEU and -2.2 TER on both
precision-oriented metrics, the model shows a
strong similarity of the n-grams of our candidate
translations with respect to the references. The
more recall-oriented metrics METEOR scores
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Model Test Scores

BLEU↑ METEOR↑ TER↓
Monomodal (text only)
Caglayan et al. (2016) 32.50 49.2
Calixto et al. (2017) 33.70 52.3 46.7
NMT 34.11 ↑ +0.41 52.4 ↑ +0.1 46.2 ↓ -0.5

Multimodal
Caglayan et al. (2016) 27.82 45.0 -
Huang et al. (2016) 36.50 54.1 -
Calixto et al. (2017) 36.50 55.0 43.7
Soft attention 37.10 ↑ +0.60 54.8 ↓ -0.2 42.8 ↓ -0.9
Local attention 37.55 ↑ +1.05 54.8 ↓ -0.2 42.4 ↓ -1.3
Stochastic attention 38.01 ↑ +1.51 55.4 ↑ +0.4 41.5 ↓ -2.2
Soft attention + grounded image 37.62 ↑ +1.12 55.3 ↑ +0.3 41.8 ↓ -1.9
Stochastic attention + grounded image 38.17 ↑ +1.67 55.4 ↑ +0.4 41.5 ↓ -2.2

Table 1: Results on the 1000 test triples of the Multi30K dataset. We pick Calixto et al. (2017) scores
as baseline and report our results accordingly (green for improvement and red for deterioration). In each
of our experiments, Soft attention is used for text. The comparison is hence with respect to the attention
mechanism used for the image modality.

are roughly the same across our models which is
expected because all attention mechanisms share
the same subsequent step at every time-step t,
i.e. taking into account the attention weights of
previous time-step t − 1 in order to compute the
new intermediate hidden state proposal and there-
fore the new context vector it. Again, the largest
improvement is given by the hard stochastic
attention mechanism (+0.4 METEOR): because it
is modeled as a decision process according to the
previous choices, this may reinforce the idea of
recall. We also remark interesting improvements
when using the grounded mechanism, especially
for the soft attention. The soft attention may
benefit more of the grounded image because of
the wide range of spatial locations it looks at,
especially compared to the stochastic attention.
This motivates us to dig into more complex
grounding techniques in order to give the machine
a deeper understanding of the modalities.

Note that even though our baseline NMT
model is basically the same as Calixto et al.
(2017), our experiments results are slightly better.
This is probably due to the different use of dropout
and subwords. We also compared our results to
Caglayan et al. (2016) because our multimodal
models are nearly identical with the major ex-

ception of the gating scalar (cfr. section 4). This
motivated some of our qualitative analysis and
hesitation towards the current architecture in the
next section.

5.3 Qualitative results

For space-saving and ergonomic reasons, we
only discuss about the hard stochastic and soft
attention, the latter being a generalization of the
local attention.
As we can see in Figure 7, the soft attention model
is looking roughly at the same region of the image
for every decoding step t. Because the words
”hund”(dog), ”wald”(forest) or ”weg”(way) in left
image are objects, they benefit from a high gating
scalar. As a matter of fact, the attention mech-
anism has learned to detect the objects within a
scene (at every time-step, whichever word we
are decoding as shown in the right image) and
the gating scalar has learned to decide whether
or not we have to look at the picture (or more
accurately whether or not we are translating an
object). Without this scalar, the translation scores
undergo a massive drop (as seen in Caglayan
et al. (2016)) which means that the attention
mechanisms don’t really understand the more
complex relationships between objects, what is
really happening in the scene. Surprisingly, the
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Figure 7: Representative figures of the soft-attention behavior discussed in §5.3

gating scalar happens to be really low in the
stochastic attention mechanism: a significant
amount of sentences don’t have a summed gating
scalar ≥ 0.10. The model totally discards the
image in the translation process.

It is also worth to mention that we use a
ResNet trained on 1.28 million images for a
classification tasks. The features used by the
attention mechanism are strongly object-oriented
and the machine could miss important information
for a multimodal translation task. We believe
that the robust architecture of both encoders
{←−Ψ enc,

−→
Ψ enc} combined with a GRU layer and

word-embeddings took care of the right trans-
lation for relationships between objects and
time-dependencies. Yet, we noticed a common
misbehavior for all our multimodal models: if the
attention loose track of the objects in the picture
and ”gets lost”, the model still takes it into account
and somehow overrides the information brought
by the text-based annotations. The translation
is then totally mislead. We illustrate with an
example:

Source: A child claps while riding on a
woman ’s shoulders .

GT: Ein Kind sitzt auf den Schultern einer
Frau und klatscht .

Mono: Ein Kind sitzt auf den Schultern einer
Frau und schläft .

Soft: Ein Kind , das sich auf der Schultern
eines Frau reitet , fährt auf den
Schultern .

Hard: Ein Kind in der Haltung , während er
auf den Schultern einer Frau fährt .

The monomodal translation has a sentence-level
BLEU of 82.16 whilst the soft attention and hard
stochastic attention scores are of 16.82 and 34.45
respectively. Figure 8 shows the attention maps
for both mechanism. Nevertheless, one has to
concede that the use of images indubitably helps
the translation as shown in the score tabular.

Figure 8: Wrong detection for both Soft attention
(top) and Hard stochastic attention (bottom)

6 Conclusion and future work

We have tried different attention mechanism and
tweaks for the image modality. We showed im-
provements and encouraging results overall on the
Flickr30K Entities dataset. Even though we iden-
tified some flaws of the current attention mecha-
nisms, we can conclude pretty safely that images
are an helpful resource for the machine in a trans-
lation task. We are looking forward to try out
richer and more suitable features for multimodal
translation (ie. dense captioning features). An-
other interesting approach would be to use visu-
ally grounded word embeddings to capture visual
notions of semantic relatedness.
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