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Abstract

This paper presents a novel template-
based method to solve math word prob-
lems. This method learns the mappings
between math concept phrases in math
word problems and their math expressions
from training data. For each equation tem-
plate, we automatically construct a rich
template sketch by aggregating informa-
tion from various problems with the same
template. Our approach is implemented in
a two-stage system. It first retrieves a few
relevant equation system templates and
aligns numbers in math word problems
to those templates for candidate equation
generation. It then does a fine-grained in-
ference to obtain the final answer. Ex-
periment results show that our method
achieves an accuracy of 28.4% on the lin-
ear Dolphin18K benchmark, which is 10%
(54% relative) higher than previous state-
of-the-art systems while achieving an ac-
curacy increase of 12% (59% relative) on
the TS6 benchmark subset.

1 Introduction

The research topic of automatically solving math
word problems dates back to the 1960s (Bobrow,
1964a,b; Charniak, 1968). Recently many sys-
tems have been proposed to these types of prob-
lems (Kushman et al., 2014; Hosseini et al., 2014;
Koncel-Kedziorski et al., 2015; Zhou et al., 2015;
Roy and Roth, 2015; Shi et al., 2015; Upadhyay
et al., 2016; Mitra and Baral, 2016). On a re-
cent evaluation conducted by Huang et al. (2016),
current state-of-the-art systems only achieved an

∗Work done while this author was an intern at Microsoft
Research.

18.3% accuracy on their published dataset Dol-
phin18K. Their results indicate that math word
problem solving is a very challenging task.

To solve a math word problem, a system needs
to understand natural language text to extract in-
formation from the problem as local context. Also,
it should provide an external knowledge base, in-
cluding commonsense knowledge (e.g. ”a chicken
has two legs”) and mathematical knowledge (e.g.
”the perimeter of a rectangle = 2 * length + 2 *
width”). The system can then perform reasoning
based on the above two resources to generate an
answer.

P1: What's 25% off $139.99?
Equation: (1-0.25)*139.99 = x

P2: How much will the ipod now be if the original price is $260 and I 
get 10% discount?
Equation: (1-0.1)*260 = x

Template: (1-n1)*n2 = x

P3: I bought something for $306.00 dollars. I got a 20% discount. What 
was the original price?
Equation: (1-0.2)*x = 306

Template: (1-n1)*x = n2

Figure 1: Math Word Problem Examples.

In this paper, we focus on the acquisition of
mathematical knowledge, or deriving math con-
cepts from natural language. Consider the first two
problems P1 and P2 in Figure 1. The math con-
cept in the problems tells you to take away a per-
centage from one and get the resulting percentage
of a total. Using mathematical language, it can be
formulated as (1−n1)∗n2, where n1, n2 are quan-
tities. In this example, we can derive the concept
of subtraction from the text “[NUM] % off ” and
“[NUM] % discount”.
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Acquisition of mathematical knowledge is non-
trivial. Initial statistical approaches (Hosseini
et al., 2014; Roy and Roth, 2015; Koncel-
Kedziorski et al., 2015) derive math concepts
based on observations from their dataset of spe-
cific types of problems, e.g. problems with one
single equation. For example, Hosseini et al.
(2014) assumes verbs and only verbs embed math
concepts and map them to addition/subtraction.
Roy and Roth (2015); Koncel-Kedziorski et al.
(2015) assume there is only one unknown vari-
able in the problem and cannot derive math con-
cepts involving constants or more than one un-
known variables, such as “the product of two un-
known numbers”.

Template-based approaches (Kushman et al.,
2014; Zhou et al., 2015; Upadhyay et al., 2016),
on the other hand, leverage the built-in composi-
tion structure of equation system templates to for-
mulate all types of math concepts seen in train-
ing data, such as (1 − n1) ∗ n2 = x in Figure 1.
However, they suffer from two major shortcom-
ings. First, the math concepts they learned, which
is expressed as an entire template, fails to capture
a lot of useful information with sparse training in-
stances. We argue that it would be more expres-
sive if the math concept is learned in a finer granu-
larity. Second, their learning processes rely heav-
ily on lexical and syntactic features, such as the
dependency path between two slots in a template.
When applied to a large-scale dataset, they create a
huge and sparse feature space and it is unclear how
these template-related features would contribute.

To alleviate the sparseness problem of math
concept learning and better utilize templates, we
propose a novel approach to capture rich informa-
tion contained in templates, including textual ex-
pressions that imply math concepts. We parse the
template into a tree structure and define “template
fragment” as any subtree with at least one opera-
tor and two operands. We learn fine-grained map-
pings between textual expressions and template
fragments, based on longest common substring.
For example, given the three problems in Figure 1,
we can map “[NUM] % off” and “[NUM] % dis-
count” to 1 − n1, and “[NUM] % off [NUM]” to
(1−n1)∗n2 = x. In this way, we can decompose
the templates and learn math concepts in a finer
grain. Furthermore, we observe that problems of
the same template share some common properties.
By aggregating problems of the same template and

capturing these properties, we automatically con-
struct a sketch for each template in the training
data.

Our approach is implemented in a two-stage
system. We first retrieve a few relevant templates
in the training data. This narrows our search space
to focus only on those templates that are likely to
be relevant. Then we align numbers in the prob-
lem to those few returned templates, and do fine-
grained inference to obtain the final answer. We
show that the textural expressions and template
sketch we propose are effective for both stages. In
addition, our system significantly reduces the hy-
pothesis space of candidate equations compared to
previous systems, which benefits the learning pro-
cess and inference at scale.

We evaluate our system on the benchmark
dataset provided by Huang et al. (2016). Experi-
ments show that our system outperforms two state-
of-the-art baselines with a more than 10% abso-
lute (54% relative) accuracy increase in the linear
benchmark and a more than 20% absolute (71%
relative) accuracy increase for the dataset with a
template size greater than or equal to 6.

In the remaining parts of this paper, we in-
troduce related work in Section 2, describe tem-
plate sketch and textual expression learning in
Section 3, present our two-stage system in Sec-
tion 4, summarize experiment setup and results in
Section 5, and conclude this paper in Section 6.

2 Related Work

Automatic math word problem solving meth-
ods (Bobrow, 1964a,b; Charniak, 1968, 1969; Bri-
ars and Larkin, 1984; Fletcher, 1985; Dellarosa,
1986; Bakman, 2007; Yuhui et al., 2010) devel-
oped before 2008 are mostly rule-based. They ac-
cept limited well-format input sentences and map
them into certain structures by pattern matching.
They usually focus on problems with simple math
operations such as addition or subtraction. Please
see Mukherjee and Garain (2008) for a summary.

In recent years, symbolic and statistical meth-
ods have been explored by various researchers. In
the symbolic approach, systems transform math
word problems to structured representations. Bak-
man (2007) maps math problems to predefined
schema with a table of textual formulas and chang-
ing verbs. Liguda and Pfeiffer (2012) uses aug-
mented semantic networks to represent math prob-
lems. Shi et al. (2015) parses math problems to
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their pre-defined semantic language. However,
these methods are only effective in their desig-
nated math problem categories and are not scal-
able to other categories. For example, the method
used by Shi et al. (2015) works extremely well for
solving number word problems but not others.

In the statistical machine learning approach,
Hosseini et al. (2014) solves addition and subtrac-
tion problems by extracting quantities as states and
derive math concepts from verbs in the training
data. Kushman et al. (2014) and Zhou et al.
(2015) generalize equations attached to problems
with variable slots and number slots. They learn
a probabilistic model for finding the best solution
equation. Upadhyay et al. (2016) follows their
approach and leverage math word problems with-
out equation annotation as external resources. Seo
et al. (2015) solves a set of SAT geometry ques-
tions with text and diagram provided. Koncel-
Kedziorski et al. (2015) and Roy and Roth (2015)
target math problems that can be solved by one
single linear equation. They map quantities and
words to candidate equation trees and select the
best tree using a statistical learning model. Mi-
tra and Baral (2016) considers addition and sub-
traction problems in three basic problem types:
“Change”, “Part Whole” and “Comparison”. They
manually design different features for each type,
which is difficult to expand to more types.

In summary, previous methods can achieve
high accuracy in limited math problem categories,
(i.e. (Kushman et al., 2014; Shi et al., 2015)), but
do not scale or perform well in datasets contain-
ing various math problem types as in Huang et al.
(2016), as their designed features are becoming
sparse. Their process of acquiring mathematical
knowledge is either sparse or based on certain as-
sumptions of specific problem types. To allevi-
ate this problem, we introduce our template sketch
construction and fine-grained expressions learning
in the next section.

3 Template Sketch Construction

A template sketch contains template information.
We define three categories of information for the
sketch shown in this section. Next we describe
how we construct a template sketch, via aggrega-
tion of rich information from training problems.
We group problems of the same template in train-
ing set as one cluster and collect information. See
Figure 2 for the outline of our template sketch con-

struction.

3.1 Definition
Template: It is first introduced in Kushman et al.
(2014). It is a unique form of an equation system.
For example, given an equation system as follows:

2 · x1 + 4 · x2 = 34
x1 + 4 = x2

This equation system is a solution for a specific
math word problem. We replace the numbers with
four number slots {n1, n2, n3, n4} and generalize
the equations to the following template:

n1 · x1 + n2 · x2 = n3

x1 + n4 = x2

Alignment: We align numbers in the math prob-
lem with the number slots of a template. For the
first math problem in Figure 1 with its correspond-
ing template (1 − n1) ∗ n2 = x, there are two
numbers 0.25 and 139.99 to align with two num-
ber slots n1 and n2, which results in two different
alignments.

Kushman et al. (2014) aligns nouns to variable
slots {x1, x2, ...} which leads to a huge hypoth-
esis space and does not perform as well as the
number slot alignment only method proposed later
by (Zhou et al., 2015). Therefore, we only con-
sider number slot alignment in this paper.

3.2 Textual Expressions
For template fragments, there are usually some
textual expressions. For example, “n1 % off” and
“n1 % discount” are both mapped to the template
fragment 1− n1.

We employ a statistical framework to automat-
ically mine textual expressions for template frag-
ments from a training dataset. First we parse the
equation to a hierarchical tree. In a bottom-up ap-
proach, we obtain each possible subtree as a tem-
plate fragment tk, which associates with at least
one number slot. For each tk, we use the num-
bers to anchor the number-related phrases in the
problem, replace numbers with“[NUM]” and noun
phrases with “[VAR]”, and cluster the phrases
P = {p1, p2, · · · } with the same tk across all data
given all training problems. Then we compute the
longest common substring lcsk

ij between pairs pi

and pj and calculate tf-idf score of lcsk
ij . We keep

the lcsk
ij with scores above certain empirically de-

termined threshold as the textual expressions.
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Sketch for Template: (1-n1)*n2=x

[Unit Sequence]
{%, $}
…

[Normalized Unit Sequence]
{0, 1}
…

[Question Keyword]
{price}
…

[Textual Expression]
• 1.0-n1

a discount of [NUM] %
mark down [NUM] %
[NUM] % less than
...
• (1.0-n1)*n2

[NUM] % of off [NUM]
…

Problem 2Problem 1 Problem k…

Problem Aggregation

Wallace received a discount of 28% 
on an item priced at $275. What is 
the total price that he paid for it?

=

x*

275

1

-

0.28

Equation Template Phrases

1–0.28 1-n1 a discount of [NUM] %

(1-0.28)*275 (1-n1)*n2 a discount of [NUM] % on 
[VAR] priced at [NUM]

1. Quantity Extraction

Qnt: 0.28
Unit: %
Normalized Unit: 0

Qnt: 275
Unit: $
Normalized Unit: 1

2. Question Keyword Detection
{total price}

3. Textual Patterns

Equation: (1-0.28)*275 = x
Template: (1-n1)*n2 = x

Problem:

Figure 2: Template Sketch Construction.

3.3 Slot Type

Number slots in templates have their own type of
constraints. For example, in the template (1−n1)∗
n2 = x, usually n1 represents a percentage quan-
tity and n2 is the quantity of an object.

We model slot types with quantity units, and
find the direct governing noun phrase as its
‘owner’. For the problem in Figure 2, we ex-
tract quantity unit sequence as {%, $}, normalized
unit sequence as {0, 1} (because % and $ are of
different quantity types), and quantity owners as
{discount, item}. The slot type information pro-
vides important clues to choose the correct tem-
plate and alignment.

3.4 Question Keyword

Question keyword decides which template we use.
Given the following problem setting: “A rectangle
has a width of 5cm and a length of 10cm.”, we can
ask either Q1:“What is the area of the rectangle?”
or Q2: “What is the difference between width and
length?”. The question keywords area and differ-
ence help our system to decide if is should apply
template n1 ∗ n2 = x for Q1 and apply template
n1 − n2 = x for Q2.

We first detect the question sentence (containing

keywords “what”,“how”,“figure out”...). Then we
extract the question keyword on the dependency
tree with simple rules that we observed in the dev
set (e.g. retrieving nouns with “attr− nsubj” de-
pendency relation with keyword “what”). Please
note that we favor recall over precision of our de-
tected question keywords since they are used as
features instead of hard constrains on template de-
cision. Simple rule-based extraction can already
satisfy our need for detecting question keywords
in math problems.

4 Two-Stage System

In this section, we describe our two-stage system
for solving math problems, including template re-
trieval and alignment ranking. We show how to
apply textual expressions and template sketch to
our system.

4.1 Template Retrieval

We use an efficient retrieval module to first narrow
our search space and focus only on templates that
are likely to be relevant. Let χ denote the set of
test problems, and T = {t1, t2, . . . , tj} as the tem-
plate set in the training data. For each test prob-
lem xi, our goal is to select the correct template
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tj . We define the conditional probability of select-
ing a template given a problem as follows:

p(tj |xi; νt) =
exp(νt · f(xi, tj))∑

t′j∈T exp(νt · f(xi, t′j))

where νt is the model parameter and f(xi, tj)
is the feature vector. We apply the Ranking
SVM (Herbrich et al., 2000) to minimize a regu-
larized margin-based pairwise loss. We then have
the following objective function:
1
2
‖νt‖2 + C

∑
i

l(νT
t f(xi, tj)+ − νT

t f(xi, tl)−)

where superscript ”+” indicates the correct in-
stance and ”-” indicates the false ones. We use
the loss function l(t) = max(0, 1− t)2.

To construct the vector f(xi, tj) for template tj ,
we use the three categories in the template sketch
shown in Table 1. Let Q(tj) represent the cluster
of training problems with template tj .

Textual Features
Contains textual expressions in each template
fragments?
Average Word Overlap with Q(tj)
Max Word Overlap with Q(tj)
Quantity Features
Unit sequence in Q(tj)
Normalized unit sequence in Q(tj)
Question Features
Is Question keyword in Q(tj)

Table 1: Features for template retrieval.

At the phrase level, as we have mined differ-
ent expressions in 3.2 for slots in templates, we
can extract the phrases related to each number or
number pair in a test problem and match them with
expressions. For example, given a test problem to
match template (1− n1) ∗ n2 = x in Figure 2, we
have two groups of patterns to match, correspond-
ing to 1.0− n1 and (1.0− n1) ∗ n2 respectively.

Quantity types in a problem are important. We
use the unit type sequences and normalized unit
type sequence for describing number slot types in
a template. In addition, if a number unit type can-
not differentiate each number slot, we will make
use of number “owner” as defined in subsection
3.3. For example, in the sentence ”The width is
3cm and the length is 5cm”, we extract two quanti-
ties with unit type sequence {cm, cm}; and owner
{width, length}.

In addition, we consider question keywords for
templates. For example, if the question keyword is
”difference”, then x+ n1 = n2 will have a higher
probability of being selected than x = n1 ∗ n2.

We observe that in some cases, one word dif-
ference can lead to two different templates. To
consider cases in which some templates are very
similar (e.g. x + n1 = n2 and n1 + n2 = x,
part/whole unknown), we retrieve the top ranked
N (N=3) templates as candidates for alignment in
the next stage.

4.2 Alignment Ranking
For each top N templates from the previous
stage, we generate possible alignments A =
{a1, a2, . . . , am} as the candidate equation sys-
tem for the test problem xi. We train a ranking
model to choose the alignment with the highest
probability p(ak|xi, tj ; νa), where νa is the model
parameter vector.

p(ak) =
exp(νa · f(xi, ak))∑

a′k∈A exp(νa′ · f(xi, a′k))

We use the same ranking model as in template se-
lection stage and the objective function is changed
to:
1
2
‖νa‖2 + C

∑
i

l(νT
a f(xi, ak)+ − νT

a f(xi, al)−)

We design more fine-grained features for each
number slot to formulate the alignment feature
vector f(xi, ak). It contains the following features
in Table 2.

Textual Features
Match textual expressions in template frag-
ment aligned to each number slot (pair)
Quantity Features
Aligned unit sequence in Q(tj)
Aligned normalized unit sequence in Q(tj)
Relationship with noun phrase
Optimal number 1 or 2 is used?
Solution Features
Is integer solution?
Is positive solution?

Table 2: Features for alignment ranking.

At the textual level, we want to capture textual
expressions describing each number slot. For ex-
ample, in the template (1−n1) ∗n2 = x, we have
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mined patterns of 1 − n1 in 3.2, such as “a dis-
count of n1 %”, “mark down n1 %”, etc. Given
the problem in Figure 2 as the test problem, align-
ment (1-0.28) ∗ 275 = x matches textual expres-
sions, while (1-275) ∗ 0.28 = x does not.

For quantity features, we use the alignment-
ordered unit sequence. For the problem in Figure
2 mapping to template (1 − n1) ∗ n2 = x, we
have two different alignments: {n1:0.28, n2:275},
{n1:275,n2:0.28}. Their aligned unit sequences
are {%, $} and {$,%} respectively. We also use
the relations of quantities with noun phrases to dif-
ferentiate number slot interaction with unknown
variable slots and number slots, such as n1 ∗x and
n1 ∗ n2.

Some templates have numerical solution prop-
erties while others do not. For example, tem-
plate x1 = (n1 − n2)/(n3 − n4) would be
less likely to have any strong indication of inte-
ger solution properties. We count the percentage
of integer/positive solutions from the correspond-
ing problems as the probability that this template
prefers an integer/positive solution.

4.3 Model Discussion

Our method has two main differences from pre-
vious template-based methods (Kushman et al.,
2014; Zhou et al., 2015; Upadhyay et al., 2016).

First, previous methods implicitly model map-
ping from problem text to templates. We learn
fine-grained textual expressions mapped to tem-
plate fragments; and explicitly model the property
of templates with template sketches. Second, pre-
vious methods align numbers for all templates in
a training set, while we only examine the N most
probable templates. This significantly reduces the
equation candidate search space. Given a prob-
lem in which m numbers align with a template
of n number slots, the number of possible equa-
tion candidates would be An

m. The search space
grows linearly with the number of templates in
the training data. Suppose m = 5, n = 4 and
we have 1000 templates, the total space would
be (5 ∗ 4 ∗ 3 ∗ 2) ∗ 1000 = 120, 000 for one
problem in Zhou et al. (2015), and will be much
larger if it considers unknown variable alignment
as in (Kushman et al., 2014).

5 Experiments

Settings As demonstrated in Huang et al. (2016),
previous datasets for math problems are limited in

both scale and diversity. We conduct our experi-
ment on their dataset Dolphin18K. We use the lin-
ear subset, containing 10,644 problems in total.
We use two baseline systems for comparison:
(1) ZDC (Zhou et al., 2015) is a statistical
learning method that is an improved version of
KAZB (Kushman et al., 2014)1. (2) SIM (Huang
et al., 2016) is a simple similarity based method.
We do not compare other systems because they
only solve one specific type of problem, e.g. Hos-
seini et al. (2014) only handle addition/subtraction
problems and Koncel-Kedziorski et al. (2015) aim
to solve problems with one single linear equation.
Experiments are conducted using 5-fold cross-
validation with 80% problems randomly selected
as training data and the remaining 20% for testing.
We report the solution accuracy.

5.1 Overall Evaluation Results

Table 3 shows the overall performance of differ-
ent systems. In the table, the size of a template is
the number of problems corresponding to a tem-
plate. For example, for templates with a size 100
or larger, their problem counts add up to 1,807.

Template problems ZDC SIM Ours
Size (%) (%) (%)

>=100 1807 34.2 29.7 64.5
>=50 4281 31.1 27.2 39.3
>=20 5392 29.4 25.8 36.9
>=10 6216 25.3 24.6 35.7
>=6 6827 21.7 20.2 34.6
>=5 7081 21.6 20.1 34.3
>=4 7262 21.1 19.8 33.8
>=3 7466 20.7 19.7 33.2
>=2 8229 20.6 20.3 32.2
>=1 10644 17.9 18.4 28.4

Table 3: Overall evaluation results.

From the table, we observe that our model
consistently achieves better performance than the
baselines on all template sizes. As the template
size becomes larger, all three systems achieve bet-
ter performance. When template size equals 6
(TS6, as a de-facto template size constrain adopted
in ZDC), our model achieve an absolute increase
of over 12% (59% relative). This demonstrates the
effectiveness of our proposed method.

1We ignore KAZB because it does not complete running
on the dataset in three days
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When including long tail problems with a tem-
plate size less than 2, performance of all three
systems drop significantly. This is because the
templates of these problems are not seen in the
training set, and thus are difficult to solve using
these template-based methods. Still, we have at
least 10% absolute (54% relative) accuracy in-
crease on the whole test set compared to the two
baselines. Previous template-based methods re-
quire templates size larger than 6 in the data as
constraints. From the result, we can see that our
method relaxes the template size constraint and
matches more problems with less frequent tem-
plates.

5.2 Accuracy per Template
Here we investigate the performance of different
templates. In Table 4, we sample some domi-
nant templates and report their accuracies. For our
model, we report both template retrieval accuracy
and final solution accuracy.

As we can see, our method performs better than
the baselines for most dominant templates. Per-
formance of the dominant templates can reach an
accuracy level of 60%. This proves that our tem-
plate sketch and textual expressions are effective
in capturing rich template information.

To our surprise, some templates tend to perform
better than others even with smaller template sizes.
For example, x1 = n1 − n2, which represents
the subtraction problem, has 63 problems but per-
forms not as well as x1 = (n1 − n2)/(n3 − n4)
which has 48 problems. We look into their corre-
sponding problems and find out that x1 = n1−n2

are applied to more themes in natural language
than x1 = (n1−n2)/(n3−n4), which are almost
about the theme of “coordinate slope”.

In our model, there is a gap between tem-
plate retrieval accuracy and final solution accu-
racy, which means that although we select the
correct template candidates for the problem, the
alignment model cannot rank the equations cor-
rectly.

5.3 Two-Stage Evaluation
Next, we evaluate the performance of our two-
stage system. Accuracy of template retrieval and
alignment ranking is shown in Table 5.

For template retrieval accuracy, Hit@N means
the correct template for a problem is included in
the top N list returned by our model. We es-
timate the best achievable performance by using

oracle template retrieval. The result is 47.1%
(Hit@ALL), which means 47.1% of the templates
exist more than once in the problem set. Please
note that our template retrieval evaluation may be
underestimated, since in some cases, a test prob-
lem can be solved by different templates.

We then use the top N templates as input for
both our alignment ranking and ZDC. From the
table, we have the following observations: (1)
Hit@3 performs better compared to Hit@1 for
both systems. This confirms our claim that some
templates are similar and we need to incorporate
more fine-grained features to differentiate in the
alignment step; (2) It obtains the highest accu-
racy when N = 3 and decreases when N gets
larger. Both systems get benefits from our tem-
plate retrieval which helps retrieve relevant tem-
plates and reduce the hypothesis space of equa-
tions; (3) Given the same N templates input, our
alignment ranking achieves better performance
than ZDC. This implies that our features are more
indicative.

5.4 Feature Ablation
This section describes our feature ablation study.

Template Retrieval In Table 6, we conduct
three configurations against our model (FULL).
Each ablated configuration corresponds to one
category of our template sketch. From the ta-
ble, we can see that all three categories of fea-
tures contribute to system performance. We re-
move QUANTITY results in the worse perfor-
mance comparing to the FULL model.

Alignment Ranking In Table 7, N means to
select the top N templates in the previous stage
for alignment. The column ”Correct Template”
represents how well the alignment model can per-
form given the correct template input for align-
ment. Our alignment model (FULL) performs the
best compared to the three ablated settings, which
confirms the effectiveness of template properties.

5.5 Error Analysis
We have observed that template-based methods
have difficulty solving problems with small tem-
plate sizes, especially for cases that have a single
problem instance (i.e. template size = 1). We
sample 100 problems in which our system makes
mistakes in the dev set of Dolphin18K and sum-
marize them in Table 8.

Quantity Type The types of quantities are dif-
ficult to determined. For the example problem in
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Ours
Template problems ZDC SIM Template retrieval Acc Final Acc

(%) (%) (%) (%)
n1 ∗ x1 = n2 548 26.3 23.9 87.0 58.7
n1/x1 = n2/n3 453 21.4 29.8 94.1 61.5
x1 = n1 ∗ n2 403 23.6 28.0 78.9 63.4
n1 ∗ x1 + n2 ∗ x2 = n3; 300 86.3 69.7 94.9 85.8
x1 + x2 = n4

x1 = n1 ∗ n2 ∗ n3 103 22.3 32.0 67.0 55.0
x1 + x2 = n1 80 39.7 48.8 79.4 65.1
x1− x2 = n2
x1 = n1 − n2 63 11.7 15.9 50.7 23.4
x1 = (n1 − n2)/(n3 − n4) 48 14.9 18.8 95.7 89.4

Table 4: Accuracy Per Template. Template retrieval acc reports percent of templates appears in one of
the top 3 templates returned by our method.

Hit@N 1 2 3 4 5 10 20 50 ALL
Template retrieval 17.5 22.4 26.3 27.2 28.0 30.2 32.7 35.2 47.1
Acc (%)
Final Acc (%) 24.9 27.6 28.4 27.9 27.4 25.3 22.3 22.1 20.1
ZDC (%) 19.5 20.1 20.1 19.9 19.8 19.1 18.9 18.6 17.9

Table 5: Results of template retrieval and final accuracy with different top N templates retrieved.

Model Hit Hit Hit
@1 @3 @10
(%) (%) (%)

FULL 17.5 26.3 30.2
-TEXTUAL 14.1 24.7 28.4
-QUANTITY 11.4 23.4 25.9
-QUESTION 16.9 25.4 29.8

Table 6: Feature ablation of template retrieval.

the table, if we can detect “24 male” is the same as
“men”, the problem can be solved.

Relation/State Detection If we can identify the
changed states or mathematical relations between
variables, we can solve this category of problems.
In the example problem, it is important to under-
stand that “commission is taken out” is my money
state.

External Knowledge This requires specific
mathematical models, such as permutation and
combination, or commonsense knowledge, e.g. a
dice has 6 sides.

Equation Decomposition The limitation of
template-based approaches is that they require test
problems belonging to one of the templates seen

Model Correct N= N=
Template 1 3

(%) (%) (%)
FULL 34.5 24.9 28.4
-TEXTUAL 31.9 22.2 25.1
-QUANTITY 29.2 20.9 23.3
-SOLUTION 26.3 18.7 21.2

Table 7: Feature ablation of alignment ranking.

in training. Thus, for problems corresponding
to template sizes less than 2, we can decompose
templates into smaller units and conduct learning
more precisely. We then need to generate the equa-
tions, which is also a challenge.

6 Conclusion and Future Work

In this paper, we propose a novel approach to solv-
ing math word problems with rich information of
templates. We learn mappings between textual ex-
pressions and template fragments. Furthermore,
we automatically construct sketches for each tem-
plate. We implement a two-stage system, includ-
ing template retrieval and alignment ranking. Ex-
periments show that our method performs signifi-
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Category Math Problem
Quantity Type
(10%)

The ratio of women to men
in a certain club is 3 to 2. If
there are 24 male club mem-
bers, then how many female
club members are there?

Relation/State
Detection
(12%)

If I am selling something for
$25,000 and a 7% commis-
sion is taken out, how much
money will I be left with?

External
Knowledge
(23%)

Find the probability that total
score is 10 or more given at
least one dice show 6 if 2 dice
red & blue thrown?

Equation De-
composition
(55%)

The average weight of A, B
and C is 45 kg. If the aver-
age weight of A and B is 40
kg and that of B and C is 43
kg, the weight of B is?

Table 8: Error Categorization.

cantly better than two state-of-the-art systems.
Based on our error analysis, we plan to improve

our model by detecting quantity types more accu-
rately, learning relations and incorporating com-
monsense knowledge. For long tail problems with
a template size less 2, we want to utilize the fine-
grained expressions we have learned and decom-
pose equations for learning. Then we can reason
with small equation units to generate a final equa-
tion in testing. We would like to leverage seman-
tic parsing and transform math problems to a more
structured representation. Additionally, we plan to
apply our findings to generating math problem.
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