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Abstract

In this paper, we propose a new pipeline
of word embedding for unsegmented lan-
guages, called segmentation-free word em-
bedding, which does not require word seg-
mentation as a preprocessing step. Unlike
space-delimited languages, unsegmented
languages, such as Chinese and Japanese,
require word segmentation as a prepro-
cessing step. However, word segmenta-
tion, that often requires manually anno-
tated resources, is difficult and expensive,
and unavoidable errors in word segmen-
tation affect downstream tasks. To avoid
these problems in learning word vectors
of unsegmented languages, we consider
word co-occurrence statistics over all pos-
sible candidates of segmentations based
on frequent character n-grams instead of
segmented sentences provided by conven-
tional word segmenters. Our experiments
of noun category prediction tasks on raw
Twitter, Weibo, and Wikipedia corpora
show that the proposed method outper-
forms the conventional approaches that re-
quire word segmenters.

1 Introduction

Word embedding, which learns dense vector rep-
resentation of words from large text corpora, has
received much attention in the natural language
processing (NLP) community in recent years.
It is reported that the representation of words
well captures semantic and syntactic properties
of words (Bengio et al., 2003; Mikolov et al.,
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Figure 1: t-SNE projections of vector represen-
tation of Japanese nouns that generated by our
proposed method without word dictionary. These
proper nouns are color-coded according to its cat-
egories which extracted from Wikidata.

2013; Pennington et al., 2014), and is useful for
many downstream NLP tasks, including part-of-
speech tagging, syntactic parsing, and machine
translation (Huang et al., 2011; Socher et al., 2013;
Sutskever et al., 2014).

In order to train word embedding models on a
raw text corpus, we have to do word segmentation
as a preprocessing step. In space-delimited lan-
guages such as English and Spanish, simple rule-
based and co-occurrence-based approaches offer
reasonable segmentations. On the other hands,
these approaches are impractical for unsegmented
languages such as Chinese, Japanese, and Thai.
Therefore, machine learning-based approaches are
widely used in NLP for unsegmented languages.
Conditional random field (CRF)-based supervised
word segmentation (Kudo et al., 2004; Tseng
et al., 2005) is still the most used one in Japanese
and Chinese NLP (Prettenhofer and Stein, 2010;
Funaki and Nakayama, 2015; Ishiwatari et al.,
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2015; Nakazawa et al., 2016).

However, there are some problems for these
supervised word segmentation as a preprocess-
ing step of a word embedding pipeline. First,
they require language-specific manually anno-
tated resources such as word dictionaries and seg-
mented corpora. Since these manually annotated
resources are typically unavailable for domain-
specific corpora (e.g. Twitter or Weibo cor-
pora that contain many neologisms and informal
words), we have to create manually annotated re-
sources if we need. Second, they cannot take ad-
vantage of word occurrence frequencies in a cor-
pus. Even though a certain proper noun (e.g. “
老人と海” (The Old Man and the Sea)) occurs
frequently in a corpus, word segmenters will con-
tinue to split the proper noun erroneously (e.g. “
老人/と/海” (a old man / and / a sea)) if it is not
registered in the word dictionary. Because of seg-
mentation errors incurred by these problems, the
downstream word embedding model cannot learn
vector representation of proper nouns, neologisms,
and informal words.

In this paper, in order to learn word vectors
from a raw text corpus while avoiding the above
problems, we propose a new word segmentation-
free pipeline for word embedding, referred to as
segmentation-free word embedding (sembei). Our
framework first enumerates all possible segmen-
tations (referred to as a frequent n-gram lattice)
based on character n-grams that frequently oc-
curred in the raw corpus, and then learns n-gram
vectors from co-occurrence frequencies over the
frequent n-gram lattice. Using the general idea
of segmentation-free word embedding, we can ex-
tend existing word embedding models. Specifi-
cally, in this paper, we propose a segmentation-
free version of the widely used skip-gram model
with negative sampling (SGNS) (Mikolov et al.,
2013), which we refer to as SGNS-sembei.

Although the frequent character n-grams nec-
essarily include many non-words (i.e. n-grams
that are not words), remarkably, our results show
that nearest neighbor search works well for fre-
quent words and even proper nouns (e.g. near-
est neighbors of n-gram “ドイツ” (Germany) are
“中国” (China), “イギリス” (United Kingdom),
etc.). This observation suggests that we can use
the proposed method for automatic acquisition of
synonyms from large raw text corpora.

We conduct experiments on a noun category

prediction task on several corpora and observe
that our method outperforms the conventional ap-
proaches that use word segmenters. Fig. 1 shows
a t-SNE projection of vector representation of
Japanese nouns which is learned from only a raw
Twitter corpus. We can see that the proposed
method can learn vector representation of these
nouns, and the learnt representation achieves good
separation based on their categories.

2 Related Work

There are some representation models that do not
rely on any segmenters. Dhingra et al. (2016) pro-
posed a character-based RNN model for vector
representation of tweets, and Schütze (2017) pro-
posed a new text embedding method that learns
n-gram vectors from the corpus that segmented
randomly and then constructs text embeddings by
summing up the n-gram vectors. In the field of
representation learning for biological sequences
(e.g. DNA and RNA), Asgari and Mofrad (2015)
applied the skip-gram model (Mikolov et al.,
2013) to fixed length fragments of biological se-
quences. These methods mainly aim at learn-
ing vector representation of texts or biological
sequences instead of words or fragments of se-
quences. On the other hand, in this paper, we focus
on learning vector representation of words from a
raw corpus of unsegmented languages.

3 Conventional Approaches to Word
Embeddings

Word embedding is also commonly used in
NLP for unsegmented languages (Prettenhofer and
Stein, 2010; Funaki and Nakayama, 2015; Ishi-
watari et al., 2015). In these studies, they usually
segment a raw corpus into words using a word seg-
menter or a morphological analyzer, and then feed
the segmented corpus to word embedding models
(e.g. the skip-gram model (Mikolov et al., 2013)
or the GloVe (Pennington et al., 2014)) as in the
case of space-delimited languages. The flowchart
of the above process is shown in the left part of
Fig. 2.

3.1 The original SGNS

The original skip-gram model with negative sam-
pling (Mikolov et al., 2013) (we refer to it as
the original SGNS) learns vector representation of
words vw and their contexts ṽc that minimize the
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Figure 2: Flowcharts of previous and proposed
pipelines. Morphological analyzers are in charge
of the shaded part. Our main idea is to replace a
word dictionary with a set of frequent character n-
grams, and omit the indentification of the optimum
path.

following objective function:

maximize
{vw}∪{ṽc}

∑
(w,c)∈D

log σ(v⊤w ṽc) +
∑

(w,c)∈D′
log σ(−v⊤w ṽc)

(1)

where σ(x) := (1 + e−x)−1, D is a multiset (bag)
of positive samples (i.e. co-occurred pairs in the
corpus), and D′ is a multiset of negative sam-
ples. This objective function is maximized using
stochastic gradient descent (SGD).

4 Segmentation-Free Word Embeddings

In this section, we first introduce the general idea
of segmentation-free word embeddings (sembei),
and then propose a segmentation-free version of
the SGNS.

While conventional word embedding ap-
proaches learn word vectors from segmented
corpora that provided by word segmenters,
our approach learns n-gram vectors from raw
corpora, as in the right part of Fig. 2. In order
to learn n-gram vectors from a raw corpus of
unsegmented languages, we first construct a
frequent n-gram lattice, which represents all pos-
sible segmentations based on frequent character
n-grams of the corpus, in the same way as the
construction of word lattices used in morpho-
logical analysis. Then, we learn n-gram vectors
using co-occurrence statistics over the frequent

n-gram lattice instead of segmented corpora as in
conventional approaches.

4.1 Segmentation-Free Version of the SGNS

Here, we introduce a segmentation-free version of
SGNS, referred to as SGNS-sembei, as an appli-
cation of the idea of segmentation-free word em-
bedding. Our method simply optimizes the origi-
nal SGNS’s objective function (1) with the slight
modification: changing the definition of the multi-
set of positive samples D.

In SGNS-sembei, D is redefined as the multi-
set of character n-gram pairs (w, c) where w and
c occur adjacently in the corpus (i.e. w and c are
connected in the frequent n-gram lattice). In addi-
tion, to discriminate co-occurrence with different
order in the frequent n-gram lattice, we define con-
textual words with their relative positions to the
center word as the same way as Ling et al. (2015)
did.

We also redefine the multiset of negative sam-
ples D′ using D in the same way as the origi-
nal SGNS, and then optimize the objective func-
tion (1) using SGD.

Table 1: Examples of labels of entities (in
Japanese, and in English for reference) and its cat-
egories extracted from Wikidata.

label (ja) label (en) category

ドイツ Germany country
二酸化炭素 carbon dioxide chemical compound
消防士 firefighter profession
アップルパイ apple pie food
長友佑都 Yuto Nagatomo human

5 Experiment

In this section, we evaluate our method by the
noun category prediction task on Twitter, Weibo,
and Wikipedia corpora.

The C++ implementation of the proposed
method is available on GitHub1.

5.1 Settings

We used four raw text corpora: Wikipedia
(Japanese), Wikipedia (Chinese), Twitter
(Japanese), and Weibo (Chinese). The Wikipedia
corpora consist of only a part of the Wikipedia

1https://github.com/oshikiri/
w2v-sembei
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Table 2: Micro F-scores (higher is better) and coverages [%] (in parentheses, higher is better).
dictionary Japanese Chinese

default Wikidata Wikipedia Twitter Wikipedia Weibo

SGNS ✓ 0.896 (34) 0.761 (46) 0.889 (86) 0.766 (88)
SGNS ✓ ✓ 0.945 (98) 0.867 (96) 0.891 (94) 0.765 (93)
SGNS-sembei 0.949 (100) 0.870 (100) 0.891 (100) 0.811 (100)

dumps2 (dated on February 20th, 2017), whose
HTML tags are removed. The Weiboscope
corpus (Chau et al., 2013) consists of 226,841,122
posts mainly in Chinese, and we use only a part
of it. The Twitter corpus consists of 17,316,968
Japanese tweets that were collected from October
26th, 2016 until November 22nd, 2016 via the
Twitter Streaming API. We removed hashtags,
users’ id, and URL from Twitter and Weibo
corpora. We extracted about 1,460k frequent
n-grams3 as the frequent character n-grams for
our proposed method.

We extracted the noun-category pairs from the
Wikidata (Vrandečić and Krötzsch, 2014) (We
used the dump dated January 9th, 2017) as fol-
lows. We first extracted Wikidata entities whose
headwords are also in the 1,460k frequent n-
grams, and then extracted the Wikidata entities
whose “instance of” properties are any of the
predetermined category set4, and then collected
names and their categories of the entities. Ex-
amples of the extracted noun-category pairs are
shown in Table 1.

We randomly split the noun-category pairs
into a train (60%) and a test (40%) set. We
trained linear C-SVM classifiers (Hastie
et al., 2009) with the train set to predict
categories from vector representation of the
nouns. We performed a grid search over
(C, classifier) ∈ {0.5, 1, 5, 10, 50, 100} ×
{one-vs-one, one-vs-rest} of linear SVM using
the train set for each vector representation, and

2We used {ja,zh}wiki-20170220-pages-articles1.xml in
https://dumps.wikimedia.org

3In this experiment, we defined the frequent
n-grams as the union of the top-kn frequent n-
grams, where n and kn are the pre-specified num-
bers. And we used n = 8, (k1, . . . , k8) =
(10000, 300000, 300000, 300000, 200000, 200000, 100000,
50000) for Japanese corpora, and n = 7, (k1, . . . , k7) =
(10000, 400000, 400000, 300000, 200000, 100000, 50000)
for Chinese corpora

4 {country, profession, ship, railway station, food, chem-
ical compound, prefecture of Japan, manga, human } for
Japanese, and {country, profession, television series, busi-
ness enterprise, city, chemical compound, taxon, human} for
Chinese

reported the best scores on the test set.

5.2 Baseline Systems

We compared SGNS-sembei with the conven-
tional approaches that use the original SGNS and
word segmenters. To segment the raw corpora, we
used the MeCab (Kudo et al., 2004) for Japanese
corpora and the Stanford Word Segmenter (Tseng
et al., 2005) for Chinese corpora with their de-
fault dictionaries5. And we ignored the words that
occur less than 5 times. We also ran these base-
line systems in an ideal setting: running the word
segmenters with the default dictionaries and ad-
ditional dictionaries that consist of the nouns ex-
tracted in § 5.1.

We performed a grid search over (h, t, nneg) ∈
{5, 8, 10} × {10−5, 10−4, 10−3} × {3, 10, 25}
where h is the size of context window, t is the sam-
pling threshold, and nneg is the number of negative
samples.

5.3 Results

In both the original SGNS and SGNS-sembei, we
fixed the dimensionality of vector representation
to 200 and the number of iterations to 5 in both
baseline and our method. In SGNS-sembei, we
used the number of negative samples nneg = 10,
size of context window h = 1, initial learning rate
αinit = 0.01.

The resulting micro F-scores and the cover-
ages (i.e. the percentages of the noun-category
pairs whose nouns’ vector representation exists)
are shown in Table 2, and the t-SNE (Maaten and
Hinton, 2008) projections of Japanese nouns vec-
tors learned from the Twitter corpus are shown in
Fig. 1. We observed that our proposed method
outperforms the conventional approaches that use
word segmenters. Furthermore, the coverages of
our method were higher than those of the SGNS
with the default dictionary (especially in Japanese)
and competitive to those of the SGNS with the de-
fault dictionary and Wikidata (which is an ideal

5We use mecab-ipadic v2.7.0 for the MeCab and
dict-chris6.ser.gz for the Stanford Word Segmenter.
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setting) even though our method does not require
any manually annotated resources. We can also
see that the learnt representation achieves good
separation based on their categories as in Fig. 1.
Nearest neighbor search using Twitter and Weibo
corpora was also performed as preliminary exper-
iments, and surprisingly, it worked well for fre-
quent words as in Table. 3.

Table 3: Results of nearest neighbor search for fre-
quent words

Language Query 3-Nearest Neighbors

Japanese
ドイツ (Germany)

中国 (China), イギリス (UK),
ポーランド (Poland)

酸素 (oxygen)
水素 (hydrogen),鉄分 (iron),二
酸化炭素 (carbon dioxide)

Chinese
德国 (Germany)

美国 (USA), 英国 (UK), 法国
(France)

羽毛球 (badminton)
台球 (billiards),网球 (tennis),乒
乓球 (pingpong)

6 Conclusion

We proposed segmentation-free word embedding
for unsegmented languages. Although our method
does not rely on any manually annotated re-
sources, experimental results of the noun category
prediction task on several corpora showed that our
method outperforms conventional approaches that
rely on manually annotated resources.

As an anonymous reviewer suggested, a pos-
sible direction of future work is to leverage an-
other word segmentation approach which uses lin-
guistic features, such as the Stanford Word Seg-
menter (Tseng et al., 2005) with k-best segmenta-
tions.
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