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Abstract

This paper presents a model for Arabic
morphological disambiguation based on
Recurrent Neural Networks (RNN). We
train Long Short-Term Memory (LSTM)
cells in several configurations and embed-
ding levels to model the various morpho-
logical features. Our experiments show
that these models outperform state-of-the-
art systems without explicit use of feature
engineering. However, adding learning
features from a morphological analyzer to
model the space of possible analyses pro-
vides additional improvement. We make
use of the resulting morphological mod-
els for scoring and ranking the analyses
of the morphological analyzer for morpho-
logical disambiguation. The results show
significant gains in accuracy across sev-
eral evaluation metrics. Our system re-
sults in 4.4% absolute increase over the
state-of-the-art in full morphological anal-
ysis accuracy (30.6% relative error reduc-
tion), and 10.6% (31.5% relative error re-
duction) for out-of-vocabulary words.

1 Introduction

Recurrent Neural Networks (RNN) in general, and
Long Short-Term Memory (LSTM) cells in par-
ticular, have been proven very successful for vari-
ous Natural Language Processing (NLP) tasks, es-
pecially those involving sequential data tagging.
RNN models can produce near or above state-
of-the-art performance with minimal language-
specific feature engineering. These models have
the capacity of capturing syntactic and seman-
tic features through the lexical word-level embed-
dings, and subword features through character-
level embeddings.

Morphologically rich languages pose many
challenges to NLP through their high degree of
ambiguity and sparsity. These challenges are ex-
acerbated for languages with limited resources.
Morphological analyzers help reduce sparsity by
providing several out-of-context morpheme-based
analyses for words, but they usually introduce am-
biguity by returning multiple analyses for the same
surface form. Therefore, the model would require
a further step of morphological disambiguation to
choose the correct analysis in context.

Morphological modeling involves heavy use
of sequential tagging, so using an LSTM-based
model would be highly advantageous. LSTM
models are also optimal for long-sequence tagging
in particular, so such systems should be able to
outperform other deep learning models with fixed
window-based modeling. Morphological disam-
biguation is a well studied problem in the litera-
ture, but LSTM-based contributions are still rela-
tively scarce. In this paper we use Bidirectional-
LSTM (Bi-LSTM) models for morphological tag-
ging and language modeling, and use the results of
these models in ranking the analyses of the mor-
phological analyzer. We incorporate various sub-
word and morphological features at different lin-
guistic depths in the tagger, along with both word-
based and character-based embeddings.

Our results show significant accuracy gains
for all the morphological features we study, and
across several evaluation metrics. We compare
our system against a strong baseline and a state-
of-the-art-system. We achieve 4.4% absolute over
the state-of-the-art in full morphological analysis
accuracy (30.6% relative error reduction). When
evaluated for the out-of-vocabulary (OOV) words
alone, the system achieves 10.6% absolute in-
crease (31.5% relative error reduction), and shows
significant performance boost across all evaluation
metrics.
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2 Linguistic Issues

What distinguishes morphologically rich lan-
guages (MRL), like Arabic, from other languages
is that their words include more morphemes (such
as prefixes and suffixes) representing a number of
morphological features, e.g., gender, number, per-
son, mood, as well as attachable clitics. Table 1
shows the set of 16 Arabic morphological features
we model As a result, MRLs tend to have more
fully inflected words (types) than their poor coun-
terparts. For instance when comparing Modern
Standard Arabic (an MRL) with English (not an
MRL), the total number of Arabic words in a large
corpus is 20% less than the English parallel ver-
sion of the corpus; however the the total number
of unique Arabic types is twice that of English
(El Kholy and Habash, 2010).

Feature Definition
diac Diacratization
lex Lemma
pos Basic part-of-speech tags (34 tags)
gen Gender
num Number
cas Case
stt State
per Person
asp Aspect
mod Mood
vox Voice
prc0 Proclitic 0, article proclitic
prc1 Proclitic 1, preposition proclitic
prc2 Proclitic 2, conjunction proclitic
prc3 Proclitic 3, question proclitic
enc0 Enclitic

Table 1: The morphological features we use in the
various models. The first two groups are lexical
features; and the last two groups are inflectional
and clitic features respectively, in addition to the
part-of-speech tag.

Furthermore, MRLs have a tendency towards a
higher degree of ambiguity, stemming from dif-
ferent interpretations of the same surface mor-
phemes. In Modern Standard Arabic (MSA),
this ambiguity is exacerbated by the language’s
diacritzation-optional orthography-leading a word
to have about 12 analyses per word on average
(Habash, 2010). These two issues, form rich-

ness and form ambiguity, are at the heart of why
MRLs are challenging to NLP. Richness of form
increases model sparsity, and ambiguity makes
disambiguation harder. Table 2 shows an exam-
ple of the various in-context and out-of-context
morphological analyses of the word Aî �DÒJ
�̄ qymtha1

(‘its value’ among other readings).
A potential solution is to build a morphological

analyzer, also known as morphological dictionary,
that encodes all the word inflections in the lan-
guage. A good morphological dictionary should
cover all the inflected forms of a word lemma
(richness); and return all the possible analyses of
a surface word (ambiguity). Finally, both rich-
ness and ambiguity are more challenging when an
MRL has limited data, and when the data is noisy.

3 Background and Related Work

Deep learning models have recently emerged as a
viable approach for several morphological model-
ing tasks in general. Neural approaches are par-
ticularly appealing due to their generic modeling
capabilities that can be scaled to multiple tasks,
and for less reliance on specific feature engineer-
ing. Notable contributions include the work of
Collobert et al. (2011), where they present a learn-
ing model that is applicable to several NLP tasks,
like chunking, named entity recognition, and part-
of-speech (POS) tagging, by deliberately avoid-
ing task-specific feature engineering. They use
a window-based deep neural network. The fixed
window size, however, limits access to further
parts of the sentence that might be relevant to the
target word. Moreover, the analysis is applied on
the surface word level only, without considering
any subword features. Several other contributions
utilize somewhat similar approaches, with vari-
ous neural architectures (Wang et al., 2015; Huang
et al., 2015). Dos Santos and Zadrozny (2014),
on the other hand, argue that subword information
is useful for certain NLP tasks, like POS tagging.
They propose a character-based embedding along
with the word embeddings, to be able to capture
internal morphemic structures. Character embed-
dings, capturing subword features, are well stud-
ied in other contributions too (Labeau et al., 2015;
Rei et al., 2016; Belinkov and Glass, 2015).

Morphological disambiguation, however, has

1 All Arabic transliterations are provided in the Habash-
Soudi-Buckwalter transliteration scheme (Habash et al.,
2007).
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.PBðX 	àñJ
ÊÓ 25 H. PY�®�K Aî �DÒJ
�̄ 	à@ B@ A 	̄ðQªÓ ��
Ë �ékñ
�
ÊË @ Õæ�P t�'
PA�K 	à@ úÍ@ �é 	®J
j�Ë@ �HPA ��@ð

wAšArt AlSHyfh̄ Alý An tAryx rsm AllwHh̄ lys mErwfA AlA An qymthA tqdr b 25 mlywn dwlAr .
The newspaper pointed out that the date of the painting is unknown, but its value is estimated at 25 million dollars.
diac lex gloss pos prc3 prc2 prc1 prc0 per asp vox mod gen num stt cas enc0
qay∼amatohA qay∼am evaluate;assess verb 0 0 0 0 3 p a i f s na na 3fs:dobj
qay∼amotahA qay∼am evaluate;assess verb 0 0 0 0 2 p a i m s na na 3fs:dobj
qay∼amotihA qay∼am evaluate;assess verb 0 0 0 0 2 p a i f s na na 3fs:dobj
qay∼amotuhA qay∼am evaluate;assess verb 0 0 0 0 1 p a i m s na na 3fs:dobj
qay∼imatahA qay∼im caretaker noun 0 0 0 0 na na na na f s c a 3fs:poss
qay∼imatihA qay∼im caretaker noun 0 0 0 0 na na na na f s c g 3fs:poss
qay∼imatuhA qay∼im caretaker noun 0 0 0 0 na na na na f s c n 3fs:poss
qiymatahA qiymah̄ value;worth noun 0 0 0 0 na na na na f s c a 3fs:poss
qiymatihA qiymah̄ value;worth noun 0 0 0 0 na na na na f s c g 3fs:poss
qiymatuhA qiymah̄ value;worth noun 0 0 0 0 na na na na f s c n 3fs:poss
qymthA qymthA NOAN noun_prop 0 0 0 0 na na na na m s i u 0

Table 2: An example highlighting Arabic’s rich morphology and ambiguous orthography. The word
Aî �DÒJ
�̄ qiymatahA ‘its value’ has a specific analysis in the context of the sentence shown at the top of the
table; but it has many other analyses and diacritizations out of context. The correct analysis is bolded
(4th from the bottom of the list).

relatively fewer deep learning contributions.
Yildiz et al. (2016) presented a disambiguation
model for Turkish based on Convolutional Neural
Networks (CNN). Their model creates a represen-
tation for the surface form of a word from the root
along with a set of morphemic features. Then they
train a model to predict the optimal analysis of a
word given the annotations within a context win-
dow. Shen et al. (2016), on the other hand, use
a character-based Bi-LSTM model for morpho-
logical disambiguation of morphologically com-
plex languages, without using a morphological an-
alyzer. The LSTM cells have the advantage of cap-
turing a longer sequence window than those of the
fixed window and CNN approaches.

Arabic morphological analysis and disambigua-
tion have seen a considerable amount of work,
spanning both MSA (Habash and Rambow, 2005;
Diab et al., 2004; Khalifa et al., 2016; Abdelali
et al., 2016), and Dialectal Arabic (Duh and Kirch-
hoff, 2005; Al-Sabbagh and Girju, 2012; Habash
et al., 2013). The current state-of-the-art system
is MADAMIRA (Pasha et al., 2014); which uses
SVMs to disambiguate among a target word’s var-
ious morphological analyses provided by a mor-
phological dictionary.

Neural-based contributions for Arabic, how-
ever, are also relatively scarce. Among the contri-
butions that utilize morphological structures to en-
hance the neural models in different NLP tasks, we
note Guzmán et al. (2016) for machine translation,
and Abandah et al. (2015) for diacritization. Dar-
wish et al. (2017) use Bi-LSTM models to train a

POS tagger, and compare it against SVM-based
models. The SVM models in their system out-
perform the neural model, even with incorporat-
ing pre-trained embeddings. Heigold et al. (2016)
developed character-based neural models for mor-
phological tagging for 14 different languages, in-
cluding Arabic, using the UD treebank. Most re-
lated to our work though is by Shen et al. (2016),
who applied their Bi-LSTM morphological disam-
biguation model on MSA, but did not present any
improvements over the state-of-the-art.

Occurring in parallel to our work, Inoue et al.
(2017) used multi-task learning to model fine-
grained POS tags, using the individual mor-
phosyntactic features. They also use dictionary in-
formation concatenated to the word embeddings,
similar to the approach we use in this paper, and
use the same dataset. Our approach provides
slightly higher accuracy scores for the individual
features, but the joint features score in their sys-
tem is higher.

In this paper we study various architectures for
neural based morphological tagging. We then use
these architectures, along with neural language
modeling systems, to train models for various Ara-
bic morphological features. We utilize these mod-
els for morphological disambiguation of the opti-
mal analysis for each given word in context.

4 Approach

The morphological disambiguation task involves
choosing the correct morphological analysis from
the set of potential analyses, obtained from the an-
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alyzer. Towards that end, we train several mod-
els for the individual morphological features, and
use their results to score and rank the different
analyses and choose an optimal overall analysis.
These features can be grouped into non-lexical
features, where a tagger is used to obtain the rel-
evant morphological tag, or morphological fea-
ture tagging, and lexical features that need a lan-
guage model (Roth et al., 2008), or neural lan-
guage models. Table 1 shows the set of morpho-
logical features we work with. The lexical fea-
tures are handled with a language model, while the
inflectional, clitic, and part-of-speech features are
handled with a tagger.

We use Bi-LSTM-based taggers for the mor-
phological feature tagging tasks, with various em-
bedding levels and morphological features. We in-
vestigate the different architectures and design op-
tions in detail in Section 5. We then use the best
design to build 14 different taggers, each specific
to an individual feature. We also use LSTM-based
neural language models for the lexical features.
We discuss the neural language models in more
detail in Section 6.

We then use the results for these various models
to score the potential morphological analyses from
the analyzer for each given word. These scores are
used to rank the analyses and return the one with
the highest result. The process of scoring is also
tuned through tuning weights for the used features.
The details of the ranking and disambiguation pro-
cess are provided in Section 6.

Dataset: We use the Penn Arabic Treebank
(PATB parts 1,2 and 3) (Maamouri et al., 2004)
for all the experiments in this paper. We fol-
low the data splits recommend by Diab et al.
(2013) for training, dev, and testing sets. We use
Alif/Ya and Hamza normalization, and we remove
all diacritics. The pre-trained word embeddings
are trained using the LDC’s Gigaword corpus for
MSA (Parker et al., 2011). Table 3 shows the over-
all data sizes.

Dataset Size (words)
Train 503,015
Dev 63,137
Test 63,172

Gigaword corpus 2,154M

Table 3: Dataset statistics

Evaluation: We use accuracy as the evaluation
metric for all experiments reported in the paper.

Baselines: We use the Maximum Likelihood Es-
timation (MLE) baseline, calculated by count-
ing the frequency scores for each given word/tag
out of context, with backoff to the most fre-
quent tag for unknown words. We also use
the MADAMIRA (release-2.1) scores as another
baseline, designated as the state-of-the-art sys-
tem. Unless otherwise specified, MADAMIRA
was configured in the ADD_PROP backoff mode,
which adds a proper noun analysis to all words.
We use this configuration to match the analyzer
format we used in training the deep learning sys-
tem, and to match the models in previous contri-
butions.

5 Neural Morphological Feature Tagging
Architectures

The task of morphological tagging in general re-
lies on the context for accurate analysis. Such
tasks can be modeled as a sequential data tag-
ging problem, with both word and subword em-
beddings. While word embeddings are used to
convey syntactic and semantic features, subword
embeddings convey morphological features.

We present our morphological tagging model
in this section, and use the POS feature as a test
case. We then generalize our findings for all
the other features for the morphological disam-
biguation process in Section 6. The POS tag set
we use is the MADAMIRA tag set presented at
(Pasha et al., 2014), and covered in detail at the
MADAMIRA manual (Pasha et al., 2013), com-
prised of 34 tags.

5.1 Deep Learning Model

Given a sentence consisting of N words
{w1, w2, ..., wN }, every word wi is converted into
a vector

vi = [rwrd; rmorph]

which is composed of the word (or character se-
quence) embedding vector rwrd, and the morpho-
logical features embedding vector rmorph. The
morphological features vector can be constructed
through various constructs, representing morpho-
logical and/or subword units.

We then use two LSTM layers to model the rele-
vant context for both directions of the target word,
where the input is represented by the vn vectors
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mentioned above:

−→c i = g(vi,
−→c i−1)

←−c i = g(vi,
←−c i+1)

We join both sides, apply a non-linearity function,
and softmax to get a probability distribution. We
use two hidden layers of size 800. Each layer is
composed of two LSTM layers for each direction,
and a dropout wrapper with keep probability of
0.8, and peephole connections. We use Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.003, and cross-entropy cost function. We use
Tensorflow as the development environment.

subword and Morphological Features Several
features can be used to represent the rmorph vec-
tors mentioned before. These features are utilized
to convey morphological information that are not
represented at the word-level embeddings. We use
various features with various linguistic depth:

(a) Fixed-width affixes We represent the pre-
fixes and suffixes through a fixed character length
substring from the beginning and the end of every
word. This requires no linguistic information. We
use a subset of three characters on both ends.

(b) Language-specific affixes (lightstemmer)
We use regular expressions to maximally match
affix patterns at the word’s beginning and end.
This requires basic linguistic knowledge of the tar-
get language, but doesn’t require any large-scale
lexical resources or annotated corpora.

(c) Potential POS tags from a morphological
dictionary We use a high coverage morpholog-
ical dictionary to obtain all possible POS tags
of the target word. This requires advanced re-
sources/annotations of the language. We include
the set of potential tags in a vector representation
and concatenate it with the word embedding.

The vector representation of these features is
made up of the sum of the one-hot vectors for each
individual component.

5.2 Word and Character Embeddings

Using character-level embeddings has recently
been proven proficient for various NLP problems.
In this paper we also study the effect of using
word-level vs character-level embeddings on the
overall morphological tagging problem, especially

in light of the various subword and morphologi-
cal features that we utilize. For word-level em-
beddings, we pre-train the word vectors using
Word2Vec (Mikolov et al., 2013) on the Gigaword
corpus mentioned in Section 4 (and Table 3), and
the text of the training dataset. The embedding
dimension for the words is 250. For the character-
level embeddings, we concatenate the word em-
beddings with the sequence of character embed-
dings, initialized with their one-hot representation.

5.3 Results

Model Accuracy
MLE Baseline 92.5
MADAMIRA (no backoff) 95.9
MADAMIRA (with backoff) 97.0

Table 4: Maximum Likelihood Estimation (MLE)
and MADAMIRA baselines for POS tagging.

Model Embedding
Word Char

No Morphology 96.4 96.7
Fixed Character Affixes 96.6 NA
Lightstemmer 96.7 96.8
Morphological Dictionary 97.5 97.5

+ Fixed Character Affixes 97.6 NA
+ Lightstemmer 97.6 97.6

Table 5: Results for word embeddings (Word) and
character-level embeddings (Char) for POS tag-
ging. We don’t provide character-level embed-
dings results for the Fixed Character Affixes ap-
proach, because such features would be redundant
with the character embeddings themselves.

Table 4 shows the baseline scores for the sys-
tems, including the results for MADAMIRA with
and without backoff. Table 5 shows the results for
all systems. The results show clear improvement
for all systems over the baseline and state-of-the-
art without using subword. In fact, our system
with no morphology outperforms MADAMIRA
without using backoff. While our best result
outperforms both MADAMIRA systems. Af-
fixes (fixed length or lightstemmer) in general in-
crease the accuracy across all systems. We no-
tice, however, that the performance doesn’t vary
much between the fixed-width and lightstemmer
affixes. This proves that the Bi-LSTM model
is powerful enough to identify relevant features
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from a character-stream only, without the need for
language-specific affixes. Using the morpholog-
ical dictionary has the largest effect of improve-
ment across all systems (among the three mor-
phology features used): 0.8% over the next best
approach (absolute score difference). We obtain
the highest accuracy scores when incorporating
both the morphological dictionary tags, and af-
fixes, whether for the fixed-width or the lightstem-
mer approaches. This system shows 20.0% er-
ror reduction over MADAMIRA with backoff, and
41% error reduction without backoff.

The character-level embedding system shows a
somewhat similar behavior in terms of relative per-
formance. We do not provide the results for the
Fixed Character Affixes approach here since the
character embeddings would capture these fixed
affixes within the overall embedding vector any-
way. Hence, it will only provide redundant repre-
sentation without any additional information.

We observe that the character-based system,
without any additional features, outperforms the
word-based system. This is expected, since the
system has access to subword features, conveyed
in the characters stream, that are not available for
the word-based system. The same behavior per-
sists with the lightstemmer, but the performance
gap is smaller, since the word-based system is now
provided with similar subword features that the
character stream conveys. These subword features
are somewhat redundant for the character-based
system, so the performance is only slightly better.

Surprisingly, however, both systems perform
exactly the same when using the morphological
dictionary features. This indicates that the mor-
phological features are powerful enough to convey
and exceed the subword features that a character
stream can convey.

5.4 POS Tagging Error Analysis

We analyzed the resulting tag predictions against
the gold tags by transforming the POS tag set
space into four categories: nominals, verbs, par-
ticles, and punctuation, and observed the resulting
error patterns. We noticed that the errors’ distri-
bution across all developed systems is somewhat
similar throughout the four different categories.
Nominals dominate almost 80.0% of all errors,
even though they constitute 61.5% only of the to-
tal tokens. When introducing the morphological
dictionary tags as features, all four categories in-

crease in accuracy (except for the punctuation, be-
ing tagged almost correctly at all systems). Verbs,
however, have the highest accuracy increase, at
1.5%, relative to 1.0% for nominals and 0.8% for
particles. This can be the result of verbs being
the least common category in the dataset at 8.0%
(vs 64.0%, 14.0%, and 12.0% for nominals, par-
ticles, and punctuation, respectively). The nomi-
nals set is also relatively bigger than the other cat-
egories, which makes it internally confusable with
errors within the nominals’ options, like noun_adj
or noun_num/noun_quant, among others.

6 Morphological Disambiguation

In this section we apply the morphological feature
tagging architecture we discussed earlier for POS
tagging to the remaining morphological features.
We use the results of these taggers, along with the
language models for diac and lex, as the input to
the scoring and ranking process.

6.1 Morphological Tagging Models

Section 5 shows that the best performing neural ar-
chitecture for POS tagging, as an example of mor-
phological tagging in general, is using the embed-
dings (either character-based or word-based) with
the relevant morphological tags from the dictio-
nary, along with fixed or lightstemmer affixes. The
performance of both word and character embed-
dings in this architecture was similar, so we opt for
the word embeddings due to the excessive compu-
tational overhead affiliated with training character-
level embeddings.

We apply the same architecture for the 14 mor-
phological, non-lexical, features we study in this
paper. Table 6 shows the results for the differ-
ent taggers, relative to the MLE and MADAMIRA
baselines that we used in the previous section. All
features show significant performance boost.

Notable features though include case and state,
where good tagging requires a relatively wide
analysis window surrounding the target word.
These features have the biggest performance gap
between the baselines and the Bi-LSTM approach
among the various other features. This is mainly
due to the fact that LSTM cells have the capabil-
ity of maintaining a longer sequence memory than
the other approaches, hence capturing more of the
sentence structure when tagging, compared to tra-
ditional window-based approaches.

709



System pos cas num gen vox mod stt asp per enc0 prc0 prc1 prc2 prc3

MLE 92.5 80.5 98.3 97.5 97.7 97.4 90.2 97.9 97.9 98.3 97.9 98.5 97.9 99.6
MADAMIRA 97.0 91.1 99.5 99.4 99.1 99.1 97.0 99.3 99.2 99.6 99.6 99.6 99.6 99.9

Bi-LSTM 97.6 94.5 99.6 99.5 99.2 99.4 97.9 99.4 99.4 99.7 99.7 99.8 99.7 99.9
Disambiguated Bi-LSTM 97.9 94.8 99.7 99.7 99.4 99.6 98.3 99.6 99.6 99.8 99.8 99.9 99.7 99.9

Absolute Increase 0.9 3.7 0.2 0.3 0.3 0.5 1.3 0.3 0.4 0.2 0.2 0.3 0.1 0.0
Error Reduction 30.0 42.0 40.0 50.0 33.0 56.0 43.0 43.0 50.0 50.0 50.0 75.0 25.0 0.0

Table 6: Morphological tagging results. The absolute increase and error reduction are of the disam-
biguated Bi-LSTM against MADAMIRA.

6.2 Neural Language Models
In addition to the morphological taggers for the
non-lexical features, we use neural language mod-
els for the lemmatization and diacritization fea-
tures. Lemmas and diacratized forms are lexi-
cal in nature, and cannot be modeled directly us-
ing a classifier. We use an LSTM-based neu-
ral language model (Enarvi and Kurimo, 2016),
with class-based input rather than words. Using
a class-based approach speeds convergence dras-
tically and improves the overall perplexity, espe-
cially for the diac (diacritization) language model,
which has a relatively large type count.

We use the MKCLS tool (Och, 1999), through
GIZA++ (Och and Ney, 2003), to train the word
classes. We use two hidden layers of size 500 and
input layer of size 300, and use Nesterov Momen-
tum as the optimization algorithm.

We encode the testing set in the HTK Standard
Lattice Format (SLF), with a word mesh represen-
tation for the various options of each word.

Table 7 shows the accuracy results of the
language models for lex and diac for both
MADAMIRA (which uses SRILM (Stolcke,
2002) for language modeling), and the LSTM
model we use here. All models are trained on the
same ATB training dataset used in the paper. The
LSTM results outperform MADAMIRA’s vastly,
proving the superiority of neural language models.

Feature lex diac

3-gram model 76.7 68.2

3-gram model disambiguated 96.2 87.7

Our system (LSTM) 89.6 73.5

Our system disambiguated 96.9 91.7

Table 7: The language model accuracy scores for
both MADAMIRA and the LSTM models, for the
lex and diac features.

6.3 Disambiguation

We use a similar morphological disambiguation
approach to the model proposed by Habash and
Rambow (2005) and Roth et al. (2008), where
the resulting morphological features are matched
and scored against the morphological analyzer op-
tions, as a way to rank the different analyses, and
tuned using feature weights. If the analysis and
the predicted morphological tag for a feature of a
given word match, the analysis score for that anal-
ysis is incremented by the weight corresponding
to that feature.

The morphological analysis with the highest
score is chosen as the disambiguated option. Any
tie-breaking after the disambiguation is handled
through random selection among the reduced op-
tions2. For feature weight tuning we use the
approach presented by Roth et al. (2008), us-
ing the Downhill Simplex Method (Nelder and
Mead, 1965). A tuning dataset of almost 2K lines
(∼63K words) is randomly selected from the train-
ing dataset. We retrain all the systems using the
remaining training dataset, to be used in the tun-
ing process. We finally use the resulting optimal
weights in the original systems, trained on the full
training dataset.

6.4 Evaluation

We use the following accuracy metrics to evalu-
ate the disambiguation model, which Pasha et al.
(2014) also use in their evaluation:

• EVALFULL: The percentage of correctly an-
alyzed words across all morphological fea-
tures. This is the strictest possible metric.

• EVALDIAC: The percentage of words where
the chosen analysis has the correct fully dia-
critized form.

2This results in %0.02 variation range only in the EVAL-
FULL end result.
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Evalustion Metric All Words Out-Of-Vocabulary Words
MADAMIRA Our System Error Reduction MADAMIRA Our System Error Reduction

EVALFULL 85.6 90.0 30.6 66.3 76.9 31.5
EVALDIAC 87.7 91.7 32.5 70.2 79.8 32.8
EVALLEX 96.2 96.8 15.8 82.9 87.8 28.7
EVALPOS 97.0 97.9 30.0 89.9 96.0 60.4

EVALATBTOK 99.4 99.6 33.3 94.2 97.8 60.2

Table 8: Accuracy results of the disambiguation system, evaluated using different metrics, for all words
and out-of-vacbulary (OOV) words alone. OOV percentage of all words is 7.9%.

• EVALLEX: The percentage of words where
the chosen analysis has the correct lemma.

• EVALPOS: The percentage of words where
the chosen analysis has the correct part-of-
speech.

• EVALATBTOK: The percentage of words
that have a correct ATB tokenization.3

Deep learning models, through word embed-
dings, provide an advantage in terms of the anal-
ysis of unseen words. So, in addition to calcu-
lating the metrics for all the words in the testing
set, we also calculate these metrics for the out-of-
vocabulary (OOV) words alone.

Table 8 shows the accuracy scores for
MADAMIRA and our system. All evaluation met-
rics indicate the performance boost of our sys-
tem relative to MADAMIRA, with significant rel-
ative error reduction. The same trend stands
for the OOV words, with even higher absolute
and relative error reduction scores, especially
for EVALLEX, EVALPOS, and EVALATBTOK.
This increase in OOV analysis accuracy is the re-
sult of modeling the data on a semantic level, with
the embeddings and neural networks, instead of
pure lexical approach.

6.5 Discussion

We conducted additional data analysis over the test
set comparing the performance of our system to
MADAMIRA.

Comparative Error Patterns When consider-
ing full analyses, we observe that our system still
makes some errors in words where MADAMIRA
is correct. However, the number of times our sys-
tem is correct and MADAMIRA is not is over
twice as the reverse (MADAMIRA is correct and
our system is not). From a manual analysis of

3ATB scheme tokenizes all clitics except the +È@ Al ‘the’
determiner.

a sample of 500 words, we observe the majority
of the instances where MADAMIRA was cor-
rect and our system failed involved the case fea-
tures. This is not surprising since case is one
the features our system still struggles with al-
though we have made major improvements be-
yond MADAMIRA. Shahrour et al. (2015) used
syntax as an additional model to improve the anal-
ysis of case. Our model still improves the accu-
racy beyond theirs, but this highlights the value of
using syntax in future work.

Minority Feature-Value Pairs While we show
a lot of improvements across the board above in
terms of accuracy, we also observe very large im-
provements in the performance on some minority
feature-value pairs. For example, among the val-
ues of the case feature, the nominative (cas:n) and
accusative (cas:a) appear about 7.0% and 11.0%
of all words, respectively, of all the values of
case. We improve the F-1 score from 70.4% in
MADAMIRA to 84.1% in our system for (cas:n);
and we similarly improve the F-1 score from
76.7% in MADAMIRA to 85.5% in our system
for (cas:a). We also observe similar improvement
in the mood feature, with the F-1 score for sub-
junctive mood (occurring 0.55% of all words) in-
creasing from 76.9% in MADAMIRA to 89.5%.

This great increase was not observed across
all features. The F1-score of the passive voice
feature-value pair (vox:p) occurring 0.6% of all
words (and 7.0% of all verbs) only increased from
70.1% in MADAMIRA to 73.4% in our system.
Voice in Arabic is harder to model than mood
and case since some verbal constructions can be
rather ambiguous even for human readers; for ex-
ample, the noun phrase Aî �DËA �®Ó �HQå�� 	� ú


�æË @ �éJ. �KA¾Ë@
AlkAtbh̄ Alty nšrt mqAlthA has two readings ‘the
writer who published her article’ (active voice) or
‘the writer whose article was published’ (passive
voice). Case and mood are more likely to be de-
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terminable from the context using long and short-
distance syntactic clues. In the example above the
case of the noun Aî �DËA �®Ó mqAlthA ‘her article’ is de-
pendent on the voice reading of the verb, which
determines if the noun is the subject or object of
the verb. For another example, the F1-score of
the 2nd person feature-value pair (per:2) occurring
0.05% of all words (and 0.5% of all verbs) only in-
creased from 29.7% in MADAMIRA to 31.7% in
our system. The very low performance in the 2nd
person makes sense, since the corpus we used is a
news corpus where the 2nd person is hardly ever
used. We would expect more training data to help
such feature-value pairs.

7 Conclusion and Future Work

In this paper we presented an LSTM-based mor-
phological disambiguation system for Arabic. The
system significantly outperforms a state-of-the-art
system. Our experiments showed that enriching
the input word embedding with additional mor-
phological features increases the morphological
tagging accuracy drastically, beyond the capabil-
ities of even character-level embeddings. We also
showed that using an LSTM based system pro-
vides a significant performance boost for syntax
based features, which often require wide context
window for accurate tagging.

Future directions include exploring additional
deep learning architectures for morphological
modeling and disambiguation, especially joint and
sequence-to-sequence models. We also intend to
further investigate the role of syntax features in
morphological disambiguation, and explore addi-
tional techniques for more accurate tagging. Fi-
nally, we aim at applying our models to Ara-
bic dialects and other languages. We expect that
character-level embeddings will have a bigger role
in scenarios with noisy input, such as non-standard
spontaneous orthography used in social media.
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