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Abstract

Sentence simplification aims to make sen-
tences easier to read and understand.
Most recent approaches draw on insights
from machine translation to learn simpli-
fication rewrites from monolingual cor-
pora of complex and simple sentences.
We address the simplification problem
with an encoder-decoder model coupled
with a deep reinforcement learning frame-
work. Our model, which we call DRESS

(as shorthand for Deep REinforcement
Sentence Simplification), explores the
space of possible simplifications while
learning to optimize a reward function that
encourages outputs which are simple, flu-
ent, and preserve the meaning of the in-
put. Experiments on three datasets demon-
strate that our model outperforms compet-
itive simplification systems.1

1 Introduction

The main goal of sentence simplification is to re-
duce the linguistic complexity of text, while still
retaining its original information and meaning.
The simplification task has been the subject of
several modeling efforts in recent years due to
its relevance for NLP applications and individ-
uals alike (Siddharthan, 2014; Shardlow, 2014).
For instance, a simplification component could be
used as a preprocessing step to improve the perfor-
mance of parsers (Chandrasekar et al., 1996), sum-
marizers (Beigman Klebanov et al., 2004), and se-
mantic role labelers (Vickrey and Koller, 2008;
Woodsend and Lapata, 2014). Automatic simplifi-
cation would also benefit people with low-literacy
skills (Watanabe et al., 2009), such as children and

1Our code and data are publicly available at https://
github.com/XingxingZhang/dress.

non-native speakers as well as individuals with
autism (Evans et al., 2014), aphasia (Carroll et al.,
1999), or dyslexia (Rello et al., 2013).

The most prevalent rewrite operations which
give rise to simplified text include substituting rare
words with more common words or phrases, ren-
dering syntactically complex structures simpler,
and deleting elements of the original text (Sid-
dharthan, 2014). Earlier work focused on individ-
ual aspects of the simplification problem. For ex-
ample, several systems performed syntactic sim-
plification only, using rules aimed at sentence
splitting (Carroll et al., 1999; Chandrasekar et al.,
1996; Vickrey and Koller, 2008; Siddharthan,
2004) while others turned to lexical simplification
by substituting difficult words with more common
WordNet synonyms or paraphrases (Devlin, 1999;
Inui et al., 2003; Kaji et al., 2002).

Recent approaches view the simplification pro-
cess more holistically as a monolingual text-
to-text generation task borrowing ideas from
statistical machine translation. Simplification
rewrites are learned automatically from exam-
ples of complex-simple sentences extracted from
online resources such as the ordinary and sim-
ple English Wikipedia. For example, Zhu
et al. (2010) draw inspiration from syntax-based
translation and propose a model similar to Ya-
mada and Knight (2001) which additionally per-
forms simplification-specific rewrite operations
(e.g., sentence splitting). Woodsend and Lapata
(2011) formulate simplification in the framework
of Quasi-synchronous grammar (Smith and Eis-
ner, 2006) and use integer linear programming
to score the candidate translations/simplifications.
Wubben et al. (2012) propose a two-stage model:
initially, a standard phrase-based machine transla-
tion (PBMT) model is trained on complex-simple
sentence pairs. During inference, the K-best out-
puts of the PBMT model are reranked according
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to their dis-similarity to the (complex) input sen-
tence. The hybrid model developed in Narayan
and Gardent (2014) also operates in two phases.
Initially, a probabilistic model performs sentence
splitting and deletion operations over discourse
representation structures assigned by Boxer (Cur-
ran et al., 2007). The resulting sentences are fur-
ther simplified by a model similar to Wubben et al.
(2012). Xu et al. (2016) train a syntax-based
machine translation model on a large scale para-
phrase dataset (Ganitkevitch et al., 2013) using
simplification-specific objective functions and fea-
tures to encourage simpler output.

In this paper we propose a simplification model
which draws on insights from neural machine
translation (Bahdanau et al., 2015; Sutskever et al.,
2014). Central to this approach is an encoder-
decoder architecture implemented by recurrent
neural networks. The encoder reads the source
sequence into a list of continuous-space repre-
sentations from which the decoder generates the
target sequence. Although our model uses the
encoder-decoder architecture as its backbone, it
must also meet constraints imposed by the sim-
plification task itself, i.e., the predicted output
must be simpler, preserve the meaning of the in-
put, and grammatical. To incorporate this knowl-
edge, the model is trained in a reinforcement
learning framework (Williams, 1992): it explores
the space of possible simplifications while learn-
ing to maximize an expected reward function that
encourages outputs which meet simplification-
specific constraints. Reinforcement learning has
been previously applied to extractive summariza-
tion (Ryang and Abekawa, 2012), information ex-
traction (Narasimhan et al., 2016), dialogue gen-
eration (Li et al., 2016), machine translation, and
image caption generation (Ranzato et al., 2016).

We evaluate our system on three publicly
available datasets collated automatically from
Wikipedia (Zhu et al., 2010; Woodsend and Lap-
ata, 2011) and human-authored news articles (Xu
et al., 2015b). We experimentally show that the re-
inforcement learning framework is the key to suc-
cessful generation of simplified text bringing sig-
nificant improvements over strong simplification
models across datasets.

2 Neural Encoder-Decoder Model

We will first define a basic encoder-decoder
model for sentence simplification and then ex-
plain how to embed it in a reinforcement learning

framework. Given a (complex) source sentence
X = (x1, x2, . . . , x|X|), our model learns to pre-
dict its simplified target Y = (y1, y2, . . . , y|Y |).
Inferring the target Y given the sourceX is a typi-
cal sequence to sequence learning problem, which
can be modeled with attention-based encoder-
decoder models (Bahdanau et al., 2015; Luong
et al., 2015). Sentence simplification is slightly
different from related sequence transduction tasks
(e.g., compression) in that it can involve split-
ting operations. For example, a long source sen-
tence (In 1883, Faur married Marie Fremiet, with
whom he had two sons.) can be simplified as two
sentences (In 1883, Faur married Marie Fremiet.
They had two sons.). Nevertheless, we still view
the target as a sequence, i.e., two or more se-
quences concatenated with full stops.

The encoder-decoder model has two parts (see
left hand side in Figure 1). The encoder trans-
forms the source sentence X into a sequence
of hidden states (hS

1 ,h
S
2 , . . . ,h

S
|X|) with a Long

Short-Term Memory Network (LSTM; Hochreiter
and Schmidhuber 1997), while the decoder uses
another LSTM to generate one word yt+1 at a time
in the simplified target Y . Generation is condi-
tioned on all previously generated words y1:t and
a dynamically created context vector ct, which en-
codes the source sentence:

P (Y |X) =
|Y |∏
t=1

P (yt|y1:t−1, X) (1)

P (yt+1|y1:t, X) = softmax(g(hT
t , ct)) (2)

where g(·) is a one-hidden-layer neural network
with the following parametrization:

g(hT
t , ct) = Wo tanh(UhhT

t + Whct) (3)

where Wo ∈ R|V |×d, Uh ∈ Rd×d, and Wh ∈
Rd×d; |V | is the output vocabulary size and d the
hidden unit size. hT

t is the hidden state of the de-
coder LSTM which summarizes y1:t, i.e., what has
been generated so far:

hT
t = LSTM(yt,hT

t−1) (4)

The dynamic context vector ct is the weighted sum
of the hidden states of the source sentence:

ct =
|X|∑
i=1

αtihS
i (5)
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whose weights αti are determined by an attention
mechanism:

αti =
exp(hT

t · hS
i )∑

i exp(hT
t · hS

i )
(6)

where · is the dot product between two vec-
tors. We use the dot product here mainly for ef-
ficiency reasons; alternative ways to compute at-
tention scores have been proposed in the litera-
ture and we refer the interested reader to Luong
et al. (2015). The model sketched above is usually
trained by minimizing the negative log-likelihood
of the training source-target pairs.

3 Reinforcement Learning for Sentence
Simplification

In this section we present DRESS, our Deep
REinforcement Sentence Simplification model.
Despite successful application in numerous se-
quence transduction tasks (Jean et al., 2015;
Chopra et al., 2016; Xu et al., 2015a), a vanilla
encoder-decoder model is not ideal for sentence
simplification. Although a number of rewrite oper-
ations (e.g., copying, deletion, substitution, word
reordering) can be used to simplify text, copy-
ing is by far the most common. We empirically
found that 73% of the target words are copied
from the source in the Newsela dataset. This num-
ber further increases to 83% when considering
Wikipedia-based datasets (we provide details on
these datasets in Section 5). As a result, a generic
encoder-decoder model learns to copy all too well
at the expense of other rewrite operations, often
parroting back the source or making only a few
trivial changes.

To encourage a wider variety of rewrite oper-
ations while remaining fluent and faithful to the
meaning of the source, we employ a reinforce-
ment learning framework (see Figure 1). We view
the encoder-decoder model as an agent which first
reads the source sentence X; then at each step, it
takes an action ŷt ∈ V (where V is the output vo-
cabulary) according to a policy PRL(ŷt|ŷ1:t−1, X)
(see Equation (2)). The agent continues to take
actions until it produces an End Of Sentence
(EOS) token yielding the action sequence Ŷ =
(ŷ1, ŷ2, . . . , ŷ|Ŷ |), which is also the simplified out-
put of our model. A reward r is then received
and the REINFORCE algorithm (Williams, 1992)
is used to update the agent. In the following, we
first introduce our reward and then present the de-
tails of the REINFORCE algorithm.

3.1 Reward

The reward r(Ŷ ) for system output Ŷ is the
weighted sum of the three components aimed at
capturing key aspects of the target output, namely
simplicity, relevance, and fluency:

r(Ŷ ) = λS rS + λR rR + λF rF (7)

where λS , λR, λF ∈ [0, 1]; r(Ŷ ) is a shorthand for
r(X,Y, Ŷ ) whereX is the source, Y the reference
(or target), and Ŷ the system output. rS , rR, and
rF are shorthands for simplicity rS(X,Y, Ŷ ), rel-
evance rR(X, Ŷ ), and fluency rF (Ŷ ). We provide
details for each reward summand below.

Simplicity To encourage the model to apply
a wide range of simplification operations, we
use SARI (Xu et al., 2016), a recently proposed
metric which compares System output Against
References and against the Input sentence. SARI
is the arithmetic average of n-gram precision and
recall of three rewrite operations: addition, copy-
ing, and deletion. It rewards addition operations
where system output was not in the input but oc-
curred in the references. Analogously, it rewards
words retained/deleted in both the system output
and the references. In experimental evaluation Xu
et al. (2016) demonstrate that SARI correlates well
with human judgments of simplicity, whilst cor-
rectly rewarding systems that both make changes
and simplify the input.

One caveat with using SARI as a reward is the
fact that it relies on the availability of multiple
references which are rare for sentence simplifica-
tion. Xu et al. (2016) provide eight references for
2,350 sentences, but these are primarily for system
tuning and evaluation rather than training. The
majority of existing simplification datasets (see
Section 5 for details) have a single reference for
each source sentence. Moreover, they are unavoid-
ably noisy as they are mostly constructed automat-
ically, e.g., by aligning sentences from the ordi-
nary and simple English Wikipedias. When rely-
ing solely on a single reference, SARI will try to
reward accidental n-grams that should never have
occurred in it. To countenance the effect of noise,
we apply SARI(X, Ŷ , Y ) in the expected direc-
tion, with X as the source, Ŷ the system output,
and Y the reference as well as in the reverse direc-
tion with Y as the system output and Ŷ as the ref-
erence. Assuming our system can produce reason-
ably good simplifications, by swapping the output
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X = x1 x2 x3 x4 x5

Ŷ = ŷ1 ŷ2 ŷ3

Get Action Seq. Ŷ

Update Agent

Simplicity
Model

Relevance
Model

Grammar
Model

REINFORCE algorithm

ŶX ŶX Ŷ Y

Figure 1: Deep reinforcement learning simplification model. X is the complex sentence, Y the reference
(simple) sentence and Ŷ the action sequence (simplification) produced by the encoder-decoder model.

and the reference, reverse SARI can be used to es-
timate how good a reference is with respect to the
system output. Our first reward is therefore the
weighted sum of SARI and reverse SARI:

rS=β SARI(X, Ŷ , Y )+(1−β) SARI(X,Y, Ŷ ) (8)

Relevance While the simplicity-based re-
ward rS tries to encourage the model to make
changes, the relevance reward rR ensures that the
generated sentences preserve the meaning of the
source. We use an LSTM sentence encoder to
convert the source X and the predicted target Ŷ
into two vectors qX and qŶ . The relevance
reward rR is simply the cosine similarity between
these two vectors:

rR = cos(qX ,qŶ ) =
qX · qŶ

||qX || ||qŶ ||
(9)

We use a sequence auto-encoder (SAE; Dai and
Le 2015) to train the LSTM sentence encoder on
both the complex and simple sentences. Specifi-
cally, the SAE uses sentence X = (x1, . . . , x|X|)
to infer itself via an encoder-decoder model (with-
out an attention mechanism). Firstly, an encoder
LSTM convertsX into a sequence of hidden states
(h1, . . . ,h|X|). Then, we use h|X| to initialize
the hidden state of the decoder LSTM and re-
cover/generate X one word at a time.

Fluency Xu et al. (2016) observe that SARI cor-
relates less with fluency compared to other met-
rics such as BLEU (Papineni et al., 2002). The
fluency reward rF models the well-formedness of
the generated sentences explicitly. It is the normal-
ized sentence probability assigned by an LSTM

language model trained on simple sentences:

rF = exp

 1
|Ŷ |

|Ŷ |∑
i=1

logPLM (ŷi|ŷ0:i−1)

 (10)

We take the exponential of Ŷ ’s perplexity to en-
sure that rF ∈ [0, 1] as is the case with rS and rR.

3.2 The REINFORCE Algorithm
The goal of the REINFORCE algorithm is to find
an agent that maximizes the expected reward. The
training loss for one sequence is its negative ex-
pected reward:

L(θ) = −E(ŷ1,...,ŷ|Ŷ |)∼PRL(·|X)[r(ŷ1, . . ., ŷ|Ŷ |)]

where PRL is our policy, i.e., the distribution pro-
duced by the encoder-decoder model (see Equa-
tion(2)) and r(·) is the reward function of an ac-
tion sequence Ŷ = (ŷ1, . . . , ŷ|Ŷ |), i.e., a gener-
ated simplification. Unfortunately, computing the
expectation term is prohibitive, since there is an
infinite number of possible action sequences. In
practice, we approximate this expectation with a
single sample from the distribution of PLR(·|X).
We refer to Williams (1992) for the full derivation
of the gradients. The gradient of L(θ) is:

∇L(θ) ≈∑|Ŷ |
t=1∇ logPRL(ŷt|ŷ1:t−1, X)[r(ŷ1:|Ŷ |)− bt]

To reduce the variance of gradients, we also intro-
duce a baseline linear regression model bt to es-
timate the expected future reward at time t (Ran-
zato et al., 2016). bt takes the concatenation of hT

t

and ct as input and outputs a real value as the ex-
pected reward. The parameters of the regressor are
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trained by minimizing mean squared error. We do
not back-propagate this error to hT

t or ct during
training (Ranzato et al., 2016).

3.3 Learning

Presented in its original form, the REINFORCE
algorithm starts learning with a random policy.
This assumption can make model training chal-
lenging for generation tasks like ours with large
vocabularies (i.e., action spaces). We address this
issue by pre-training our agent (i.e., the encoder-
decoder model) with a negative log-likelihood ob-
jective (see Section 2), making sure it can pro-
duce reasonable simplifications, thereby starting
off with a policy which is better than random.
We follow prior work (Ranzato et al., 2016) in
adopting a curriculum learning strategy. In the be-
ginning of training, we give little freedom to our
agent allowing it to predict the last few words for
each target sentence. For every target sequence,
we use negative log-likelihood to train the first L
(initially, L = 24) tokens and apply the reinforce-
ment learning algorithm to the (L + 1)th tokens
onwards. Every two epochs, we set L = L− 3
and the training terminates when L is 0.

4 Lexical Simplification

Lexical substitution, the replacement of complex
words with simpler alternatives, is an integral part
of sentence simplification (Specia et al., 2012).
The model presented so far learns lexical substitu-
tion and other rewrite operations jointly. In some
cases, words are predicted because they seem nat-
ural in the their context, but are poor substitutes
for the content of the complex sentence. To coun-
tenance this, we learn lexical simplifications ex-
plicitly and integrate them with our reinforcement
learning-based model.

We use an pre-trained encoder-decoder model
(which is trained on a parallel corpus of com-
plex and simple sentences) to obtain probabilis-
tic word alignments, aka attention scores (see αt

in Equation (6)). Let X = (x1, x2, . . . , x|X|) de-
note a source sentence and Y = (y1, y2, . . . , y|Y |)
a target sentence. We convert X into |X| hidden
states (v1,v2, . . . ,v|X|) with an LSTM. Note that
vt ∈ Rd×1 corresponds to the context dependent
representation of xt. Let αt denote the alignment
scores αt1, αt2, . . . , αt|X|. The lexical simplifica-
tion probability of yt given the source sentence

and the alignment scores is:

PLS(yt|X,αt) = softmax(Wl st) (11)

where Wl ∈ R|V |×d and st represents the source:

st =
|X|∑
i=1

αtivi (12)

The lexical simplification model on its own
encourages lexical substitutions, without taking
into account what has been generated so far
(i.e., y1:t−1) and as a result fluency could be com-
promised. A straightforward solution is to inte-
grate lexical simplification with our reinforcement
learning trained model (Section 3) using linear in-
terpolation, where η ∈ [0, 1]:

P (yt|y1:t−1, X) = (1− η)PRL(yt|y1:t−1, X)
+ η PLS(yt|X,αt)

(13)

5 Experimental Setup

In this section we present our experimental setup
for assessing the performance of the simplification
model described above. We give details on our
datasets, model training, evaluation protocol, and
the systems used for comparison.

Datasets We conducted experiments on three
simplification datasets. WikiSmall (Zhu et al.,
2010) is a parallel corpus which has been exten-
sively used as a benchmark for evaluating text sim-
plification systems (Wubben et al., 2012; Wood-
send and Lapata, 2011; Narayan and Gardent,
2014; Zhu et al., 2010). It contains automatically
aligned complex and simple sentences from the or-
dinary and simple English Wikipedias. The test
set consists of 100 complex-simple sentence pairs.
The training set contains 89,042 sentence pairs
(after removing duplicates and test sentences). We
randomly sampled 205 pairs for development and
used the remaining sentences for training.

We also constructed WikiLarge, a larger
Wikipedia corpus by combining previously cre-
ated simplification corpora. Specifically, we ag-
gregated the aligned sentence pairs in Kauchak
(2013), the aligned and revision sentence pairs in
Woodsend and Lapata (2011), and Zhu’s (2010)
WikiSmall dataset described above. We used the
development and test sets created in Xu et al.
(2016). These are complex sentences taken from
WikiSmall paired with simplifications provided by
Amazon Mechanical Turk workers. The dataset
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contains 8 (reference) simplifications for 2,359
sentences partitioned into 2,000 for development
and 359 for testing. After removing duplicates and
sentences in development and test sets, the result-
ing training set contains 296,402 sentence pairs.

Our third dataset is Newsela, a corpus collated
by Xu et al. (2015b) who argue that Wikipedia-
based resources are suboptimal due to the auto-
matic sentence alignment which unavoidably in-
troduces errors, and their uniform writing style
which leads to systems that generalize poorly.
Newsela2 consists of 1,130 news articles, each re-
written four times by professional editors for chil-
dren at different grade levels (0 is the most com-
plex level and 4 is simplest). Xu et al. (2015b) pro-
vide multiple aligned complex-simple pairs within
each article. We removed sentence pairs corre-
sponding to levels 0–1, 1–2, and 2–3, since they
were too similar to each other. The first 1,070
documents were used for training (94,208 sen-
tence pairs), the next 30 documents for develop-
ment (1,129 sentence pairs) and the last 30 docu-
ments for testing (1,076 sentence pairs).3 We are
not aware of any published results on this dataset.

Training Details We trained our models on an
Nvidia GPU card. We used the same hyper-
parameters across datasets. We first trained an
encoder-decoder model, and then performed re-
inforcement learning training (Section 3), and
trained the lexical simplification model (Sec-
tion 4). Encoder-decoder parameters were uni-
formly initialized to [−0.1, 0.1]. We used Adam
(Kingma and Ba, 2014) to optimize the model with
learning rate 0.001; the first momentum coefficient
was set to 0.9 and the second momentum coeffi-
cient to 0.999. The gradient was rescaled when
the norm exceeded 5 (Pascanu et al., 2013). Both
encoder and decoder LSTMs have two layers with
256 hidden neurons in each layer. We regularized
all LSTMs with a dropout rate of 0.2 (Zaremba
et al., 2014). We initialized the encoder and de-
coder word embedding matrices with 300 dimen-
sional Glove vectors (Pennington et al., 2014).

During reinforcement training, we used plain
stochastic gradient descent with a learning rate
of 0.01. We set β = 0.1, λS = 1, λR = 0.25
and λF = 0.5.4 Training details for the lexical

2https://newsela.com
3If a sentence has multiple references in the development

or test set, we use the reference with highest simplicity level.
4Weights were tuned on the development set of the

Newsela dataset and kept fixed for the other two datasets.

simplification model are identical to the encoder-
decoder model except that word embedding matri-
ces were randomly initialized. The weight of the
lexical simplification model was set to η = 0.1.

To reduce vocabulary size, named entities were
tagged with the Stanford CoreNLP (Manning
et al., 2014) and anonymized with a NE@N to-
ken, where NE ∈ {PER,LOC,ORG,MISC} and
N indicates NE@N is the N -th distinct NE typed
entity. For example, “John and Bob are . . . ” be-
comes “PER@1 and PER@2 are . . . ”. At test
time, we de-anonymize NE@N tokens in the out-
put by looking them up in their source sentences.
Note that the de-anonymization may fail, but the
chance is small (around 2% of the time on the
Newsela development set). We replaced words oc-
curring three times or less in the training set with
UNK. At test time, when our models predict UNK,
we adopt the UNK replacement method proposed
in Jean et al. (2015).

Evaluation Following previous work (Wood-
send and Lapata, 2011; Xu et al., 2016) we eval-
uated system output automatically adopting met-
rics widely used in the simplification literature.
Specifically, we used BLEU5 (Papineni et al.,
2002) to assess the degree to which generated
simplifications differed from gold standard refer-
ences and the Flesch-Kincaid Grade Level index
(FKGL; Kincaid et al. 1975) to measure the read-
ability of the output (lower FKGL6 implies sim-
pler output). In addition, we used SARI (Xu et al.,
2016), which evaluates the quality of the output
by comparing it against the source and reference
simplifications.7 BLEU, FKGL, and SARI are
all measured at corpus-level. We also evaluated
system output by eliciting human judgments via
Amazon’s Mechanical Turk. Specifically (self-
reported) native English speakers were asked to
rate simplifications on three dimensions: Fluency
(is the output grammatical and well formed?), Ad-
equacy (to what extent is the meaning expressed in
the original sentence preserved in the output?) and
Simplicity (is the output simpler than the original
sentence?). All ratings were obtained using a five
point Likert scale.

Comparison Systems We compared our model
against several systems previously proposed in
the literature. These include PBMT-R, a mono-

5With the default mtevalv13a.pl settings.
6FKGL implementation at http://goo.gl/OHP7k3.
7We used he implementation of SARI in Xu et al. (2016).
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Newsela BLEU FKGL SARI
PBMT-R 18.19 7.59 15.77
Hybrid 14.46 4.01 30.00
EncDecA 21.70 5.11 24.12
DRESS 23.21 4.13 27.37
DRESS-LS 24.30 4.21 26.63

WikiSmall BLEU FKGL SARI
PBMT-R 46.31 11.42 15.97
Hybrid 53.94 9.20 30.46
EncDecA 47.93 11.35 13.61
DRESS 34.53 7.48 27.48
DRESS-LS 36.32 7.55 27.24

WikiLarge BLEU FKGL SARI
PBMT-R 81.11 8.33 38.56
Hybrid 48.97 4.56 31.40
SBMT-SARI 73.08 7.29 39.96
EncDecA 88.85 8.41 35.66
DRESS 77.18 6.58 37.08
DRESS-LS 80.12 6.62 37.27

Table 1: Automatic evaluation on Newsela, Wik-
iSmall, and WikiLarge test sets.

lingual phrase-based machine translation system
with a reranking post-processing step8 (Wubben
et al., 2012) and Hybrid, a model which first
performs sentence splitting and deletion opera-
tions over discourse representation structures and
then further simplifies sentences with PBMT-R
(Narayan and Gardent, 2014). Hybrid9 is state
of the art on the WikiSmall dataset. Compar-
isons with SBMT-SARI, a syntax-based transla-
tion model trained on PPDB (Ganitkevitch et al.,
2013) and tuned with SARI (Xu et al., 2016), are
problematic due to the size of PPDB which is con-
siderably larger than any of the datasets used in
this work (it contains 106 million sentence pairs
with 2 billion words). Nevertheless, we compare10

against SBMT-SARI, but only models trained on
Wikilarge, our largest dataset.

6 Results

Since Newsela contains high quality simplifica-
tions created by professional editors, we per-
formed the bulk of our experiments on this dataset.
Specifically, we set out to answer two ques-
tions: (a) which neural model performs best and
(b) how do neural models which are resource lean
and do not have access to linguistic annotations
fare against more traditional systems. We there-
fore compared the basic attention-based encoder-

8We made a good-faith effort to re-implement their sys-
tem following closely the details in Wubben et al. (2012).

9We are grateful to Shashi Narayan for running his system
on our three datasets.

10The output of SBMT-SARI is publicly available.

Newsela Fluency Adequacy Simplicity All
PBMT-R 3.56 3.58∗∗ 2.09∗∗ 3.08∗∗

Hybrid 2.70∗∗ 2.51∗∗ 2.99 2.73∗∗

EncDecA 3.63 2.99 2.56∗∗ 3.06∗∗

DRESS 3.65 2.94 3.10 3.23
DRESS-LS 3.71 3.07 3.04 3.28
Reference 3.90 2.81∗∗ 3.42∗∗ 3.38

WikiSmall Fluency Adequacy Simplicity All
PBMT-R 3.91 3.74∗∗ 2.80∗∗ 3.48∗

Hybrid 3.26∗∗ 3.42 2.82∗∗ 3.17∗∗

DRESS-LS 3.92 3.36 3.55 3.61
Reference 3.74∗ 3.34 3.13∗∗ 3.41∗∗

WikiLarge Fluency Adequacy Simplicity All
PBMT-R 3.68 3.63∗ 2.70∗∗ 3.34∗

Hybrid 2.60∗∗ 2.42∗∗ 3.52 2.85∗∗

SBMT-SARI 3.34∗∗ 3.51∗ 2.77∗∗ 3.21∗∗

DRESS-LS 3.70 3.28 3.42 3.46
Reference 3.79 3.72∗∗ 2.86∗∗ 3.46

Table 2: Mean ratings elicited by humans on
Newsela, WikiSmall, and WkiLarge test sets. Rat-
ings significantly different from DRESS-LS are
marked with * (p < 0.05) and ** (p < 0.01). Sig-
nificance tests were performed using a student
t-test.

decoder model (EncDecA), with the deep rein-
forcement learning model (DRESS; Section 3),
and a linear combination of DRESS and the lexi-
cal simplification model (DRESS-LS; Section 4).
Neural models were further compared against
two strong baselines, PBMT-R and Hybrid. Ta-
ble 3 shows example output of all models on the
Newsela dataset.

The top block in Table 1 summarizes the results
of our automatic evaluation. As can be seen, all
neural models obtain higher BLEU, lower FKGL
and higher SARI compared to PBMT-R. Hybrid
has the lowest FKGL and highest SARI. Com-
pared to EncDecA, DRESS scores lower on FKGL
and higher on SARI, which indicates that the
model has indeed learned to optimize the reward
function which includes SARI. Integrating lexical
simplification (DRESS-LS) yields better BLEU,
but slightly worse FKGL and SARI.

The results of our human evaluation are pre-
sented in the top block of Table 2. We elicited
judgments for 100 randomly sampled test sen-
tences. Aside from comparing system out-
put (PBMT-R, Hybrid, EncDecA, DRESS, and
DRESS-LS), we also elicited ratings for the gold
standard Reference as an upper bound. We report
results for Fluency, Adequacy, and Simplicity in-
dividually and in combination (All is the average
rating of the three dimensions). As can be seen,
DRESS and DRESS-LS outperform PBMT-R and
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Complex There’s just one major hitch: the primary purpose of education is to develop citizens
with a wide variety of skills.

Reference The purpose of education is to develop a wide range of skills.
PBMT-R It’s just one major hitch: the purpose of education is to make people with a wide

variety of skills.
Hybrid one hitch the purpose is to develop citizens.
EncDecA The key of education is to develop people with a wide variety of skills.
DRESS There’s just one major hitch: the main goal of education is to develop people with

lots of skills.
DRESS-LS There’s just one major hitch: the main goal of education is to develop citizens with

lots of skills.
Complex “They were so burdened by the past they couldn’t think about the future,” said Barnet,

62, who was president of Columbia Records, the No.1 record label in the United
States, before joining Capitol.

Reference Capitol was stuck in the past. It could not think about the future, Barnett said.
PBMT-R “They were so affected by the past they couldn’t think about the future,” said Barnett,

62, was president of Columbia Records, before joining Capitol building.
Hybrid ‘They were so burdened by the past they couldn’t think about the future,” said Barnett,

62, who was Columbia Records, president of the No.1 record label in the united
states, before joining Capitol.

EncDecA “They were so burdened by the past they couldn’t think about the future,” said Bar-
nett, who was president of Columbia Records, the No.1 record labels in the United
States.

DRESS “They were so sicker by the past they couldn’t think about the future,” said Barnett,
who was president of Columbia Records.

DRESS-LS “They were so burdened by the past they couldn’t think about the future,” said Bar-
nett, who was president of Columbia Records.

Table 3: System output for two sentences (Newsela development set). Substitutions are shown in bold.

Hybrid on Fluency, Simplicity, and overall. The
fact that neural models (EncDecA, DRESS and
DRESS-LS) fare well on Fluency, is perhaps not
surprising given the recent success of LSTMs in
language modeling and neural machine translation
(Zaremba et al., 2014; Jean et al., 2015).

Neural models obtain worse ratings on Ade-
quacy but are closest to the human references on
this dimension. DRESS-LS (and DRESS) are sig-
nificantly better (p < 0.01) on Simplicity than
EncDecA, PBMT-R, and Hybrid which indicates
that our reinforcement learning based model is ef-
fective at creating simpler output. Combined rat-
ings (All) for DRESS-LS are significantly different
compared to the other models but not to DRESS

and the Reference. Nevertheless, integration of the
lexical simplification model boosts performance
as ratings increase almost across the board (Sim-
plicity is slightly worse). Returning to our origi-
nal questions, we find that neural models are more
fluent than comparison systems, while perform-
ing non-trivial rewrite operations (see the SARI

scores in Table 1) which yield simpler output (see
the Simplicity column in Table 2). Based on our
judgment elicitation study, neural models trained
with reinforcement learning perform best, with
DRESS-LS having a slight advantage.

We further analyzed model performance by
computing various statistics on the simplified out-
put. We measured average sentence length and
the degree to which DRESS and comparison sys-
tems perform rewriting operations. We approxi-
mated the latter with Translation Error Rate (TER;
Snover et al. 2006), a measure commonly used
to automatically evaluate the quality of machine
translation output. We used TER to compute the
(average) number of edits required to change an
original complex sentence to simpler output. We
also report the number of edits by type, i.e., the
number of insertions, substitutions, deletions, and
shifts needed (on average) to convert complex to
simple sentences.

As shown in Table 4, Hybrid obtains the high-
est TER, followed by our models (DRESS and
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Models Len TER Ins Del Sub Shft
PBMT-R 23.1 0.13 0.68 0.68 1.50 0.09
Hybrid 12.4 0.90 0.01 10.19 0.12 0.41
EncDecA 17.0 0.36 0.13 5.96 1.69 0.09
DRESS 14.2 0.46 0.07 8.53 1.37 0.11
DRESS-LS 14.4 0.44 0.07 8.38 1.11 0.09
Reference 12.7 0.67 0.40 10.26 3.44 0.73

Table 4: Output length (average number of to-
kens), TER scores and number of edits by type
(Insertions, Deletions, Substitutions, Shifts) on
the Newsela test set. Higher TER means that more
rewriting operations are performed.

DRESS-LS), which indicates that they actively
perform rewriting. Perhaps Hybrid is too ag-
gressive when simplifying a sentence, it obtains
low Fluency and Adequacy scores in human eval-
uation (Table 2). There is a strong correlation
between sentence length and number of deletion
operations (i.e., more deleteions lead to shorter
sentences) and PBMT-R performs very few dele-
tions. Overall, reinforcement learning encourages
deletion (see DRESS and DRESS-LS), while per-
forming a reasonable amount of additional oper-
ations (e.g., substitutions and shifts) compared to
EncDecA and PBMT-R.

The middle blocks in Tables 1 and 2 report re-
sults on the WikiSmall dataset. FKGL and SARI
follow a similar pattern as on Newsela. BLEU
scores for PBMT-R, Hybrid, and EncDecA are
much higher compared to DRESS and DRESS-LS.
Hybrid obtains best BLEU and SARI scores, while
DRESS and DRESS-LS do very well on FKGL.
In human evaluation, we elicited judgments on
the entire WikiSmall test set (100 sentences). We
compared DRESS-LS, with PBMT-R, Hybrid, and
gold standard Reference simplifications. As hu-
man experiments are time consuming and ex-
pensive, we did not include other neural models
besides DRESS-LS based on our Newsela study
which showed that EncDecA is inferior to vari-
ants trained with reinforcement learning and that
DRESS-LS is the better performing model (how-
ever, we do compare all models in Table 1).
DRESS-LS is significantly better on Simplicity
than PBMT-R, Hybrid, and the Reference. It per-
forms on par with PBMT-R on Fluency and worse
on Adequacy (but still closer to the human Ref-
erence than PBMT-R or Hybrid). When combin-
ing all ratings (All in Table 2), DRESS-LS is sig-
nificantly better than PBMT-R, Hybrid, and the
Reference.

The bottom blocks in Tables 1 and 2 report re-
sults on Wikilarge. We compared our models with
PBMT-R, Hybrid, and SBMT-SARI (Xu et al.,
2016). The FKGL follows a similar pattern as
in the previous datasets. PBMT-R and our mod-
els are best in terms of BLEU while SBMT-SARI
outperforms all other systems on SARI.11 Because
there are 8 references for each complex sentence
in the test set, BLEU scores are much higher com-
pared to Newsela and WikiSmall. In human eval-
uation, we again elicited judgments for 100 ran-
domly sampled test sentences. We randomly se-
lected one of the 8 references as the Reference
upper bound. On Simplicity, DRESS-LS is sig-
nificantly better than all comparison systems, ex-
cept Hybrid. On Adequacy, it is better than Hybrid
but significantly worse than other comparison sys-
tems. On Fluency, it is on par with PBMT-R12 but
better than Hybrid and SBMT-SARI. On All di-
mension DRESS-LS significantly outperforms all
comparison systems.

7 Conclusions

We developed a reinforcement learning-based text
simplification model, which can jointly model
simplicity, grammaticality, and semantic fidelity
to the input. We also proposed a lexical simplifi-
cation component that further boosts performance.
Overall, we find that reinforcement learning of-
fers a great means to inject prior knowledge to the
simplification task achieving good results across
three datasets. In the future, we would like to ex-
plicitly model sentence splitting and simplify en-
tire documents (rather than individual sentences).
Beyond sentence simplification, the reinforcement
learning framework presented here is potentially
applicable to generation tasks such as sentence
compression (Chopra et al., 2016), generation of
programming code (Ling et al., 2016), or poems
(Zhang and Lapata, 2014).
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Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th ACL, pages 599–609, Berlin, Germany.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 EMNLP, pages 1412–1421, Lisbon, Portugal.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In ACL System Demon-
strations, pages 55–60.

Karthik Narasimhan, Adam Yala, and Regina Barzilay.
2016. Improving information extraction by acquir-
ing external evidence with reinforcement learning.
In Proceedings of the 2016 EMNLP, pages 2355–
2365, Austin, TX.

Shashi Narayan and Claire Gardent. 2014. Hybrid sim-
plification using deep semantics and machine trans-
lation. In Proceedings of the 52nd ACL, pages 435–
445, Baltimore, MD.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th ACL, pages 311–318, Philadelphia, PA.

593



Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In In Proceedings of the EMNLP
2014, volume 14, pages 1532–43, Doha, Qatar.

MarcAurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In Proceedings
of ICLR, San Juan, Puerto Rico.

Luz Rello, Clara Bayarri, Azuki Górriz, Ricardo
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