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Abstract

We introduce a novel mixed character-
word architecture to improve Chinese sen-
tence representations, by utilizing rich se-
mantic information of word internal struc-
tures. Our architecture uses two key s-
trategies. The first is a mask gate on char-
acters, learning the relation among char-
acters in a word. The second is a max-
pooling operation on words, adaptively
finding the optimal mixture of the atom-
ic and compositional word representation-
s. Finally, the proposed architecture is
applied to various sentence composition
models, which achieves substantial perfor-
mance gains over baseline models on sen-
tence similarity task.

1 Introduction

To understand the meaning of a sentence is a pre-
requisite to solve many natural language process-
ing problems. Obviously, this requires a good rep-
resentation of the meaning of a sentence. Recent-
ly, neural network based methods have shown ad-
vantage in learning task-specific sentence repre-
sentations (Kalchbrenner et al., 2014; Tai et al.,
2015; Chen et al., 2015a; Cheng and Kartsaklis,
2015) and generic sentence representations (Le
and Mikolov, 2014; Hermann and Blunsom, 2014;
Kiros et al., 2015; Kenter et al., 2016; Wang et al.,
2017). To learn generic sentence representation-
s that perform robustly across tasks as effective
as word representations, Wieting et al. (2016b)
proposes an architecture based on the supervision
from the Paraphrase Database (Ganitkevitch et al.,
2013).

Despite the fact that Chinese has unique word
internal structures, there is no work focusing on
learning generic Chinese sentence representation-
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Figure 1: An example sentence that consists of
five words as “搭乘(take) 出租车(taxi) 到(to) 虹
桥(Hongqiao)机场(airport)”. Most of these word-
s are compositional, namely word “搭乘” consists
of characters “搭(take)” and “乘(ride)”, word “出
租车” constitutes characters “出(out)”, “租(rent)”
and “车(car)”, and word “机场” is composed of
characters “机(machine)” and “场(field)”. The
color depth represents (1) contributions of each
character to the compositional word meaning, and
(2) contributions of the atomic (which ignore in-
ner structures) and compositional word to the final
word meaning. The deeper color means more con-
tributions.

s. In contrast to English, Chinese characters con-
tain rich information and are capable of indicat-
ing semantic meanings of words. As illustrated in
Figure 1, the internal structures of Chinese word-
s express two characteristics: (1) Each character
in a word contribute differently to the composi-
tional word meaning (Wong et al., 2009) such as
the word “出租车(taxi)”. The first two charac-
ters “出租(rent)” are descriptive modifiers of the
last character “车(car)”, and make the last char-
acter play the most important role in expressing
word meaning. (2) The atomic and compositional
representations contribute differently to different
types of words (MacGregor and Shtyrov, 2013).
For instance, the meaning of “机场(airport)”, a
low-frequency word, can be better expressed by
the compositional word representation, while the
non-transparent word “虹桥(Hongqiao)” is better
expressed by the atomic word representation.
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The word internal structures have been proven
to be useful for Chinese word representations.
Chen et al. (2015b) proposes a character-enhanced
word representation model by adding the averaged
character embeddings to the word embedding. Xu
et al. (2016) extends this work by using weight-
ed character embeddings. The weights are co-
sine similarities between embeddings of a word’s
English translation and its constituent character-
s’ English translations. However, their work cal-
culates weights based on a bilingual dictionary,
which brings lots of mistakes because words in t-
wo languages do not mantain one-to-one relation-
ship. Furthermore, they only consider the first
characteristic of word internal structures, but ig-
nore the contributions of the atomic and compo-
sitional word to the final word meaning. Similar
ideas of adaptively utilizing character level infor-
mations have also been investigated in English re-
cently (Hashimoto and Tsuruoka, 2016; Rei et al.,
2016; Miyamoto and Cho, 2016). It should be not-
ed that these studies are not focus on learning sen-
tence embeddings.

In this paper, we explore word internal struc-
tures to learn generic sentence representations,
and propose a mixed character-word architecture
which can be integrated into various sentence
composition models. In the proposed architecture,
a mask gate is employed to model the relation a-
mong characters in a word, and pooling mecha-
nism is leveraged to model the contributions of
the atomic and compositional word embeddings
to the final word representations. Experiments
on sentence similarity (as well as word similarity)
demonstrate the effectiveness of our method. In
addition, as there are no publicly available Chinese
sentence similarity datasets, we build a dataset to
directly test the quality of sentence representation-
s. The code and data will be publicly released.

2 Model Description

The problem of learning compositional sentence
representations can be formulated as gcomp =
f(x), where f is the composition function
which combines the word representations x =
〈x1, x2, ..., xn〉 into the compositional sentence
representation gcomp.

2.1 Mixed Character-Word Representation

In our method, the final word representation is a
fusion of the atomic and compositional word em-

beddings. The atomic word representation is cal-
culated by projecting word level inputs into a high-
dimensional space by a look up table, while the
compositional word representation is computed as
a gated composition of character representations:

xcomp
i =

m∑
j=1

vij · cij , (1)

where cij is the j-th character representation in
the i-th word. The mask gate vij ∈ Rd control-
s the contribution of the j-th character in the i-th
word. This is achieved by using a feed-forward
neural network operated on the concatenation of
a character and a word, under the assumption that
the contribution of a character is correlated with
both character itself and its relation with the cor-
responding word:

vij = tanh(W · [cij ; xi]), (2)

where W ∈ Rd×2d is a trainable parameter. The
proposed mask gate is a vector instead of a single
value, which introduces more variations to charac-
ter meaning in the composition process.

Then, the atomic and compositional word rep-
resentations are mixed with max-pooling:

xfinal
i =

d
max
k=1

(xatomic
ik , xcomp

ik ), (3)

the max is an element-wise function to capture the
most important features (i.e., the highest value in
each dimension) in the two word representations.

2.2 Sentence Composition Model

Given word embeddings, we make a systematic
comparison of five different composition models
for sentence representations as follows:

1. g = Average(x) = 1
n

n∑
i=1

xi

2. g = Matrix(x) = 1
n

n∑
i=1

f(Wmxi)

3. g = Dan(x) = f(Wd( 1
n

n∑
i=1

xi) + b)

4. g = RNN(x) = f(Wxxi +Whhi−1 + b)

5. g = LSTM(x) = ot � f(ci), where ci = fi · ci−1 +
ii · c̃i and c̃i = σ(Wxcxi +Whchi−1)

Average model, as the simplest composition
model, represents sentences with averaged word
vectors which are updated during training. The
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Matrix and Dan models are proposed in Zanzot-
to et al. (2010) and Iyyer et al. (2015), respective-
ly. By using matrix transformations and nonlin-
ear functions, the two models represent sentence
meaning in a more flexible way (Wang and Zong,
2017). We also include RNN and LSTM models,
which are widely used in recent years. The pa-
rameters {it, ft, ot} ∈ Rd denote the input gate,
the forget gate and the output gate, respectively.
ct ∈ Rd is the short-term memory state to store the
history information. {Wm,Wd,Wx,Wh,Wxc,Whc}
∈ Rd×d are trainable parameters. hi−1 denotes
representations in hidden layers. Sentence repre-
sentations in RNN and LSTM models are hidden
vectors of the last token.

2.3 Objective Function

This paper aims to learn the general-purpose sen-
tence representations based on supervision from
Chinese paraphrase pairs. Following the approach
of Wieting et al. (2016b), we employ the max-
margin objective function to train sentence rep-
resentations by maximizing the distance between
positive examples and negative examples.

3 Experimental Setting and Dataset

3.1 Experimental Setting

We construct four groups of models (G1˜G4)
which serve as baselines to test the proposed
mixed character-word models (G5). Group G1
includes six baseline models, which have shown
impressive performance in English. The first two
are averaged word vectors and averaged character
vectors. Followed by PV-DM model which uses
auxiliary vectors to represent sentences and train-
s them together with word vectors, and FastSen-
t model which utilizes a encoder-decoder model
and encodes sentences as averaged word embed-
dings. The last two are Char-CNN model which
is CNN model with character n-gram filters, and
Charagram model which represents sentences with
a character n-gram count vector. Group G2 are the
sentence representation models proposed by Wi-
eting et al. (2016b), which utilize only word level
information. We also compared our method with
word representation models of Chen et al. (2015b)
and Xu et al. (2016) in Group G3 and G4 respec-
tively, by incorporate them into five sentence com-
position models in Section 2.2.

In all models, the word and character embed-
dings are initialized with 300-dimension vectors

trained by Skip-gram model (Mikolov et al., 2013)
on a corpus with 3 billion Chinese words. Al-
l models are implemented with Theano (Bergstra
et al., 2010) and Lasagne (Dieleman et al., 2015),
and optimized using Adam (Kingma and Ba,
2014). The hyper-parameters1 are selected by test-
ing different values and evaluating their effects on
the development set. In this paper, we run all ex-
periments 5 times and report the mean values.

3.2 Training Dataset

The training dataset is a set of paraphrase pairs
in which two sentences in each pair represent the
same meanings. Specifically, we extract Chinese
paraphrases in machine translation evaluation
corpora NIST20032 and CWMT20153. Moreover,
we select aligned sub-sentence pairs between
paraphrases to enlarge the training corpus.
Specifically, we first segment the sentences into
sub-sentences according to punctuations of com-
ma, semicolon, colon, question mark, ellipses, and
periods. Then we pair all sub-sentences between
a paraphrase and select sub-sentence pairs (s1, s2)
which satisfy the following two constraints: (1)
the number of overlapping words of sub-sentence
s1 and s2 should meet the condition: 0.9 >
len(overlap(s1, s2))/min(len(s1), len(s2)) >
0.2, where len(s) denotes the number of
words in sentence s; (2) the relative length
of sub-sentence should meet the condition:
max(len(s1), len(s2))/min(len(s1), len(s2))
<= 2. Finally, we get 30,846 paraphrases
(18,187 paraphrases from NIST including 11,413
sub-sentence pairs, and 12,659 paraphrases from
CWMT which include 7,912 sub-sentence pairs).

3.3 Testing Dataset

We also build the testing dataset, which are sen-
tence pairs collocated with human similarity rat-
ings. We choose candidate sentences from the
People’s Daily and Baidu encyclopedia corpora.
To assure sentence pairs to be representative of
the full variation in semantic similarity, we choose

1We use a mini-batch of 25 and tune the initial learning
rate over {0.001, 0.005, 0.0001, 0.0005}. For the Dan and
the Matrix models, we tune over activation function (tanh or
linear or rectified linear unit) and number of layers (1 or 2).

2which contains 1,100 English sentences with 4 Chinese
translations and can be found at: https://catalog.
ldc.upenn.edu/LDC2006T04

3which contains 1,859 English sentences with 4 Chinese
translations and can be found at: http://www.ai-ia.
ac.cn/cwmt2015/evaluation.html
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high similarity sentence pairs4 and then random-
ly pair the single sentences to construct low sim-
ilarity sentence pairs. To collect human similari-
ty ratings for sentence pairs, we use online ques-
tionnaire5 and follow the gold standard6 to guide
the rating process of participants. The subjects are
paid 7 cents for rating each sentence pair within a
range of 0 5 score. In total, we obtain 104 valid
questionnaires and every sentence pair is evaluat-
ed by average 8 persons. We use the average sub-
jects’ ratings for one paraphrase as its final simi-
larity score, and the higher score means that the t-
wo sentences have more similar meaning. We then
randomly partition the datasets into test and devel-
opment splits in 9:1.

4 Results and Discussion

We use the Pearson’s correlation coefficient to
examine relationships between the averaged hu-
man ratings and the predicted cosine similarity s-
cores of all models. Moreover, the Wilcoxon’s test
shows that significant difference (p < 0.01) exits
between our models with baseline models.

From Table 1, we can see superiority of the pro-
posed mixed character-word models (G5), which
have significantly improved the performance over
both word and character-word based models. This
result indicates that it is important to find the ap-
propriate way to fuse character and word level in-
formations. Using mask gate alone and max pool-
ing alone yield an improvement of 1.05 points and
0.83 points respectively, and using both strategies
improves the averaged character-word models by
1.52 points. Another observation is that models
with character level information (G3, G4, G5) per-
form better than word based models (G2), which
indicates the great potential of Chinese characters
in learning sentence representations. Comparing
different composition functions, we can see that t-
wo simple models outperform others in all groups:
the DAN model and the Matrix model. The sim-
plest Average model achieves competitive result-
s while the most complex LSTM model does not
show advantages.

4Here we choose high similarity sentence pairs by using
edit distance and human post-processing.

5https://wj.qq.com/
6http://alt.qcri.org/semeval2015/task2/index.php?id=semantic-

textual-similarity-for-english

Group Model Test

G1:
Baselines

Add (character) 0.6737
Add (word) 0.7518
PV-DM (Le and Mikolov, 2014) 0.7561
FastSent (Hill et al., 2016) 0.7369
Char-CNN (Kim et al., 2016) 0.8095
Charagram(Wieting et al., 2016a) 0.8382

G2: Word
level
(Wieting et
al., 2016b)

Average 0.8199
Matrix 0.8382
Dan 0.8385
RNN 0.8121
LSTM 0.7834

G3:
Averaged
Character-
Word (Chen
et al., 2015)

Average 0.8245
Matrix 0.8427
Dan 0.8407
RNN 0.8185
LSTM 0.7895

G4:
Weighted
Character-
Word (Xu
et al., 2016)

Average 0.8196
Matrix 0.8428
Dan 0.8413
RNN 0.8344
LSTM 0.7858

G5: Mixed
Character-
Word
(Ours)

Average 0.8471
Matrix 0.8517
Dan 0.8521
RNN 0.8408
LSTM 0.8000

Table 1: Correlation coefficients of model predic-
tions with subject similarity ratings on Chinese
sentence similarity task. The bold data refers to
best among models with same composition func-
tion.

4.1 Effects of Mask Gate and Max Pooling

The mask gate assigns different weights to char-
acters in a word, hopefully leading to better word
representations. To intuitively show effects of the
mask gate, we check characters whose l2-norm
increase after applying the mask gate approach.
We find that characters like “罪(crime)” in “罪
状(guilty)”, “虎 (tiger)” in “美洲虎 (jaguar)” and
“瓜 (melon)” in “黄瓜 (cucumber)” achieve more
weights. The above results show that the mask
gate approach successfully model the first charac-
teristic of word internal structure (i.e., assigning
more weights to key characters). To quantitatively
display the results, we extract the word represen-
tations calculated by the five composition models
in four different groups and evaluate their quality
on WordSim-297 dataset7 using the Pearson cor-
relation method. As shown in Table 2, the mask
gate approach significantly improves the quality of
word representations.

7https://github.com/Leonard-Xu/CWE/tree/master/data
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G2 G3 G4 G5(Ours)

Average 0.4311 0.4584 0.4789 0.5245
Dan 0.4470 0.5410 0.5561 0.5716

Matrix 0.4496 0.5458 0.5548 0.5694
RNN 0.4562 0.5656 0.5550 0.5674

LSTM 0.4535 0.5674 0.5627 0.5734

Table 2: Correlation coefficients of model predic-
tions with subject similarity ratings on Chinese
word similarity task, where G2 ∼ G5 are the same
as in Table 1.

The max-pooling approach is supposed to mod-
el different contributions of the atomic and compo-
sitional word vectors to the final word vector. To
find out what have max-pooling method learned,
we use contribution weights by calculating cosine
similarities between the final word representation
with the atomic and compositional word represen-
tations. The results show interesting relationships
with word frequency. For high-frequency word-
s, the contribution of compositional word repre-
sentations are more dominant. While for low-
frequency words, both high8 and low contribu-
tion ratios of compositional word representations
can be found. When looking into the words with
the most lowest ratio, we find a large portion of
English abbreviations like NBA, BBC, GDP etc.,
and a portion of metaphor words like “挂靴(retire,
hanging boots)” and “扯皮(wrangle, pull skin)”.
Both kinds of these words are non-transparent,
which indicates that the max-pooling method can
successfully model the second characteristic of
word internal structure and encode word trans-
parency to some extent.

5 Conclusion and Further work

In this paper, we introduce a novel mixed
character-word architecture to improve generic
Chinese sentence representations by exploiting the
complex internal structures of words. Extensive
experiments and analyses have indicated that our
models can encode word transparency and learn
different semantic contributions across characters.
We have also created a dataset to evaluate compo-
sition models of Chinese sentences, which could
advance the research for related fields.

Future work includes applying the proposed
method to other aspects of nominal semantics,
such as understanding compound nouns in other

8The high ratio is more reasonable because low-frequency
words generally learn poor atomic word representations.

languages, and to explore the compositionality of
words and compounds.
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