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Abstract

We consider the problem of learning
general-purpose, paraphrastic sentence
embeddings in the setting of Wieting et al.
(2016b). We use neural machine trans-
lation to generate sentential paraphrases
via back-translation of bilingual sentence
pairs. We evaluate the paraphrase pairs
by their ability to serve as training data
for learning paraphrastic sentence embed-
dings. We find that the data quality is
stronger than prior work based on bitext
and on par with manually-written English
paraphrase pairs, with the advantage that
our approach can scale up to generate large
training sets for many languages and do-
mains. We experiment with several lan-
guage pairs and data sources, and develop
a variety of data filtering techniques. In the
process, we explore how neural machine
translation output differs from human-
written sentences, finding clear differences
in length, the amount of repetition, and the
use of rare words.1

1 Introduction

Pretrained word embeddings have received a great
deal of attention from the research community, but
there is much less work on developing pretrained
embeddings for sentences. Here we target sen-
tence embeddings that are “paraphrastic” in the
sense that two sentences with similar meanings
are close in the embedding space. Wieting et al.
(2016b) developed paraphrastic sentence embed-
dings that are useful for semantic textual similar-
ity tasks and can also be used as initialization for
supervised semantic tasks.

1Generated paraphrases and code are available at http:
//ttic.uchicago.edu/˜wieting.

R: We understand that has already commenced, but there
is a long way to go.

T: This situation has already commenced, but much still
needs to be done.

R: The restaurant is closed on Sundays. No breakfast is
available on Sunday mornings.

T: The restaurant stays closed Sundays so no breakfast is
served these days.

R: Improved central bank policy is another huge factor.
T: Another crucial factor is the improved policy of the

central banks.

Table 1: Illustrative examples of references (R)
paired with back-translations (T).

To learn their sentence embeddings, Wieting et
al. used the Paraphrase Database (PPDB) (Gan-
itkevitch et al., 2013). PPDB contains a large set
of paraphrastic textual fragments extracted auto-
matically from bilingual text (“bitext”), which is
readily available for languages and domains. Ver-
sions of PPDB have been released for several lan-
guages (Ganitkevitch and Callison-Burch, 2014).

However, more recent work has shown that
the fragmental nature of PPDB’s pairs can
be problematic, especially for recurrent net-
works (Wieting and Gimpel, 2017). Better per-
formance can be achieved with a smaller set of
sentence pairs derived from aligning Simple En-
glish and standard English Wikipedia (Coster and
Kauchak, 2011). While effective, this type of data
is inherently limited in size and scope, and not
available for languages other than English.

PPDB is appealing in that it only requires bi-
text. We would like to retain this property but
develop a data resource with sentence pairs rather
than phrase pairs. We turn to neural machine trans-
lation (NMT) (Sutskever et al., 2014; Bahdanau
et al., 2014; Sennrich et al., 2016a), which has ma-
tured recently to yield strong performance espe-
cially in terms of producing grammatical outputs.

In this paper, we build NMT systems for three
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language pairs, then use them to back-translate the
non-English side of the training bitext. The re-
sulting data consists of sentence pairs containing
an English reference and the output of an X-to-
English NMT system. Table 1 shows examples.
We use this data for training paraphrastic sen-
tence embeddings, yielding results that are much
stronger than when using PPDB and competitive
with the Simple English Wikipedia data.

Since bitext is abundant and available for many
language pairs and domains,2 we also develop sev-
eral methods of filtering the data, including based
on sentence length, quality measures, and mea-
sures of difference between the reference and its
back-translation. We find length to be an effective
filtering method, showing that very short length
ranges—where the translation is 1 to 10 words—
are best for learning.

In studying quality measures for filtering, we
train a classifier to predict if a sentence is a ref-
erence or a back-translation, then score sentences
by the classifier score. This investigation allows
us to examine the kinds of phenomena that best
distinguish NMT output from references in this
controlled setting of translating the bitext training
data. NMT output has more repetitions of both
words and longer n-grams, and uses fewer rare
words than the references.

We release our generated sentence pairs to the
research community with the hope that the data
can inspire others to develop additional filtering
methods, to experiment with richer architectures
for sentence embeddings, and to further analyze
the differences between neural machine transla-
tions and references.

2 Related Work

We describe related work in learning general-
purpose sentence embeddings, work in automat-
ically generating or discovering paraphrases, and
finally prior work in leveraging neural machine
translation for embedding learning.

Paraphrastic sentence embeddings. Our learn-
ing and evaluation setting is the same as that con-
sidered by Wieting et al. (2016b) and Wieting
et al. (2016a), in which the goal is to learn para-
phrastic sentence embeddings that can be used for
downstream tasks. They trained models on PPDB

2For example, CzEng 1.6 (Bojar et al., 2016) contains a
billion words across its 8 domains.

and evaluated them using a suite of semantic tex-
tual similarity (STS) tasks and supervised seman-
tic tasks. Others have begun to consider this set-
ting as well (Arora et al., 2017).

Other work in learning general purpose sen-
tence embeddings has used autoencoders (Socher
et al., 2011; Hill et al., 2016), encoder-decoder ar-
chitectures (Kiros et al., 2015), or other learning
frameworks (Le and Mikolov, 2014; Pham et al.,
2015). Wieting et al. (2016b) and Hill et al. (2016)
provide many empirical comparisons to this prior
work. For conciseness, we compare only to the
strongest configurations from their results.

Paraphrase generation and discovery. There
is a rich history of research in generating or finding
naturally-occurring sentential paraphrases (Barzi-
lay and McKeown, 2001; Dolan et al., 2004; Dolan
and Brockett, 2005; Quirk et al., 2004; Zhao et al.,
2010; Coster and Kauchak, 2011; Xu et al., 2014,
2015).

The most relevant work uses bilingual cor-
pora, e.g., Zhao et al. (2008) and Bannard and
Callison-Burch (2005), the latter leading to PPDB.
Our goals are highly similar to those of the
PPDB project, which has also been produced
for many languages (Ganitkevitch and Callison-
Burch, 2014) since it only relies on the availability
of bilingual text.

Prior work has shown that PPDB can be
used for learning embeddings for words and
phrases (Faruqui et al., 2015; Wieting et al., 2015).
However, when learning sentence embeddings,
Wieting and Gimpel (2017) showed that PPDB
is not as effective as sentential paraphrases, espe-
cially for recurrent networks. These results are in-
tuitive because the phrases in PPDB are short and
often cut across constituent boundaries. For sen-
tential paraphrases, Wieting and Gimpel (2017)
used a dataset developed for text simplification by
Coster and Kauchak (2011). It was created by
aligning sentences from Simple English and stan-
dard English Wikipedia. We compare our data to
both PPDB and this Wikipedia dataset.

Neural machine translation for paraphrastic
embedding learning. Sutskever et al. (2014)
trained NMT systems and visualized part of the
space of the source language encoder for their
English→French system. Hill et al. (2016) eval-
uated the encoders of English-to-X NMT sys-
tems as sentence representations, finding them to
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perform poorly compared to several other meth-
ods based on unlabeled data. Mallinson et al.
(2017) adapted trained NMT models to produce
sentence similarity scores in semantic evaluations.
They used pairs of NMT systems, one to translate
an English sentence into multiple foreign transla-
tions and the other to then translate back to En-
glish. Other work has used neural MT architec-
tures and training settings to obtain better word
embeddings (Hill et al., 2014a,b).

Our approach differs in that we only use the
NMT system to generate training data for train-
ing sentence embeddings, rather than use it as the
source of the model. This permits us to decouple
decisions made in designing the NMT architecture
from decisions about which models we will use
for learning sentence embeddings. Thus we can
benefit from orthogonal work in designing neural
architectures to embed sentences.

3 Neural Machine Translation

We now describe the NMT systems we use for
generating data for learning sentence embeddings.
In our experiments, we use three encoder-decoder
NMT models: Czech→English, French→English,
and German→English.

We used Groundhog3 as the implementation of
the NMT systems for all experiments. We gener-
ally followed the settings and training procedure
from previous work (Bahdanau et al., 2014; Sen-
nrich et al., 2016a). As such, all networks have a
hidden layer size of 1000 and an embedding layer
size of 620. During training, we used Adadelta
(Zeiler, 2012), a minibatch size of 80, and the
training set was reshuffled between epochs. We
trained a network for approximately 7 days on
a single GPU (TITAN X), then the embedding
layer was fixed and training continued, as sug-
gested by Jean et al. (2015), for 12 hours. Addi-
tionally, the softmax was calculated over a filtered
list of candidate translations. Following Jean et al.
(2015), during decoding, we restrict the softmax
layers’ output vocabulary to include: the 10000
most common words, the top 25 unigram transla-
tions, and the gold translations’ unigrams.

All systems were trained on the available train-
ing data from the WMT15 shared translation task
(15.7 million, 39.2 million, and 4.2 million sen-
tence pairs for CS→EN, FR→EN, and DE→EN,

3Available at https://github.com/sebastien-
j/LV_groundhog.

Czech French German
Europarl 650,000 2,000,000 2,000,000
Common Crawl 160,000 3,000,000 2,000,000
News Commentary 150,000 200,000 200,000
UN - 12,000,000 -
109 French-English - 22,000,000 -
CzEng 14,700,000 - -

Table 2: Dataset sizes (numbers of sentence pairs)
for data domains used for training NMT systems.

Language % BLEU
Czech→English 19.7
French→English 20.1
German→English 28.2

Table 3: BLEU scores on the WMT2015 test set.

respectively). The training data included: Eu-
roparl v7 (Koehn, 2005), the Common Crawl cor-
pus, the UN corpus (Eisele and Chen, 2010), News
Commentary v10, the 109 French-English corpus,
and CzEng 1.0 (Bojar et al., 2016). A breakdown
of the sizes of these corpora can be found in Ta-
ble 3. The data was pre-processed using standard
pre-processing scripts found in Moses (Koehn
et al., 2007). Rare words were split into sub-word
units, following Sennrich et al. (2016b). BLEU
scores on the WMT2015 test set for each NMT
system can be seen in Table 3.

To produce paraphrases we use “back-
translation”, i.e., we use our X→English NMT
systems to translate the non-English sentence
in each training sentence pair into English. We
directly use the bitext on which the models were
trained. This could potentially lead to pairs in
which the reference and translation match exactly,
if the model has learned to memorize the reference
translations seen during training. However, in
practice, since we have so much bitext to draw
from, we can easily find data in which they do not
match exactly.

Thus our generated data consists of pairs of En-
glish references from the bitext along with the
NMT-produced English back-translations. We use
beam search with a width of 50 to generate mul-
tiple translations for each non-English sentence,
each of which is a candidate paraphrase for the En-
glish reference.

Example outputs of this process are in Table 1,
showing some rich paraphrase phenomena in the
data. These examples show non-trivial phrase sub-
stitutions (“there is a long way to go” and “much
still needs to be done”), sentences being merged
and simplified, and sentences being rearranged.
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For examples of erroneous paraphrases that can be
generated by this process, see Table 11.

4 Models and Training

Our goal is to compare our paraphrase dataset to
other datasets by using each to train sentence em-
beddings, keeping the models and learning proce-
dure fixed. So we select models and a loss function
from prior work (Wieting et al., 2016b; Wieting
and Gimpel, 2017).

4.1 Models

We wish to embed a word sequence s into a fixed-
length vector. We denote the tth word in s as st,
and we denote its word embedding by xt. We fo-
cus on two models in this paper. The first model,
which we call AVG, simply averages the embed-
dings xt of all words in s. The only parameters
learned in this model are those in the word em-
beddings themselves, which are stored in the word
embedding matrix Ww. This model was found by
Wieting et al. (2016b) to perform very strongly for
semantic similarity tasks.

The second model, the GATED RECURRENT AV-
ERAGING NETWORK (GRAN) (Wieting and Gim-
pel, 2017), combines the benefits of AVG and long
short-term memory (LSTM) recurrent neural net-
works (Hochreiter and Schmidhuber, 1997). It
first uses an LSTM to generate a hidden vector,
ht, for each word st in s. Then ht is used to com-
pute a gate that is elementwise-multiplied with xt,
resulting in a new hidden vector at for each step t:

at = xt � σ(Wxxt +Whht + b) (1)

where Wx and Wh are parameter matrices, b is a
parameter vector, and σ is the elementwise logis-
tic sigmoid function. After all at have been gener-
ated for a sentence, they are averaged to produce
the embedding for that sentence. The GRAN re-
duces to AVG if the output of the gate is always 1.
This model includes as learnable parameters those
of the LSTM, the word embeddings, and the addi-
tional parameters in Eq. (1). We use Wc to denote
the “compositional” parameters, i.e., all parame-
ters other than the word embeddings.

Our motivation for choosing these two models
is that they both work well in this transfer learning
setting (Wieting et al., 2016b) and they are archi-
tecturally similar with one crucial difference: only
the GRAN takes into account word order. This

difference plays an important role in the effective-
ness of the different filtering methods as explored
in Section 5.

4.2 Training

We follow the training procedure of Wieting et al.
(2015) and Wieting et al. (2016b). The training
data is a set S of paraphrastic pairs 〈s1, s2〉 and
we optimize a margin-based loss:

min
Wc,Ww

1

|S|

( ∑
〈s1,s2〉∈S

max(0, δ − cos(g(s1), g(s2))

+ cos(g(s1), g(t1))) + max(0, δ − cos(g(s1), g(s2))

+ cos(g(s2), g(t2)))

)
+λc‖Wc‖2+λw‖Wwinitial−Ww‖2

where g is the model (AVG or GRAN), δ is the
margin, λc and λw are regularization parameters,
Wwinitial

is the initial word embedding matrix, and
t1 and t2 are “negative examples” taken from a
mini-batch during optimization. The intuition is
that we want the two texts to be more similar
to each other (cos(g(s1), g(s2))) than either is to
their respective negative examples t1 and t2, by a
margin of at least δ. To select t1 and t2, we choose
the most similar sentence in some set (other than
those in the given pair). For simplicity we use
the mini-batch for this set, i.e., we choose t1 for
a given 〈s1, s2〉 as follows:

t1 = argmax
t:〈t,·〉∈Sb\{〈s1,s2〉}

cos(g(s1), g(t))

where Sb ⊆ S is the current mini-batch. That is,
we want to choose a negative example ti that is
similar to si according to the current model. The
downside is that we may occasionally choose a
phrase ti that is actually a true paraphrase of si.

5 Experiments

We now investigate how best to use our generated
paraphrase data for training universal paraphras-
tic sentence embeddings. We consider 10 data
sources: Common Crawl (CC), Europarl (EP),
and News Commentary (News) from all 3 lan-
guage pairs, as well as the 109 French-English
data (Giga). We extract 150,000 reference/back-
translation pairs from each data source. We use
100,000 of these to mine for training data for our
sentence embedding models, and the remaining
50,000 are used as train/validation/test data for the
reference classification and language models de-
scribed below.
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5.1 Evaluation

We evaluate the quality of a paraphrase dataset
by using the experimental setting of Wieting et al.
(2016b). We use the paraphrases as training data
to create paraphrastic sentence embeddings, using
the cosine of the embeddings as the measure of se-
mantic relatedness, then evaluate the embeddings
on the SemEval semantic textual similarity (STS)
tasks from 2012 to 2015 (Agirre et al., 2012, 2013,
2014, 2015), the SemEval 2015 Twitter task (Xu
et al., 2015), and the SemEval 2014 SICK Seman-
tic Relatedness task (Marelli et al., 2014).

Given two sentences, the aim of the STS tasks
is to predict their similarity on a 0-5 scale, where 0
indicates the sentences are on different topics and
5 indicates that they are completely equivalent.
As our test set, we report the average Pearson’s r
over these 22 sentence similarity tasks.4 As devel-
opment data, we use the 2016 STS tasks (Agirre
et al., 2016), where the tuning criterion is the av-
erage Pearson’s r over its 5 datasets.

5.2 Experimental Setup

For fair comparison among different datasets and
dataset filtering methods described below, we use
only 24,000 training examples for nearly all exper-
iments. Different filtering methods produce dif-
ferent amounts of training data, and using 24,000
examples allows us to keep the amount of train-
ing data constant across filtering methods. It also
allows us to complete these several thousand ex-
periments in a reasonable amount of time. In Sec-
tion 5.8 below, we discuss experiments that scale
up to larger amounts of training data.

We use PARAGRAM-SL999 embed-
dings (Wieting et al., 2015) to initialize the
word embedding matrix (Ww) for both models.
For all experiments, we fix the mini-batch size to
100, λw to 0, λc to 0, and the margin δ to 0.4. We
train AVG for 20 epochs, and the GRAN for 3,
since it converges much faster. For optimization
we use Adam (Kingma and Ba, 2014) with a
learning rate of 0.001.

We compare to two data resources used in pre-
vious work to learn paraphrastic sentence em-
beddings. The first is phrase pairs from PPDB,
used by Wieting et al. (2016b) and Wieting et al.
(2016a). PPDB comes in different sizes (S, M,
L, XL, XXL, and XXXL), where each larger size

4Statistical significance testing is nontrivial due to aver-
aging Pearson’s r so we leave it to future work.

Lang. Data GRAN AVG
SimpWiki 67.2 65.8

PPDB 64.5 65.8
CC 65.5 65.4

CS EP 66.5 65.1
News 67.2 65.1
CC 67.3 66.1

FR EP 67.8 65.7
Giga 67.4 65.9
News 67.0 65.2
CC 66.5 66.2

DE EP 67.2 65.6
News 66.5 64.7

Table 4: Test results (average Pearson’s r × 100
over 22 STS datasets) using a random selection of
24,000 examples from each data source.

subsumes all smaller ones. The pairs in PPDB are
sorted by a confidence measure and so the smaller
sets contain higher precision paraphrases. We use
PPDB XL in this paper, which consists of fairly
high precision paraphrases. The other data source
is the aligned Simple English / standard English
Wikipedia data developed by Coster and Kauchak
(2011) and used for learning paraphrastic sentence
embeddings by Wieting and Gimpel (2017). We
refer to this data source as “SimpWiki”. We refer
to our back-translated data as “NMT”.

5.3 Dataset Comparison

We first compare datasets, randomly sampling
24,000 sentence pairs from each of PPDB, Simp-
Wiki, and each of our NMT datasets. The only
hyperparameter to tune for this experiment is the
stopping epoch, which we tune based on our de-
velopment set. The results are shown in Table 4.

We find that the NMT datasets are all effec-
tive as training data, outperforming PPDB in all
cases when using the GRAN. There are excep-
tions when using AVG, for which PPDB is quite
strong. This is sensible because AVG is not sen-
sitive to word order, so the fragments in PPDB
do not cause problems. However, when using
the GRAN, which is sensitive to word order, the
NMT data is consistently better than PPDB. It of-
ten exceeds the performance of training on the
SimpWiki data, which consists entirely of human-
written sentences.

5.4 Filtering Methods

Above we showed that the NMT data is better than
PPDB when using a GRAN and often as good
as SimpWiki. Since we have access to so much
more NMT data than SimpWiki (which is limited
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to fewer than 200k sentence pairs), we next ex-
periment with several approaches for filtering the
NMT data. We first consider filtering based on
length, described in Section 5.5. We then con-
sider filtering based on several quality measures
designed to find more natural and higher-quality
translations, described in Section 5.6. Finally, we
consider several measures of diversity. By diver-
sity we mean here a measure of the lexical and
syntactic difference between the reference and its
paraphrase. We describe these experiments in Sec-
tion 5.7. We note that these filtering methods are
not all mutually exclusive and could be combined,
though in this paper we experiment with each in-
dividually and leave combination to future work.

5.5 Length Filtering

We first consider filtering candidate sentence pairs
by length, i.e., the number of tokens in the trans-
lation. The tunable parameters are the upper and
lower bounds of the translation lengths.

We experiment with a partition of length ranges,
showing the results in Table 5. These results are
averages across all language pairs and data sources
of training data for each length range shown. We
find it best to select NMT data where the trans-
lations have between 0 and 10 tokens, with per-
formance dropping as sentence length increases.
This is true for both the GRAN and AVG models.
We do the same filtering for the SimpWiki data,
though the trend is not nearly as strong. There-
fore this is unlikely due to the nature of the eval-
uation data, and may be due to machine transla-
tion quality dropping as sentence length increases.
This trend appears even though the datasets with
higher ranges have more tokens of training data,
since only the number of training sentence pairs is
kept constant across configurations.

We then tune the length range using our de-
velopment data, considering the following length
ranges: [0,10], [0,15], [0,20], [0,30], [0,100],
[10,20], [10,30], [10,100], [15,25], [15,30],
[15,100], [20,30], [20,100], [30,100]. We tune
over ranges as well as language, data source, and
stopping epoch, each time training on 24,000 sen-
tence pairs. We report the average test results over
all languages and datasets in Table 6. We com-
pare to a baseline that draws a random set of data,
showing that length-based filtering leads to gains
of nearly half a point on average across our test
sets.

Length Range
Data Model 0-10 10-20 20-30 30-100

SimpWiki GRAN 67.4 67.7 67.1 67.3
AVG 65.9 65.7 65.6 65.9

NMT GRAN 66.6 66.5 66.0 64.8
AVG 65.7 65.6 65.3 65.0

Table 5: Test correlations for our models when
trained on sentences with particular length ranges
(averaged over languages and data sources for the
NMT rows). Results are on STS datasets (Pear-
son’s r × 100).

NMT SimpWiki
Filtering Method GRAN AVG GRAN AVG
None (Random) 66.9 65.5 67.2 65.8
Length 67.3 66.0 67.4 66.2
Tuned Len. Range [0,10] [0,10] [0,10] [0,15]

Table 6: Length filtering test results after tuning
length ranges on development data (averaged over
languages and data sources for the NMT rows).
Results are on STS datasets (Pearson’s r × 100).

The tuned length ranges are short for both NMT
and SimpWiki. The distribution of lengths in the
NMT and SimpWiki data is fairly similar. The 10
NMT datasets all have mean translation lengths
between 22 and 28 tokens. The data has fairly
large standard deviations (11-25 tokens) indicat-
ing that there are some very long translations in
the data. SimpWiki has a mean length of 24.2 and
a standard deviation of 13.1.

5.6 Quality Filtering
We also consider filtering based on several mea-
sures of the “quality” of the back-translation:

• Translation Cost: We use the cost (negative
log likelihood) of the translation from the NMT
system, divided by the number of tokens in the
translation.
• Language Model: We train a separate language

model for each language/data pair on 40,000
references that are separate from the 100,000
used for mining data. Due to the small data size,
we train a 3-gram language model and use the
KenLM toolkit (Heafield, 2011).
• Reference/Translation Classification: We

train binary classifiers to predict whether a
given sentence is a reference or translation (de-
scribed in Section 5.6.1). We use the probability
of being a reference as the score for filtering.

For translation cost, we tune the upper bound
of the cost over the range [0.2, 1] using increments
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Filtering Method GRAN AVG
None (Random) 66.9 65.5
Translation Cost 66.6 65.4
Language Model 66.7 65.5
Reference Classification 67.0 65.5

Table 7: Quality filtering test results after tun-
ing quality hyperparameters on development data
(averaged over languages and data sources for the
NMT rows). Results are on STS datasets (Pear-
son’s r × 100).

of 0.1. For the language model, we tune an up-
per bound on the perplexity of the translations
among the set {25, 50, 75, 100, 150, 200,∞}. For
the classifier, we tune the minimum probability of
being a reference over the range [0, 0.9] using in-
crements of 0.1.

Table 7 shows average test results over all lan-
guages and datasets after tuning hyperparameters
on our development data for each. The translation
cost and language model are not helpful for filter-
ing, as random selection outperforms them. Both
methods are outperformed by the reference classi-
fier, which slightly outperforms random selection
when using the stronger GRAN model. We now
discuss further how we trained the reference clas-
sifier and the data characteristics that it reveals.
We did not experiment with quality filtering for
SimpWiki since it is human-written text.

5.6.1 Reference/Translation Classification
We experiment with predicting whether a given
sentence is a reference or a back-translation, hy-
pothesizing that generated sentences with high
probabilities of being references are of higher
quality. We train two kinds of binary classifiers,
one using an LSTM and the other using word av-
eraging, followed by a softmax layer. We select
40,000 reference/translation pairs for training and
5,000 for each of validation and testing. A single
example is a sentence with label 1 if it is a refer-
ence translation and 0 if it is a translation.

In training, we consider the entire k-best list
as examples of translations, selecting one trans-
lation to be the 0-labeled example. We either do
this randomly or we score each sentence in the
k-best list using our model and select the one
with the highest probability of being a reference
as the 0-labeled example. We tune this choice as
well as an L2 regularizer on the word embeddings
(tuned over {10−5, 10−6, 10−7, 10−8, 0}). We use
PARAGRAM-SL999 embeddings (Wieting et al.,

Model Lang. Data Test Acc. + Acc. - Acc.
CC 72.2 72.2 72.3

CS EP 72.3 64.3 80.3
News 79.7 73.2 86.3
CC 80.7 82.1 79.3

LSTM FR EP 79.3 75.2 83.4
Giga 93.1 92.3 93.8
News 84.2 81.2 87.3
CC 79.3 71.7 86.9

DE EP 85.1 78.0 92.2
News 89.8 82.3 97.4
CC 71.2 68.9 73.5

CS EP 69.1 63.0 75.1
News 77.6 71.7 83.6
CC 78.8 80.4 77.2

AVG FR EP 78.9 75.5 82.3
Giga 92.5 91.5 93.4
News 82.8 81.1 84.5
CC 77.3 70.4 84.1

DE EP 82.7 73.4 91.9
News 87.6 80.0 95.3

Table 8: Results of reference/translation clas-
sification (accuracy×100). The highest score in
each column is in boldface. Final two columns
show accuracies of positive (reference) and nega-
tive classes, respectively.

2015) to initialize the word embeddings for both
models. Models were trained by minimizing cross
entropy for 10 epochs using Adam with learning
rate 0.001. We performed this procedure sepa-
rately for each of the 10 language/data pairs.

The results are shown in Table 8. While per-
formance varies greatly across data sources, the
LSTM always outperforms the word averaging
model. For our translation-reference classifica-
tion, we note that our results can be further im-
proved. We also trained models on 90,000 exam-
ples, essentially doubling the amount of data, and
the results improved by about 2% absolute on each
dataset on both the validation and testing data.

Analyzing Reference Classification. We in-
spected the output of our reference classifier and
noted a few qualitative trends which we then ver-
ified empirically. First, neural MT systems tend
to use a smaller vocabulary and exhibit more re-
stricted use of phrases. They correspondingly tend
to show more repetition in terms of both words and
longer n-grams. This hypothesis can be verified
empirically in several ways. We do so by calculat-
ing the entropy of the unigrams and trigrams for
both the references and the translations from our
150,000 reference-translation pairs.5 We also cal-
culate the repetition percentage of unigrams and

5We randomly selected translations from the beam search.
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Lang. Data Ent. (uni) Ent. (tri) Rep. (uni) Rep. (tri)
CC 0.50 1.13 -7.57% -5.58%

CS EP 0.14 0.31 -0.88% -0.11%
News 0.16 0.31 -0.96% -0.16%
CC 0.97 1.40 -8.50% -7.53%

FR EP 0.51 0.69 -1.85% -0.58%
Giga 0.97 1.21 -5.30% -7.74%
News 0.67 0.75 -2.98% -0.85%
CC 0.29 0.57 -1.09% -0.73%

DE EP 0.32 0.53 -0.14% -0.11%
News 0.40 0.37 -1.02% -0.24%

All 0.46 0.74 -2.80% -2.26%

Table 9: Differences in entropy and repetition of
unigrams/trigrams in references and translations.
Negative values indicate translations have a higher
value, so references show consistently higher en-
tropies and lower repetition rates.

trigrams in both the references and translations.
This is defined as the percentage of words that
are repetitions (i.e., have already appeared in the
sentence). For unigrams, we only consider words
consisting of at least 3 characters.

The results are shown in Table 9, in which we
subtract the translation value from the reference
value for each measure. The translated text has
lower n-gram entropies and higher rates of repeti-
tion. This appears for all datasets, but is strongest
for common crawl and French-English 109.

We also noticed that translations are less likely
to use rare words, instead willing to use a larger se-
quence of short words to convey the same mean-
ing. We found that translations were sometimes
more vague and, unsurprisingly, were more likely
to be ungrammatical.

We check whether our classifier is learning
these patterns by computing the reference prob-
abilities P (R) of 100,000 randomly sampled
translation-reference pairs from each dataset (the
same used to train models). We then compute
the correlation between our classification score
and different metrics: the repetition rate of the
sentence, the average inverse-document frequency
(IDF) of the sentence,6 and the translation length.

The results are shown in Table 10. Negative cor-
relations with repetitions indicates that fewer repe-
titions lead to higher P (R). A positive correlation
with average IDF indicates that P (R) rewards the
use of rare words. Interestingly, negative correla-
tion with length suggests that the classifier prefers

6Wikipedia was used to calculate the frequencies of the
tokens. All tokens were lowercased.

Metric Spearman’s ρ
Unigram repetition rate -35.1
Trigram repetition rate -18.4
Average IDF 27.8
Length -34.0

Table 10: Spearman’s ρ between our reference
classifier probability and various measures.

Sentence P (R)
R: Room was comfortable and the staff at the

front desk were very helpful.
1.0

T: The staff were very nice and the room was very
nice and the staff were very nice.

<0.01

R: The enchantment of your wedding day, cap-
tured in images by Flore-Ael Surun.

0.98

T: The wedding of the wedding, put into images
by Flore-Ael A.

<0.01

R: Mexico and Sweden are longstanding support-
ers of the CTBT.

1.0

T: Mexico and Sweden have been supporters of
CTBT for a long time now.

0.06

R: We thought Mr Haider ’ s Austria was endan-
gering our freedom.

1.0

T: We thought that our freedom was put at risk by
Austria by Mr Haider.

0.09

Table 11: Illustrative examples of references (R)
and back-translations (T), along with probabilities
from the reference classifier. See text for details.

more concise sentences.7 We show examples of
these phenomena in Table 11. The first two exam-
ples show the tendency of NMT to repeat words
and phrases. The second two show how they tend
to use sequences of common words (“put at risk”)
rather than rare words (“endangering”).

5.7 Diversity Filtering

We consider several filtering criteria based on
measures that encourage particular amounts of
disparity between the reference and its back-
translation:

• n-gram Overlap: Our n-gram overlap mea-
sures are calculated by counting n-grams of a
given order in both the reference and translation,
then dividing the number of shared n-grams by
the total number of n-grams in the reference or
translation, whichever has fewer. We use three
n-gram overlap scores (n ∈ {1, 2, 3}).
• BLEU Score: We use a smoothed sentence-

level BLEU variant from Nakov et al. (2012)
that uses smoothing for all n-gram lengths and
also smooths the brevity penalty.

7This is noteworthy because the average sentence length
of translations and references is not significantly different.
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NMT SimpWiki
Filtering Method GRAN AVG GRAN AVG
Random 66.9 65.5 67.2 65.8
Unigram Overlap 66.6 66.1 67.8 67.4
Bigram Overlap 67.0 65.5 68.0 67.2
Trigram Overlap 66.9 65.4 67.8 66.6
BLEU Score 67.1 65.3 67.5 66.5

Table 12: Diversity filtering test results after tun-
ing filtering hyperparameters on development data
(averaged over languages and data sources for the
NMT rows). Results are on STS datasets (Pear-
son’s r × 100).

For both methods, the tunable hyperparam-
eters are the upper and lower bounds for the
above scores. We tune over the cross product of
lower bounds {0, 0.1, 0.2, 0.3} and upper bounds
{0.6, 0.7, 0.8, 0.9, 1.0}. Our intuition is that the
best data will have some amount of n-gram over-
lap, but not too much. Too much n-gram overlap
will lead to pairs that are not useful for learning.

The results are shown in Table 12, for both mod-
els and for both NMT and SimpWiki. We find that
the diversity filtering methods lead to consistent
improvements when training on SimpWiki. We
believe this is because many of the sentence pairs
in SimpWiki are near-duplicates and these filtering
methods favor data with more differences.

Diversity filtering can also help when selecting
NMT data, though the differences are smaller. We
do note that unigram overlap is the strongest filter-
ing strategy for AVG. When looking at the thresh-
old tuning, the best lower bounds are often 0 or 0.1
and the best upper bounds are typically 0.6-0.7, in-
dicating that sentence pairs with a high degree of
word overlap are not useful for training. We also
find that the GRAN benefits more from filtering
based on higher-order n-gram overlap than AVG.

5.8 Scaling Up

Unlike the SimpWiki data, which is naturally lim-
ited and only available for English, we can scale
our approach. Since we use data on which the
NMT systems were trained and perform back-
translation, we can easily produce large training
sets of paraphrastic sentence pairs for many lan-
guages and data domains, limited only by the
availability of bitext.

To test this, we took the tuned filtering methods
and language/data pairs (according to our devel-
opment dataset only), and trained them on more
data. These were CC-CS for GRAN and CC-DE

Data GRAN AVG
PPDB 64.6 66.3
SimpWiki (100k/168k) 67.4 67.7
CC-CS (24k) 66.8 -
CC-CS (100k) 68.5 -
CC-DE (24k) - 66.6
CC-DE (168k) - 67.6

Table 13: Test results with more training data.
More data helps both AVG and GRAN to match or
surpass training on SimpWiki. Both comfortably
surpass PPDB. The number of training examples
used is in parentheses.

for AVG. We also trained each model on the same
number of sentence pairs from SimpWiki.8 We
also compare to PPDB XL, and since PPDB has
fewer tokens per example, we use enough PPDB
data so that it has at least as many tokens as the
SimpWiki data used in the experiment.9

Table 13 shows clear improvements when us-
ing more training data, providing evidence that our
approach can scale to larger datasets. The NMT
data surpasses SimpWiki for the GRAN, while
the SimpWiki and NMT data perform similarly for
AVG. PPDB is outperformed by both data sources
for both models. Even when we train on all 52M
tokens in PPDB XXL, AVG only reaches 66.5.

6 Conclusion

We showed how back-translation can be used
to generate effective training data for paraphras-
tic sentence embeddings. We explored filtering
strategies that improve the generated data; in do-
ing so, we identified characteristics that distin-
guish NMT output from references. Our hope is
that these results can enable learning paraphrastic
sentence embeddings with powerful neural archi-
tectures across many languages and domains.
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bovický, Michal Novák, Martin Popel, Roman Su-
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