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Abstract

Learning word embeddings on large unla-
beled corpus has been shown to be suc-
cessful in improving many natural lan-
guage tasks. The most efficient and pop-
ular approaches learn or retrofit such rep-
resentations using additional external data.
Resulting embeddings are generally bet-
ter than their corpus-only counterparts, al-
though such resources cover a fraction of
words in the vocabulary. In this paper,
we propose a new approach, Dict2vec,
based on one of the largest yet refined
datasource for describing words – natural
language dictionaries. Dict2vec builds
new word pairs from dictionary entries so
that semantically-related words are moved
closer, and negative sampling filters out
pairs whose words are unrelated in dictio-
naries. We evaluate the word representa-
tions obtained using Dict2vec on eleven
datasets for the word similarity task and on
four datasets for a text classification task.

1 Introduction

Learning word embeddings usually relies on the
distributional hypothesis – words appearing in
similar contexts must have similar meanings, and
thus close representations. Finding such represen-
tations for words and sentences has been one hot
topic over the last few years in Natural Language
Processing (NLP) (Mikolov et al., 2013; Penning-
ton et al., 2014) and has led to many improvements
in core NLP tasks such as Word Sense Disam-
biguation (Iacobacci et al., 2016), Machine Trans-
lation (Devlin et al., 2014), Machine Comprehen-
sion (Hewlett et al., 2016), and Semantic Role La-
beling (Zhou and Xu, 2015; Collobert et al., 2011)
– to name a few.

These methods suffer from a classic drawback
of unsupervised learning: the lack of supervision
between a word and those appearing in the associ-
ated contexts. Indeed, it is likely that some terms
of the context are not related to the considered
word. On the other hand, the fact that two words
do not appear together – or more likely, not often
enough together – in any context of the training
corpora is not a guarantee that these words are not
semantically related. Recent approaches have pro-
posed to tackle this issue using an attentive model
for context selection (Ling et al., 2015), or by us-
ing external sources – like knowledge graphs –
in order to improve the embeddings (Wang et al.,
2014). Similarities derived from such resources
are part of the objective function during the learn-
ing phase (Yu and Dredze, 2014; Kiela et al.,
2015) or used in a retrofitting scheme (Faruqui
et al., 2015). These approaches tend to specialize
the embeddings to the resource used and its asso-
ciated similarity measures – while the construction
and maintenance of these resources are a set of
complex, time-consuming, and error-prone tasks.

In this paper, we propose a novel word em-
bedding learning strategy, called Dict2vec,
that leverages existing online natural language
dictionaries. We assume that dictionary entries (a
definition of a word) contain latent word similar-
ity and relatedness information that can improve
language representations. Such entries provide,
in essence, an additional context that conveys
general semantic coverage for most words.
Dict2vec adds new co-occurrences information
based on the terms occurring in the definitions of a
word. This information introduces weak supervi-
sion that can be used to improve the embeddings.
We can indeed distinguish word pairs for which
each word appears in the definition of the other
(strong pairs) and pairs where only one appears
in the definition of the other (weak pairs) – each
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having their own weight as two hyperparameters.
Not only this information is useful at learning
time to control words vectors to be close for
such word pairs, but also it becomes possible to
devise a controlled negative sampling. Controlled
negative sampling as introduced in Dict2vec
consists in filtering out random negative examples
in conventional negative sampling that forms a
(strong or weak) pair with the target word – they
are obviously non-negative examples. Processing
online dictionaries in Dict2vec does not require
a human-in-the-loop – it is fully automated. The
neural network architecture from Dict2vec
(Section 3) extends Word2vec (Mikolov et al.,
2013) approach which uses a Skip-gram model
with negative sampling.

Our main results are as follows :

• Dict2vec exhibits a statistically significant
improvement around 12.5% against state-of-
the-art solutions on eleven most common
evaluation datasets for the word similarity
task when embeddings are learned using the
full Wikipedia dump.

• This edge is even more significant for small
training datasets (50 millions first tokens of
Wikipedia) than using the full dataset, as the
average improvement reaches 30%.

• Since Dict2vec does significantly better
than competitors for small dimensions (in the
[20; 100] range) for small corpus, it can yield
smaller yet efficient embeddings – even when
trained on smaller corpus – which is one of
the utmost practical interest for the working
natural language processing practitioners.

• We also show that the embeddings learned by
Dict2vec perform similarly to other base-
lines on an extrinsic text classification task.

Dict2vec software is an extension and an opti-
mization from the original Word2vec framework
leading to a more efficient learning. Source code
to fetch dictionaries, train Dict2vec models and
evaluate word embeddings are publicly availabe1

and can be used by the community as a seed for
future works.

The paper is organized as follows. Section 2
presents related works, along with a special fo-
cus on Word2vec, which we later derive in our

1
https://github.com/tca19/dict2vec

approach presented in Section 3. Our experimen-
tal setup and evaluation settings are introduced in
Section 4 and we discuss the results in Section 5.
Section 6 concludes the paper.

2 Learning Word Embeddings

2.1 The Neural Network Approach

In the original model from Collobert and Weston
(2008), a window approach was used to feed a
neural network and learn word embeddings. Since
there are long-range relations between words, the
window-based approach was later extended to a
sentence-based approach (Collobert et al., 2011)
leading to capture more semantic similarities into
word vectors. Recurrent neural networks are
another way to exploit the context of a word
by considering the sequence of words preceding
it (Mikolov et al., 2010; Sutskever et al., 2011).
Each neuron receives the current window as an in-
put, but also its own output from the previous step.

Mikolov et al. (2013) introduced the Skip-gram
architecture built on a single hidden layer neural
network to learn efficiently a vector representa-
tion for each word w of a vocabulary V from a
large corpora of size C. Skip-gram iterates over
all (target, context) pairs (wt,wc) from every win-
dow of the corpus and tries to predict wc knowing
wt. The objective function is therefore to maxi-
mize the log-likelihood :

C∑
t=1

n∑
k=−n

log p(wt+k|wt) (1)

where n represents the size of the window (com-
posed of n words around the central word wt) and
the probability can be expressed as :

p(wt+k|wt) =
evt+k·vt∑
w∈V e

v·vt
(2)

with vt+k (resp. vt) the vector associated to wt+k

(resp. wt).
This model relies on the principle “You shall

know a word by the company it keeps” – Firth
(1957). Thus, words that are frequent within
the context of the target word will tend to have
close representations, as the model will update
their vectors so that they will be closer. Two
main drawbacks can be said about this approach.
First, words within the same window are not al-
ways related. Consider the sentence “Turing is
widely considered to be the father of theoretical
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computer science and artificial intelligence.”2, the
words (Turing,widely) and (father,theoretical) will
be moved closer while they are not semantically
related. Second, strong semantic relations be-
tween words (like synonymy or meronymy) hap-
pens rarely within the same window, so these rela-
tions will not be well embedded into vectors.

fastText introduced in Bojanowski et al. (2016)
uses internal additional information from the cor-
pus to solve the latter drawback. They train a Skip-
gram architecture to predict a word wc given the
central wordwt and all the n-grams Gwt (subwords
of 3 up to 6 letters) of wt. The objective function
becomes :

C∑
t=1

n∑
k=−n

∑
w∈Gwt

log p(wt+k|w) (3)

Along learning one vector per word, fastText
also learns one vector per n-gram. fastText is able
to extract more semantic relations between words
that share common n-gram(s) (like fish and fish-
ing) which can also help to provide good embed-
dings for rare words since we can obtain a vector
by summing vectors of its n-grams.

In what follows, we report related works that
leverage external resources in order to address the
two raised issues about the window approach.

2.2 Using External Resources
Even with larger and larger text data available on
the Web, extracting and encoding every linguis-
tic relations into word embeddings directly from
corpora is a difficult task. One way to add more
relations into embeddings is to use external data.
Lexical databases like WordNet or sets of syn-
onyms like MyThes thesaurus can be used during
learning or in a post-processing step to specialize
word embeddings. For example, Yu and Dredze
(2014) include prior knowledge about synonyms
from WordNet and the Paraphrase Database in a
joint model built upon Word2vec. Faruqui et al.
(2015) introduce a graph-based retrofitting method
where they post-process learned vectors with re-
spect to semantic relationships extracted from ad-
ditional lexical resources. Kiela et al. (2015)
propose to specialize the embeddings either on
similarity or relatedness relations in a Skip-gram
joint learning approach by adding new contexts
from external thesaurus or from a norm associa-
tion base in the function to optimize. Bian et al.

2
https://en.wikipedia.org/wiki/Alan_Turing

(2014) combine several sources (syllables, POS
tags, antonyms/synonyms, Freebase relations) and
incorporate them into a CBOW model. These ap-
proaches have generally the objective to improve
tasks such as document classification, synonym
detection or word similarity. They rely on ad-
ditional resources whose construction is a time-
consuming and error-prone task and tend gener-
ally to specialize the embeddings to the external
corpus used. Moreover, lexical databases contain
less information than dictionaries (117k entries in
WordNet, 200k in a dictionary) and less accurate
content (some different words in WordNet belong
to the same synset thus have the same definition).

Another type of external resources are knowl-
edge bases, containing triplets. Each triplet links
two entities with a relation, for example Paris –
is capital of – France. Several methods (Weston
et al., 2013; Wang et al., 2014; Xu et al., 2014)
have been proposed to use the information from
knowledge base to improve semantic relations in
word embeddings, and extract more easily rela-
tional facts from text. These approaches are fo-
cused on knowledge base dependent task.

3 Dict2vec

The definition of a word is a group of words or
sentences explaining its meaning. A dictionary is
a set of tuples (word, definition) for several words.
For example, one may find in a dictionary :

car: A road vehicle, typically with four
wheels, powered by an internal combus-
tion engine and able to carry a small
number of people.3

The presence of words like “vehicle”, “road” or
“engine” in the definition of “car” illustrates the
relevance of using word definitions for obtaining
weak supervision allowing us to get semantically
related pairs of words.
Dict2vec models this information by build-

ing strong and weak pairs of words (§3.1), in
order to provide both a novel positive sampling
objective (§3.2) and a novel controlled nega-
tive sampling objective (§3.3). These objectives
participate to the global objective function of
Dict2vec (§3.4).

3Definition from Oxford dictionary.
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3.1 Strong pairs, weak pairs

In a definition, each word does not have the same
semantic relevance. In the definition of “car”,
the words “internal” or “number” are less relevant
than “vehicle”. We introduce the concept of strong
and weak pairs in order to capture this relevance.
If the word wa is in the definition of the word wb

andwb is in the definition ofwa, they form a strong
pair, as well as the K closest words to wa (resp.
wb) form a strong pair with wb (resp. wa). If the
word wa is in the definition of wb but wb is not in
the definition of wa, they form a weak pair.

The word “vehicle” is in the definition of “car”
and “car” is in the definition of “vehicle”. Hence,
(car–vehicle) is a strong pair. The word “road”
is in the definition of “car”, but “car” is not in
the definition of “road”. Therefore, (car–road) is
a weak pair.

Some weak pairs can be promoted as strong
pairs if the two words are among the K closest
neighbours of each other. We chose the K clos-
est words according to the cosine distance from
a pretrained word embedding and find that using
K = 5 is a good trade-off between semantic and
syntactic extracted information.

3.2 Positive sampling

We introduce the concept of positive sampling
based on strong and weak pairs. We move closer
vectors of words forming either a strong or a weak
pair in addition to moving vectors of words co-
occurring within the same window.

Let S(w) be the set of all words forming a
strong pair with the word w andW(w) be the set
of all words forming a weak pair with w. For
each target wt from the corpus, we build Vs(wt)
a random set of ns words drawn with replacement
from S(wt) and Vw(wt) a random set of nw words
drawn with replacement from W(wt). We com-
pute the cost of positive sampling Jpos for each
target as follows:

Jpos(wt) = βs

∑
wi∈Vs(wt)

`(vt · vi)

+ βw

∑
wj∈Vw(wt)

`(vt · vj)
(4)

where ` is the logistic loss function defined by
` : x 7→ log(1 + e−x) and vt (resp. vi and vj)
is the vector associated to wt (resp. wi and wj).

The objective is to minimize this cost for all tar-
gets, thus moving closer words forming a strong
or a weak pair.

The coefficients βs and βw, as well as the num-
ber of drawn pairs ns and nw, tune the importance
of strong and weak pairs during the learning phase.
We discuss the choice of these hyperparameters in
Section 5. When βs = 0 and βw = 0, our model
is the Skip-gram model of Mikolov et al. (2013).

3.3 Controlled negative sampling
Negative sampling consists in considering two
random words from the vocabulary V to be unre-
lated. For each word wt from the vocabulary, we
generate a setF(wt) of k randomly selected words
from the vocabulary :

F(wt) = {wi}k, wi ∈ V \ {wt} (5)

The model aims at separating the vectors of
words from F(wt) and the vector of wt. More for-
mally, this is equivalent to minimize the cost Jneg

for each target word wt as follows:

Jneg(wt) =
∑

wi∈F(wt)

`(−vt · vi) (6)

where the notation `, vt and vi are the same as
described in previous subsection.

However, there is a non-zero probability that
wi and wt are related. Therefore, the model
will move their vectors further instead of mov-
ing them closer. With strong/weak word pairs in
Dict2vec, it becomes possible to better ensure
that this is less likely to occur: we prevent a neg-
ative example to be a word that forms a weak or
strong pair with with wt. The negative sampling
objective from Equation 6 becomes :

Jneg(wt) =
∑

wi∈F(wt)
wi /∈S(wt)
wi /∈W(wt)

`(−vt · vi) (7)

In our experiments, we noticed this method dis-
cards around 2% of generated negative pairs. The
influence on evaluation depends on the nature of
the corpus and is discussed at Section 5.4.

3.4 Global objective function
Our objective function is derived from the noise-
contrastive estimation which is a more efficient
objective function than the log-likelihood in Equa-
tion 1 according to Mikolov et al. (2013). We
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add the positive sampling and the controlled neg-
ative sampling described before and compute the
cost for each (target,context) pair (wt, wc) from
the corpus as follows:

J(wt, wc) = `(vt · vc) + Jpos(wt) + Jneg(wt)
(8)

The global objective is obtained by summing
every pair’s cost over the entire corpus :

J =
C∑

t=1

n∑
c=−n

J(wt, wt+c) (9)

4 Experimental setup

4.1 Fetching online definitions
We extract all unique words with more than 5 oc-
currences from a full Wikipedia dump, represent-
ing around 2.2M words. Since there is no dic-
tionary that contains a definition for all existing
words (the word w might be in the dictionary Di

but not in Dj), we combine several dictionaries to
get a definition for almost all of these words (some
words are too rare to have a definition anyway).
We use the English version of Cambridge, Oxford,
Collins and dictionary.com. For each word, we
download the 4 different webpages, and use regex
to extract the definitions from the HTML template
specific to each website, making the process fully
accurate. Our approach does not focus on poly-
semy, so we concatenate all definitions for each
word. Then we concatenate results from all dic-
tionaries, remove stop words and punctuation and
lowercase all words. For our illustrative example
in Section 3, we obtain :

car: road vehicle engine wheels seats
small [...] platform lift.

Among the 2.2M unique words, only 200K does
have a definition. We generate strong and weak
pairs from the downloaded definitions accord-
ing to the rule described in subsection 3.1 lead-
ing to 417K strong pairs (when the parameter K
from 3.1 is set to 5) and 3.9M weak pairs.

4.2 Training settings
We train our model with the generated pairs from
subsection 4.1 and the November 2016 English
dump from Wikipedia 4. After removing all XML
tags and converting all words to lowercase (with

4
https://dumps.wikimedia.org/enwiki/20161101/

the help of Mahoney’s script5), we separate the
corpus into 3 files containing respectively the first
50M tokens, the first 200M tokens, and the full
dump. Our model uses additional knowledge
during training. For a fair comparison against
other frameworks, we also incorporate this infor-
mation into the training data and create two ver-
sions for each file : one containing only data
from Wikipedia (corpus A) and one with data from
Wikipedia concatenated with the definitions ex-
tracted (corpus B).

We use the same hyperparameters we usually
find in the literature for all models. We use 5 neg-
atives samples, 5 epochs, a window size of 5, a
vector size of 100 (resp. 200 and 300) for the 50M
file (resp. 200M and full dump) and we remove
the words with less than 5 occurrences. We fol-
low the same evaluation protocol as Word2vec and
fastText to provide the fairest comparison against
competitors, so every other hyperparameters (K,
βs, βw, ns, nw) are tuned using a grid search to
maximize the weighted average score. For ns and
nw, we go from 0 to 10 with a step of 1 and find the
optimal values to be ns = 4 and nw = 5. For βs

and βw we go from 0 to 2 with a step of 0.05 and
find βs = 0.8 and βw = 0.45 to be the best val-
ues for our model. Table 1 reports training times
for the three models (all experiments were run on
a E3-1246 v3 processor).

50M 200M Full

Word2vec 15m30 86m 2600m
fastText 8m44 66m 1870m
Dict2vec 4m09 26m 642m

Table 1: Training time (in min) of Word2vec, fast-
Text and Dict2vec models for several corpus.

4.3 Word similarity evaluation

We follow the standard method for word similar-
ity evaluation by computing the Spearman’s rank
correlation coefficient (Spearman, 1904) between
human similarity evaluation of pairs of words, and
the cosine similarity of the corresponding word
vectors. A score close to 1 indicates an embed-
ding close to the human judgement.

We use MC-30 (Miller and Charles, 1991),
MEN (Bruni et al., 2014), MTurk-287 (Radinsky
et al., 2011), MTurk-771 (Halawi et al., 2012),

5
http://mattmahoney.net/dc/textdata#appendixa
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RG-65 (Rubenstein and Goodenough, 1965),
RW (Luong et al., 2013), SimVerb-3500 (Gerz
et al., 2016), WordSim-353 (Finkelstein et al.,
2001) and YP-130 (Yang and Powers, 2006) clas-
sic datasets. We follow the same protocol used by
Word2vec and fastText by discarding pairs which
contain a word that is not in our embedding. Since
all models are trained with the same corpora, the
embeddings have the same words, therefore all
competitors share the same OOV rates.

We run each experiment 3 times and report in
Table 2 the average score to minimize the effect
of the neural network random initialization. We
compute the average by weighting each score by
the number of pairs evaluated in its dataset in the
same way as Iacobacci et al. (2016). We multiply
each score by 1, 000 to improve readability.

4.4 Text classification evaluation

Our text classification task follows the same setup
as the one for fastText in Joulin et al. (2016). We
train a neural network composed of a single hidden
layer where the input layer corresponds to the bag
of words of a document and the output layer is the
probability to belong to each label. The weights
between the input and the hidden layer are initial-
ized with the generated embeddings and are fixed
during training, so that the evaluation score solely
depends on the embedding. We update the weights
of the neural network classifier with gradient de-
scent. We use the datasets AG-News 6, DBpe-
dia (Auer et al., 2007) and Yelp reviews (polarity
and full)7. We split each datasets into a training
and a test file. We use the same training and test
files for all models and report the classification ac-
curacy obtained on the test file.

4.5 Baselines

We train Word2vec8 and fastText9 on the same
3 files and their 2 respective versions (A and B)
described in 4.2 and use the same hyperparam-
eters also described in 4.2 for all models. We
train Word2vec with the Skip-gram model since
our method is based on the Skip-gram model. We
also train GloVe with their respective hyperparam-
eters described in Pennington et al. (2014), but the
results are lower than all other baselines (weighted

6
https://www.di.unipi.it/˜gulli/AG_corpus_of_

news_articles.html
7
https://www.yelp.com/dataset_challenge

8
https://github.com/dav/word2vec

9
https://github.com/facebookresearch/fastText

average on word similarity task is 350 on the 50M
file, 389 on the 200M file and 454 on the full
dump) so we do no report GloVe’s results.

We also retrofit the learned embeddings on cor-
pus A with the Faruqui’s method to compare an-
other method using additional resources. The
retrofitting introduces external knowledge from
the WordNet semantic lexicon (Miller, 1995). We
use the Faruqui’s Retrofitting10 with the WNall

semantic lexicon from WordNet and 10 iterations
as advised in the paper of Faruqui et al. (2015).
Furthermore, we compare the performance of our
method when using WordNet additional resources
instead of dictionaries.

5 Results and model analysis

5.1 Semantic similarity
Table 2 (top) reports the Spearman’s rank correla-
tion scores obtained with the method described in
subsection 4.3. We observe that our model outper-
forms state-of-the-art approaches for most of the
datasets on the 50M and 200M tokens files, and
almost all datasets on the full dump (this is signif-
icant according to a two-sided Wilcoxon signed-
rank test with α = 0.05). With the weighted av-
erage score, our model improves fastText’s perfor-
mance on raw corpus (column A) by 28.3% on the
50M file, by 17.7% on the 200M and by 12.8% on
the full dump. Even when we train fastText with
the same additional knowledge as ours (column
B), our model improves performance by 2.9% on
the 50M file, by 5.1% in the 200M and by 11.9%
on the full dump.

We notice the column B (corpus composed of
Wikipedia and definitions) has better results than
the column A for the 50M (+24% on average) and
the 200M file (+12% on average). This demon-
strates the strong semantic relations one can find
in definitions, and that simply incorporating defi-
nitions in small training file can boost the perfor-
mance of the embeddings. Moreover, when the
training file is large (full dump), our supervised
method with pairs is more efficient, as the boost
brought by the concatenation of definitions is in-
significant (+1.5% on average).

We also note that the number of strong and
weak pairs drawn must be set according to the size
of the training file. For the 50M and 200M to-
kens files, we train our model with hyperparame-
ters ns = 4 and nw = 5. For the full dump (20

10
https://github.com/mfaruqui/retrofitting
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50M 200M Full

w2v FT our w2v FT our w2v FT our

oov A B A B A B oov A B A B A B oov A B A B A B

MC-30 0% 697 847 722 823 840 859 0% 742 830 795 814 854 827 0% 809 826 831 815 860 847
MEN-TR-3k 0% 692 753 697 767 733 762 0% 734 758 754 772 752 768 0% 733 728 752 751 756 755
MTurk-287 0% 657 688 657 685 665 682 0% 642 671 671 661 667 666 0% 660 656 672 671 661 660
MTurk-771 0% 596 677 597 692 685 713 0% 628 669 632 675 682 704 0% 623 620 631 638 696 694
RG-65 0% 714 865 671 842 824 875 0% 771 842 755 829 857 877 0% 787 802 817 820 875 867
RW 36% 375 420 442 512 475 489 16% 377 408 475 507 467 478 2% 407 427 464 468 482 476
SimVerb 3% 165 371 179 374 363 432 0% 183 306 206 329 377 424 0% 186 214 222 233 384 379
WS353-ALL 0% 660 739 657 739 738 753 0% 694 734 701 735 762 758 0% 705 721 729 723 756 758
WS353-REL 0% 619 700 623 696 679 688 0% 665 706 644 685 710 699 0% 664 681 687 686 702 703
WS353-SIM 0% 714 797 714 790 774 784 0% 743 792 758 792 784 787 0% 757 767 775 779 781 781
YP-130 3% 458 679 415 674 666 696 0% 449 592 509 639 616 665 0% 502 475 533 553 646 607

W.Average 453 562 467 582 564 599 471 533 503 563 569 592 476 488 508 512 573 570

AG-News 874 871 868 871 871 866 886 882 880 881 880 880 885 885 887 887 881 884
DBPedia 936 942 942 944 944 944 952 956 957 958 960 959 966 966 967 967 968 969
Yelp Pol. 808 835 821 842 832 834 837 855 852 859 856 859 865 867 872 874 876 875
Yelp Full 451 469 460 473 471 472 477 491 488 495 499 501 506 506 512 514 516 518

Table 2: Spearman’s rank correlation coefficients between vectors’ cosine similarity and human judge-
ment for several datasets (top) and accuracies on text classification task (bottom). We train and evaluate
each model 3 times and report the average score for each dataset, as well as the weighted average for all
word similarity datasets.

50M 200M Full

w2vR FTR ourR w2vR FTR ourR w2vR FTR ourR

MC-30
vs self +13.9% +9.2% +1.3% +5.8% +4.8% +3.0% +5.2% +2.9% +1.2%
vs our -7.3% -4.4% − -3.6% -2.4% − -1.0% -0.6% −

MEN-TR-3k
vs self +0.9% -0.7% -0.1% +0.7% -1.9% +0.4% +1.4% -2.8% +1.6%
vs our -4.2% -7.4% − -1.3% -1.6% − -1.7% -3.3% −

MTurk-287
vs self +1.4% +0.2% +3.5% -2.9% -3.3% +3.0% -0.9% -5.7% +1.1%
vs our -1.2% -4.0% − -4.3% -2.7% − -1.1% -4.1% −

MTurk-771
vs self +8.2% +4.9% +1.6% +6.3% +4.3% +1.5% +4.5% +1.6% +0.6%
vs our -7.3% -8.8% − -3.8% -3.4% − -6.5% -7.9% −

RG-65
vs self +10.9% +17.1% +4.0% +6.6% +8.5% +3.0% +7.0% +5.0% +2.4%
vs our -2.1% -4.9% − -2.2% -4.4% − -3.8% -1.9% −

RW
vs self -20.3% -24.4% -14.3% -24.4% -25.9% -20.3% -18.7% -25.4% -19.1%
vs our -37.4% -26.9% − -37.7% -24.6% − -31.3% -28.2% −

Simverb
vs self +46.0% +34.0% +19.8% +49.7% +39.8% +19.9% +44.6% +38.7% +16.7%
vs our -34.4% -28.4% − -30.5% -23.6% − -29.9% -19.8% −

WS353-ALL
vs self -4.2% -10.8% -1.1% -3.2% -8.0% -1.3% -4.4% -10.7% -2.0%
vs our -13.8% -19.2% − -11.9% -15.4% − -10.8% -13.9% −

WS353-REL
vs self -16.1% -22.7% -4.9% -10.4% -17.9% -4.5% -10.7% -19.7% -6.0%
vs our -20.9% -27.2% − -17.7% -25.5% − -15.5% -21.4% −

WS353-SIM
vs self +4.3% +0.8% +3.2% +2.6% +0.0% +3.2% +0.0% -3.6% +2.4%
vs our -3.9% -6.7% − -2.9% -3.3% − -3.0% -4.4% −

YP-130
vs self +17.8% +3.2% +3.3% +13.0% +6.9% +8.0% +11.1% +8.3% +5.0%
vs our -23.6% -28.2% − -16.6% -11.7% − -13.6% -10.7% −

Table 3: Percentage changes of word similarity scores for several datasets after the Faruqui’s retrofitting
method is applied. We compare each model to their own non-retrofitted version (vs self) and our non-
retrofitted version (vs our). A positive percentage indicates the level of improvement of the retrofitting
approach, while a negative percentage shows that the compared method is better without retrofitting. As
an illustration: the +13.9% at the top left means that retrofitting Word2vec’s vectors improves the initial
vectors output by 13.9%, while the -7.3% below indicates that our approach without retrofitting is better
than the retrofitted Word2vec’s vectors.
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times larger than the 200M tokens file), the num-
ber of windows in the corpus is largely increased,
so is the number of (target,context) pairs. There-
fore, we need to adjust the influence of strong
and weak pairs and decrease ns and nw. We set
ns = 2, nw = 3 to train on the full dump.

The Faruqui’s retrofitting method improves the
word similarity scores on all frameworks for all
datasets, except on RW and WS353 (Table 3). But
even when Word2vec and fastText are retrofitted,
their scores are still worse than our non-retrofitted
model (every percentage on the vs our line are neg-
ative). We also notice that our model is compati-
ble with a retrofitting improvement method as our
scores are also increased with Faruqui’s method.

We also observe that, although our model is su-
perior on each corpus size, our model trained on
the 50M tokens file outperforms the other mod-
els trained on the full dump (an improvement of
17% compared to the results of fastText, our best
competitor, trained on the full dump). This means
considering strong and weak pairs is more efficient
than increasing the corpus size and that using dic-
tionaries is a good way to improve the quality of
the embeddings when the training file is small.

The models based on knowledge bases cited
in §2.2 do not provide word similarity scores on
all the datasets we used. However, for the reported
scores, Dict2vec outperforms these models : Kiela
et al. (2015) achieves a correlation of 0.72 on the
MEN dataset (vs. 0.756); Xu et al. (2014) achieves
0.683 on the WS353-ALL dataset (vs. 0.758).

5.2 Text classification accuracy

Table 2 (bottom) reports the classification ac-
curacy for the considered datasets. Our model
achieves the same performances as Word2vec and
fastText on the 50M file and slightly improves re-
sults on the 200M file and the full dump. Us-
ing supervision with pairs during training does not
make our model specific to the word similarity
task which shows that our embeddings can also be
used in downstream extrinsic tasks.

Note that for this experiment, the embeddings
were fixed and not updated during learning (we
only learned the classifier parameters) since our
objective was rather to evaluate the capability of
the embeddings to be used for another task rather
than obtaining the best possible models. It is any-
way possible to obtain better results by updating
the embeddings and the classifier parameters with

respect to the supervised information to adapt the
embeddings to the classification task at hand as
done in Joulin et al. (2016).

5.3 Dictionaries vs. WordNet

Raw RWN Rdict

50M
w2v 453 474 479
FT 467 476 489
our 569 582 582

200M
w2v 471 488 494
FT 503 504 524
our 569 581 587

full
w2v 488 507 512
FT 508 503 529
our 571 583 592

Table 4: Weighted average Spearman correla-
tion score of raw vectors and after retrofitting
with WordNet pairs (RWN ) and dictionary pairs
(Rdict).

Table 4 reports the Spearman’s rank correlation
score for vectors obtained after training (Raw col-
umn) and the scores after we retrofit those vectors
with pairs from WordNet (RWN ) and extracted
pairs from dictionaries (Rdict). Retrofitting with
dictionaries outperforms retrofitting with Word-
Net lexicons, meaning that data from dictionaries
are better suited to improve embeddings toward
semantic similarities when retrofitting.

50M 200M full

No pairs 453 471 488
With WordNet pairs 564 566 559
With dictionary pairs 569 569 571

Table 5: Weighted average Spearman correlation
score of Dict2vec vectors when trained without
pairs and with WordNet or dictionary pairs.

We also trained Dict2vec with pairs from Word-
Net as well as no additional pairs during train-
ing (in this case, this is the Skip-gram model
from Word2vec). Results are reported in Table 5.
Training with WordNet pairs increases the scores,
showing that the supervision brought by positive
sampling is beneficial to the model, but lags be-
hind the training using dictionary pairs demon-
strating once again that dictionaries contain more
semantic information than WordNet.
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5.4 Positive and negative sampling

For the positive sampling, an empirical grid search
shows that a 1

2 ratio between βs and βw is a good
rule-of-thumb for tuning these hyperparameters.
We also notice that when these coefficients are too
low (βs ≤ 0.5 and βw ≤ 0.2), results get worse
because the model does not take into account the
information from the strong and weak pairs. On
the other side, when they are too high (βs ≥ 1.2
and βw ≥ 0.6), the model discards too much the
information from the context in favor of the infor-
mation from the pairs. This behaviour is similar
when the number of strong and weak pairs is too
low or too high (ns, nw ≤ 2 or ns, nw ≥ 5).

For the negative sampling, we notice that the
control brought by the pairs increases the aver-
age weighted score by 0.7% compared to the un-
controlled version. We also observe that increas-
ing the number of negative samples does not sig-
nificantly improve the results except for the RW
dataset where using 25 negative samples can boost
performances by 10%. Indeed, this dataset is
mostly composed of rare words so the embeddings
must learn to differentiate unrelated words rather
than moving closer related ones.

5.5 Vector size
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Figure 1: Spearman’s rank correlation coeffi-
cient for RW-STANFORD (RW) and WS-353-
ALL (WS) on the fastText model (FT) and our,
with different vector size. Training is done on the
corpus A of 50M tokens.

In Fig. 1, we observe that our model is still able
to outperform state-of-the-art approaches when we
reduce the dimension of the embeddings to 20 or
40. We also notice that increasing the vector size
does increase the performance, but only until a di-
mension around 100, which is the common dimen-

sion used when training on the 50M tokens file for
related approaches reported here.

6 Conclusion

In this paper, we presented Dict2vec, a new ap-
proach for learning word embeddings using lexi-
cal dictionaries. It is based on a Skip-gram model
where the objective function is extended by lever-
aging word pairs extracted from the definitions
weighted differently with respect to the strength of
the pairs. Our approach shows better results than
state-of-the-art word embeddings methods for the
word similarity task, including methods based on a
retrofitting from external sources. We also provide
the full source code to reproduce the experiments.
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