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Abstract

In this paper, we improve the attention or
alignment accuracy of neural machine trans-
lation by utilizing the alignments of train-
ing sentence pairs. We simply compute
the distance between the machine attentions
and the “true” alignments, and minimize this
cost in the training procedure. Our experi-
ments on large-scale Chinese-to-English task
show that our model improves both transla-
tion and alignment qualities significantly over
the large-vocabulary neural machine transla-
tion system, and even beats a state-of-the-art
traditional syntax-based system.

1 Introduction

Neural machine translation (NMT) has gained pop-
ularity in recent two years (e.g. (Bahdanau et al.,
2014; Jean et al., 2015; Luong et al., 2015; Mi et al.,
2016b; Li et al., 2016), especially for the attention-
based models of Bahdanau et al. (2014).

The attention model plays a crucial role in NMT,
as it shows which source word(s) the model should
focus on in order to predict the next target word.
However, the attention or alignment quality of NMT
is still very low (Mi et al., 2016a; Tu et al., 2016).

In this paper, we alleviate the above issue by uti-
lizing the alignments (human annotated data or ma-
chine alignments) of the training set. Given the
alignments of all the training sentence pairs, we add
an alignment distance cost to the objective func-
tion. Thus, we not only maximize the log translation
probabilities, but also minimize the alignment dis-
tance cost. Large-scale experiments over Chinese-
to-English on various test sets show that our best
method for a single system improves the transla-
tion quality significantly over the large vocabulary
NMT system (Section 5) and beats the state-of-the-
art syntax-based system.
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2 Neural Machine Translation

As shown in Figure 1, attention-based NMT (Bah-
danau et al., 2014) is an encoder-decoder network.
the encoder employs a bi-directional recurrent neu-
ral network to encode the source sentence X
(21, ...,x;), where [ is the sentence length (includ-
ing the end-of-sentence (eos)), into a sequence of
hidden states h = (hq, ..., h;), each h; is a concate-

nation of a left-to-right h; and a right-to-left E

Given h, the decoder predicts the target transla-
tion by maximizing the conditional log-probability
of the correct translation y* (y7,-.-yr,), where
m is the sentence length (including the end-of-
sentence). At each time ¢, the probability of each
word y; from a target vocabulary V), is:

p(yelh, yiq-y1) = 9(se,vi—1), (D

where g is a two layer feed-forward neural network
over the embedding of the previous word y;_;, and
the hidden state s;. The s; is computed as:

st = q(st—1,y;_1, Ht) 2)
F
Sy (o hi)
Hy = ? ’ , 3)
: [Zil (awi- H)

where ¢ is a gated recurrent units, H; is a weighted
sum of h; the weights, «, are computed with a two
layer feed-forward neural network 7:

. exp{r(s¢—1, hi, ¥i 1)}
ti — 1 *
Y i1 expi{r(si—1, hi, y;_ 1)}

We put all ay; (t = 1...m, ¢ = 1...l) into a matrix
A’, we have a matrix (alignment) like (¢) in Figure 2,
where each row (for each target word) is a probabil-
ity distribution over the source sentence X.

The training objective is to maximize the condi-
tional log-probability of the correct translation y*

)
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Figure 1: The architecture of attention-based NMT (Bahdanau et al., 2014). The source sentence x = (x1, ..., 2;) with length [,

x; is an end-of-sentence token (eos) on the source side. The reference translation is y* = (y7i, ..., y,,) with length m, similarly,

Ym, is the target side (eos). E and h; are bi-directional encoder states. ay,; is the attention probability at time ¢, position j. Hy

is the weighted sum of encoding states. s; is a hidden state. o, is an output state. Another one layer neural network projects o; to

the target output vocabulary, and conducts softmax to predict the probability distribution over the output vocabulary. The attention

model (the right box) is a two layer feedforward neural network, A; ; is an intermediate state, then another layer converts it into a

real number e; ;, the final attention probability at position j is o, ;.

given x with respect to the parameters 6

N m
0 = argmax >~ > logp(yi" X", 41",

n=1t=1
)
where n is the n-th sentence pair (x",y*") in the
training set, N is the total number of pairs.

3 Alignment Component

The attentions, oy 1...a g, in each step ¢ play an im-
portant role in NMT. However, the accuracy is still
far behind the traditional MaxEnt alignment model
in terms of alignment F1 score (Mi et al., 2016b; Tu
et al., 2016). Thus, in this section, we explicitly add
an alignment distance to the objective function in
Eq. 5. The “truth” alignments for each sentence pair
can be from human annotated data, unsupervised or
supervised alignments (e.g. GIZA++ (Och and Ney,
2000) or MaxEnt (Ittycheriah and Roukos, 2005)).

Given an alignment matrix .4 for a sentence pair
(x,y) in Figure 2 (a), where we have an end-of-
source-sentence token (eos) = x;, and we align all
the unaligned target words (y3 in this example) to
(eos), also we force y, (end-of-target-sentence) to
be aligned to x; with probability one. Then we con-
duct two transformations to get the probability dis-
tribution matrices ((b) and (c) in Figure 2).
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3.1 Simple Transformation

The first transformation simply normalizes each
row. Figure 2 (b) shows the result matrix .A*. The
last column in red dashed lines shows the alignments
of the special end-of-sentence token (eos).

3.2 Smoothed Transformation

Given the original alignment matrix .4, we create a
matrix A* with all points initialized with zero. Then,
for each alignment point A;; = 1, we update A*
by adding a Gaussian distribution, g(u, o), with a
window size w (t-w, ... t ... t+w). Take the A; ; = 1
for example, we have A*1 1 +=1, A% 2 +=0.61, and
A*q 3 +=0.14 with w=2, g(u, 0)=g(0,1). Then we
normalize each row and get (c). In our experiments,
we use a shape distribution, where o = 0.5.

3.3 Objectives

Alignment Objective: Given the “true” alignment
A*, and the machine attentions A’ produced by
NMT model, we compute the Euclidean distance
bewteen A* and A’

m 1
d(A, AY) = Z Z (Alyi — A% )2 (6)

t=1 =1
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Figure 2: Alignment transformation. A special token, (eos), is introduced to the source sentence, we align all the unaligned target

words (y3 in this case) to (eos). (a): the original alignment matrix A from GIZA++ or MaxEnt aligner. (b): simple normalization

by rows (probability distribution over the source sentence x). (c): smoothed transformation followed by normalization by rows,

and typically, we always align end-of-source-sentence x; to end-of-target-sentence y,, by probability one.

NMT Objective: We plug Eq. 6 to Eq. 5, we have
N m

0" = 1 U G T T

arg mgxg{ ; og p(y:" X",y yi")

— d(Am,A*n)}
N

There are two parts: translation and alignment, so
we can optimize them jointly, or separately (e.g. we
first optimize alignment only, then optimize transla-
tion). Thus, we divide the network in Figure 1 into
alignment A and translation T parts:

e A: all networks before the hidden state s;,
e T: the network g(s¢, ¥/ ).

If we only optimize A, we keep the parameters in
T unchanged. We can also optimize them jointly
J. In our experiments, we test different optimization
strategies.

4 Related Work

In order to improve the attention or alignment ac-
curacy, Cheng et al. (2016) adapted the agreement-
based learning (Liang et al., 2006; Liang et
al., 2008), and introduced a combined objective
that takes into account both translation directions
(source-to-target and target-to-source) and an agree-
ment term between the two alignment directions.
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By contrast, our approach directly uses and op-
timizes NMT parameters using the “supervised”
alignments.

5 Experiments

5.1 Data Preparation

We run our experiments on Chinese to English task.
The training corpus consists of approximately 5 mil-
lion sentences available within the DARPA BOLT
Chinese-English task. The corpus includes a mix of
newswire, broadcast news, and webblog. We do not
include HK Law, HK Hansard and UN data. The
Chinese text is segmented with a segmenter trained
on CTB data using conditional random fields (CRF).
Our development set is the concatenation of sev-
eral tuning sets (GALE Dev, P1R6 Dev, and Dev
12) initially released under the DARPA GALE pro-
gram. The development set is 4491 sentences in to-
tal. Our test sets are NIST MTO06 (1664 sentences)
, MTO8 news (691 sentences), and MTO08 web (666
sentences).

For all NMT systems, the full vocabulary size of
the training set is 300k. In the training procedure,
we use AdaDelta (Zeiler, 2012) to update model
parameters with a mini-batch size 80. Following
Mi et al. (2016a), the output vocabulary for each
mini-batch or sentence is a sub-set of the full vo-
cabulary. For each source sentence, the sentence-
level target vocabularies are union of top 2k most
frequent target words and the top 10 candidates of
the word-to-word/phrase translation tables learned



MTO8
single system MT06 News Web ave.
Bp BLEU T-B Bp BLEU T-B Bp BLEU T-B T-B
Tree-to-string 0.95 3493 9.45 1094 31.12 12.90|0.90 23.45 17.7213.36
Cov. LVNMT (Mi et al., 2016b) || 0.92 35.59 10.71|0.89 30.18 15.33|0.97 27.48 16.67| 14.24
A—] 0.95 35.71 10.38|0.93 30.73 14.98|0.96 27.38 16.24 | 13.87
=|7h — En A—=T 0.95 2859 16.99(0.92 24.09 20.89|0.97 20.48 23.3120.40
g A—-T—=]J [/095 3595 10.24(0.92 30.95 14.62|0.97 26.76 17.04 | 13.97
5 J 096 36.76 9.67 |0.94 31.24 14.80|0.96 2835 15.61 | 13.36
':E GDFA J 0.96 36.44 10.16|0.94 30.66 15.01|0.96 26.67 16.72 | 13.96
+ MaxEnt J 0.95 36.80 9.49 |0.93 31.74 14.02|0.96 27.53 16.21| 13.24
J + Gau. 096 3695 9.71 |0.94 32.43 13.61|0.97 28.63 15.80 || 13.04

Table 1: Single system results in terms of (TER-BLEU)/2 (T-B, the lower the better) on 5 million Chinese to English training set.

BP denotes the brevity penalty. NMT results are on a large vocabulary (300%) and with UNK replaced. The second column shows
different alignments (Zh — En (one direction), GDFA (“grow-diag-final-and”), and MaxEnt (Ittycheriah and Roukos, 2005). A,

T, and J mean optimize alignment only, translation only, and jointly. Gau. denotes the smoothed transformation.

from ‘fast_align’ (Dyer et al., 2013). The maximum
length of a source phrase is 4. In the training time,
we add the reference in order to make the translation
reachable.

The Cov. LVNMT system is a re-implementation
of the enhanced NMT system of Mi et al. (2016a),
which employs a coverage embedding model and
achieves better performance over large vocabulary
NMT Jean et al. (2015). The coverage embedding
dimension of each source word is 100.

Following Jean et al. (2015), we dump the align-
ments, attentions, for each sentence, and replace
UNKSs with the word-to-word translation model or
the aligned source word.

Our SMT system is a hybrid syntax-based tree-to-
string model (Zhao and Al-onaizan, 2008), a simpli-
fied version of the joint decoding (Liu et al., 2009;
Cmejrek et al., 2013). We parse the Chinese side
with Berkeley parser, and align the bilingual sen-
tences with GIZA++ and MaxEnt. and extract Hi-
ero and tree-to-string rules on the training set. Our
two 5-gram language models are trained on the En-
glish side of the parallel corpus, and on monolin-
gual corpora (around 10 billion words from Giga-
word (LDC2011T07), respectively.As suggested by
Zhang (2016), NMT systems can achieve better re-
sults with the help of those monolingual corpora. In
this paper, our NMT systems only use the bilingual
data. We tune our system with PRO (Hopkins and
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May, 2011) to minimize (TER- BLEU)/2 ! on the de-
velopment set.

5.2 Translation Results

Table 1 shows the translation results of all sys-
tems. The syntax-based statistical machine trans-
lation model achieves an average (TER-BLEU)/2 of
13.36 on three test sets. The Cov. LVNMT system
achieves an average (TER-BLEU)/2 of 14.24, which
is about 0.9 points worse than Tree-to-string SMT
system. Please note that all systems are single sys-
tems. It is highly possible that ensemble of NMT
systems with different random seeds can lead to bet-
ter results over SMT.
We test three different alignments:

e Zh — En (one direction of GIZA++),

e GDFA (the “grow-diag-final-and” heuristic
merge of both directions of GIZA++),

e MaxEnt (trained on 67k hand-aligned sen-
tences).

'The metric used for optimization in this work is (TER-
BLEU)/2 to prevent the system from using sentence length alone
to impact BLEU or TER. Typical SMT systems use target word
count as a feature and it has been observed that BLEU can be
optimized by tweaking the weighting of the target word count
with no improvement in human assessments of translation qual-
ity. Conversely, in order to optimize TER shorter sentences can
be produced. Optimizing the combination of metrics alleviates
this effect (Arne Mauser and Ney, 2008).



The alignment quality improves from Zh — En to
MaxEnt. We also test different optimization strate-
gies: J (jointly), A (alignment only), and T (trans-
lation model only). A combination, A — T, shows
that we optimize A only first, then we fix A and only
update T part. Gau. denotes the smoothed trans-
formation (Section 3.2). Only the last row uses the
smoothed transformation, all others use the simple
transformation.

Experimental results in Table 1 show some in-
teresting results. First, with the same alignment, J
joint optimization works best than other optimiza-
tion strategies (lines 3 to 6). Unfortunately, break-
ing down the network into two separate parts (A and
T) and optimizing them separately do not help (lines
3 to 5). We have to conduct joint optimization J in
order to get a comparable or better result (lines 3, 5
and 6) over the baseline system.

Second, when we change the training alignment
seeds (Zh — En, GDFA, and MaxEnt) NMT model
does not yield significant different results (lines 6 to
8).

Third, the smoothed transformation (J + Gau.)
gives some improvements over the simple transfor-
mation (the last two lines), and achieves the best
result (1.2 better than LVNMT, and 0.3 better than
Tree-to-string). In terms of BLEU scores, we con-
duct the statistical significance tests with the sign-
test of Collins et al. (2005), the results show that the
improvements of our J + Gau. over LVNMT are
significant on three test sets (p < 0.01).

At last, the brevity penalty (BP) consistently gets
better after we add the alignment cost to NMT objec-
tive. Our alignment objective adjusts the translation
length to be more in line with the human references
accordingly.

5.3 Alignment Results

Table 2 shows the alignment F1 scores on the align-
ment test set (447 hand aligned sentences). The
MaxEnt model is trained on 67k hand-aligned sen-
tences, and achieves an F1 score of 75.96. For NMT
systems, we dump the alignment matrixes and con-
vert them into alignments with following steps. For
each target word, we sort the alphas and add the max
probability link if it is higher than 0.2. If we only
tune the alignment component (A in line 3), we im-
prove the alignment F1 score from 45.76 to 47.87.
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system pre. | rec. | F1
MaxEnt 74.86|77.10|75.96
Cov LVNMT (Mi et al., 2016b)|51.11 | 41.42|45.76
A 50.8845.19 |47.87

A= [53.18]4937(51.21
= Zh—=Enl 1 15029(44.90 47.44
£ A—T—J |53.7114933|51.43
5 J 54.29|48.02|50.97
<[ GDFA J 53.88(48.25 50,91
J 44.42]55.2549.25
MaxEnt | cou. 48.90|55.38|51.94

Table 2: Alignment F1 scores of different models.

And we further boost the score to 50.97 by tuning
alignment and translation jointly (J in line 7). Inter-
estingly, the system using MaxEnt produces more
alignments in the output, and results in a higher re-
call. This suggests that using MaxEnt can lead to a
sharper attention distribution, as we pick the align-
ment links based on the probabilities of attentions,
the sharper the distribution is, more links we can
pick. We believe that a sharp attention distribution
is a great property of NMT.

Again, the best result is J + Gau. in the last row,
which significantly improves the F1 by 5 points over
the baseline Cov. LVNMT system. When we use
MaxEnt alignments, J + Gau. smoothing gives us
about 1.7 points gain over J system. So it looks in-
teresting to run another J + Gau. over GDFA align-
ment.

Together with the results in Table 1, we conclude
that adding the alignment cost to the training ob-
jective helps both translation and alignment signif-
icantly.

6 Conclusion

In this paper, we utilize the “supervised” alignments,
and put the alignment cost to the NMT objective
function. In this way, we directly optimize the at-
tention model in a supervised way. Experiments
show significant improvements in both translation
and alignment tasks over a very strong LVNMT sys-
tem.
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