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Abstract

The PPDB is an automatically built database
which contains millions of paraphrases in dif-
ferent languages. Paraphrases in this resource
are associated with features that serve to their
ranking and reflect paraphrase quality. This
context-unaware ranking captures the seman-
tic similarity of paraphrases but cannot serve
to estimate their adequacy in specific con-
texts. We propose to use vector-space se-
mantic models for selecting PPDB paraphrases
that preserve the meaning of specific text frag-
ments. This is the first work that addresses the
substitutability of PPDB paraphrases in con-
text. We show that vector-space models of
meaning can be successfully applied to this
task and increase the benefit brought by the
use of the PPDB resource in applications.

1 Introduction

Paraphrases are alternative ways to convey the same
information and can improve natural language pro-
cessing by making systems more robust to lan-
guage variability and unseen words. The paraphrase
database (PPDB) (Ganitkevitch et al., 2013) contains
millions of automatically acquired paraphrases in
21 languages associated with features that serve to
their ranking. In PPDB’s most recent release (2.0),
such features include natural logic entailment rela-
tions, distributional and word embedding similari-
ties, formality and complexity scores, and scores as-
signed by a supervised ranking model (Pavlick et al.,
2015b). These features serve to identify good qual-
ity paraphrases but do not say much about their sub-
stitutability in context.

To judge the adequacy of paraphrases for specific
instances of words or phrases, the surrounding con-
text needs to be considered. This can be done using
vector-space models of semantics which calculate
the meaning of word occurrences in context based
on distributional representations (Mitchell and La-
pata, 2008; Erk and Padó, 2008; Dinu and Lapata,
2010; Thater et al., 2011). These models capture the
influence of the context on the meaning of a target
word through vector composition. More precisely,
they represent the contextualised meaning of a target
word w in context c by a vector obtained by com-
bining the vectors of w and c using some operation
such as component-wise multiplication or addition
(Thater et al., 2011). We use this kind of represen-
tations to rank the PPDB paraphrases in context and
retain the ones that preserve the semantics of spe-
cific text fragments. We evaluate the vector-based
ranking models on data hand-annotated with lexical
variants and compare the obtained ranking to confi-
dence estimates available in the PPDB, highlighting
the importance of context filtering for paraphrase se-
lection.

2 Context-based paraphrase ranking

2.1 Paraphrase substitutability

The PPDB1 provides millions of lexical, phrasal and
syntactic paraphrases in 21 languages – acquired
by applying bi- and multi-lingual pivoting on par-
allel corpora (Bannard and Callison-Burch, 2005) –
and is largely exploited in applications (Denkowski
and Lavie, 2010; Sultan et al., 2014; Faruqui et al.,

1http://paraphrase.org/#/download
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2015). PPDB paraphrases come into packages of dif-
ferent sizes (going from S to XXXL): smaller pack-
ages contain high-precision paraphrases while larger
ones aim for high coverage. Until now, pivot para-
phrases have been used as equivalence sets (i.e. all
paraphrases available for a word are viewed as se-
mantically equivalent) and their substitutability in
context has not yet been addressed.

Substitutability might be restrained by several
factors which make choosing the appropriate para-
phrase for a word or phrase in different contexts a
non-trivial task. In case of polysemous words, para-
phrases describe different meanings and can lead
to erroneous semantic mappings if substituted in
texts (Apidianaki et al., 2014; Cocos and Callison-
Burch, 2016). Even when paraphrases capture the
same general sense, they are hardly ever equiva-
lent synonyms and generally display subtle differ-
ences in meaning, connotation or usage (Edmonds
and Hirst, 2002). Stylistic variation might also be
present within paraphrase sets and substituting para-
phrases that differ in terms of complexity and for-
mality can result in a change in style (Pavlick and
Nenkova, 2015). To increase paraphrase applicabil-
ity in context, Pavlick et al. (2015a) propose to ex-
tract domain-specific pivot paraphrases by biasing
the parallel training data used by the pivot method
towards a specific domain. This customised model
greatly improves paraphrase quality for the target
domain but does not allow to rank and filter the
paraphrases already in the PPDB according to spe-
cific contexts. To our knowledge, this is the first
work that addresses the question of in-context sub-
stitutability of PPDB paraphrases. We show how ex-
isting substitutability models can be applied to this
task in order to increase the usefulness of this large-
scale resource in applications.

2.2 Vector-space models of paraphrase
adequacy

Vector-based models of meaning determine a grad-
ual concept of semantic similarity which does not
rely on a fixed set of dictionary senses. They are
used for word sense discrimination and induction
(Schütze, 1998; Turney and Pantel, 2010) and can
capture the contextualised meaning of words and
phrases (Mitchell and Lapata, 2008; Erk and Padó,
2008; Thater et al., 2011). Vector composition meth-

ods build representations that go beyond individual
words to obtain word meanings in context. Some
models use explicit sense representations while oth-
ers modify the basic meaning vector of a target word
with information from the vectors of the words in its
context. In the framework proposed by Dinu and
Lapata (2010), for example, word meaning is rep-
resented as a probability distribution over a set of
latent senses reflecting the out-of-context likelihood
of each sense, and the contextualised meaning of a
word is modeled as a change in the original sense
distribution.2 Reisinger and Mooney (2010) pro-
pose a multi-prototype vector-space model of mean-
ing which produces multiple “sense-specific” vec-
tors for each word, determined by clustering the con-
texts in which the word appears (Schütze, 1998).
The cluster centroids serve as prototype vectors de-
scribing a word’s senses and the meaning of a spe-
cific occurrence is determined by choosing the vec-
tor that minimizes the distance to the vector repre-
senting the current context. On the contrary, Thater
et al. (2011) use no explicit sense representation.
Their models allow the computation of vector repre-
sentations for individual uses of words, characteris-
ing the specific meaning of a target word in its sen-
tential context. When used for paraphrase ranking,
these models derive a contextualised vector for a tar-
get word by reweighting the components of its basic
meaning vector on the basis of the context of oc-
currence.3 Paraphrase candidates for a target word
are then ranked according to the cosine similarity
of their basic vector representation to the contextu-
alised vector of the target.4

3 Experimental Set-up

Data In our experiments, we use the COINCO cor-
pus (Kremer et al., 2014), a subset of the “Man-
ually Annotated Sub-Corpus” MASC (Ide et al.,
2010) which comprises more than 15K word in-

2The latent senses are induced using non-negative matrix
factorization (NMF) (Lee and Seung, 2001) and latent Dirichlet
allocation (LDA) (Blei et al., 2003).

3Depending on the model, the vector combination function
might be addition or multiplication of vector elements.

4Thater et al.’s (2011) models delivered best results in para-
phrase ranking on the CoInCo corpus (Kremer et al., 2014) and
the SEMEVAL-2007 Lexical Substitution dataset (McCarthy
and Navigli, 2007).
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|P|> 1 |P| ≥ 1
PPDB # Instances # Lemmas Avg |P| # Instances

S 2146 560 2.67 5573
M 3716 855 2.92 7771
L 6228 1394 3.57 10100

XL 13344 2822 10.33 14060
XXL 14507 3308 185.09 14593

Table 1: Number of COINCO instances and distinct lemmas

covered by each PPDB package.

stances manually annotated with single and multi-
word substitutes. The manual annotations serve to
evaluate the performance of the vector-space models
on the task of ranking PPDB paraphrases. For each
annotated English target word (noun, verb, adjective
or adverb) in COINCO, we collect the lexical para-
phrases (P = {p1, p2, ..., pn}) available for the word
in each PPDB package (from S to XXL).5 We do not
filter by syntactic label as annotations often include
substitutes of different grammatical categories. Ta-
ble 1 shows the number of COINCO tokens with
paraphrases in each PPDB package and the average
size of the retained paraphrase sets. The larger the
size of the resource, the greater the coverage of tar-
get words in COINCO. The last column of the table
gives the total number of instances covered, includ-
ing the ones with only one paraphrase. In the rank-
ing experiments, we focus on lemmas having more
than one paraphrase in the PPDB.6

Methodology We follow the methodology proposed
in Kremer et al. (2014) to explore the extent to
which vector-based models can select appropriate
paraphrases for words in context. Given a target
word w in a sentential context and a set of para-
phrases P extracted for w from a PPDB package, the
task is to rank the elements in P according to their
adequacy as paraphrases of w in the given context.

We carry out experiments with three versions of
the Thater et al. (2011) ranking model: (a) a
syntactically structured model (Syn.Vec) that uses
vectors recording co-occurrences based on depen-
dency triples, explicitly recording syntactic role in-

5Since the XXL package covers almost all annotated in-
stances in COINCO (14,507 out of 15,629) and there are 185.09
paraphrases in average for each instance, we exclude the XXXL

package from these experiments.
6We retain paraphrases of the lemmatised forms of the tar-

get words but these unsupervised ranking models can be easily
applied to the whole PPDB resource and in different languages.

formation within the vectors; (b) a syntactically fil-
tered model (Filter.Vec) using dependency-based co-
occurrence information without explicitly represent-
ing the syntactic role in the vector representations,
as in Padó and Lapata (2007); (c) a bag of words
model (Bow.Vec) using a window of ± 5 words.
Co-occurrence counts were extracted from the En-
glish Gigaword corpus7 analysed with Stanford de-
pendencies (de Marneffe et al., 2006). The syntactic
model vectors are based on dependency triples that
occur at least 5 times in the corpus and have a PMI
score of at least 2. The same thresholds apply to
the bag of words model where the frequency thresh-
old defines the minimum number of times that two
words have been observed in the same context win-
dow. The task of the vector-space models for each
target word instance is to rank the contents of the
corresponding paraphrase set (which contains all the
substitution candidates available for the target in the
PPDB) so that the actual substitutes are ranked higher
than the rest. For example, newspaper, manuscript
and document are good paraphrase candidates for
paper but we would expect newspaper to be ranked
higher than the other two in this sentence: “the pa-
per’s local administrator”.

A contextualised vector is derived from the ba-
sic meaning vector of a target word w by reinforc-
ing its dimensions that are licensed by the context
of the specific instance under consideration. In the
Bow.Vec model, the context is made up of 5 words
before and after the target while in the syntactic
models, it corresponds to the target’s direct syntac-
tic dependents. The contextualised vector for w is
obtained through vector addition and contains infor-
mation about the context words. Paraphrase can-
didates are ranked according to the cosine similar-
ity between the contextualised vector of the target
word and the basic meaning vectors of the candi-
dates. Following Kremer et al. (2014), we com-
pare the resulting ranked list to the COINCO gold
standard annotation (the paraphrase set of the tar-
get instance) using Generalised Average Precision
(GAP) (Kishida, 2005) and annotation frequency as
weights. GAP scores range between 0 and 1: a
score of 1 indicates a perfect ranking in which all
correct substitutes precede all incorrect ones, and

7http://catalog.ldc.upenn.edu/LDC2003T05
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PPDB Bow.Vec Syn.Vec Filter.Vec Google AGiga Ppdb1 Ppdb2 Parprob Random (5)

|P
|>

1

S 0.91 0.91 0.91 0.78 0.86 0.66 0.83 0.66 0.78
M 0.91 0.91 0.92 0.79 0.87 0.68 0.84 0.68 0.79
L 0.90 0.90 0.91 0.78 0.85 0.66 0.83 0.66 0.77

XL 0.78 0.79 0.79 0.58 0.67 0.44 0.66 0.43 0.58
XXL 0.53 0.56 0.57 0.27 0.36 0.12 0.58 0.12 0.27

|P
|≥

1

S 0.97 0.97 0.97 0.91 0.95 0.87 0.93 0.87 0.91
M 0.96 0.96 0.96 0.90 0.94 0.85 0.92 0.85 0.90
L 0.94 0.94 0.94 0.87 0.91 0.79 0.90 0.79 0.86

XL 0.79 0.80 0.80 0.60 0.69 0.47 0.68 0.46 0.60
XXL 0.54 0.56 0.58 0.28 0.37 0.13 0.59 0.14 0.28

Table 2: Average GAP scores for the contextual models, five paraphrase adequacy methods and the random ranking baseline against

the gold COINCO annotations. Scores reported for different sizes of the PPDB (from S to XXL).

correct high-weight substitutes precede low-weight
ones. For calculating the GAP score, we assign a
very low score (0.001) to paraphrases that are not
present in COINCO for a target word (i.e. not pro-
posed by the annotators).

4 Results

The average GAP scores obtained by the three
vector-space models (Bow.Vec, Syn.Vec and Fil-
ter.Vec) are shown in Table 2. The upper part of the
table reports scores obtained for words with more
than one paraphrase in the PPDB (|P|> 1) while the
lower part gives the scores for all words.

We compare the GAP scores to five different
rankings reflecting paraphrase quality in the PPDB

(Pavlick et al., 2015b). We retain the following
scores: 1. AGigaSim captures the distributional
similarity of a phrase e1 and its paraphrase e2 com-
puted according to contexts observed in the Anno-
tated Gigaword corpus (Napoles et al., 2011); 2.
GoogleNgramSim reflects the distributional simi-
larity of e1 and e2 computed according to contexts
observed in the Google Ngram corpus (Brants and
Franz, 2006); 3. ParProb: the paraphrase proba-
bility of e2 given the original phrase e1 (Bannard
and Callison-Burch, 2005); 4. Ppdb1: the heuris-
tic scoring used for ranking in the original release
of the PPDB (Ganitkevitch et al., 2013); 5. Ppdb2:
the improved ranking of English paraphrases avail-
able in PPDB 2.0. The results are also compared to
the output of a baseline where the paraphrases are
randomly ranked. The reported baseline figures are
PPDB package-specific since a different paraphrase
set is retained from each package, and correspond

to averages over 5 runs. The quality of the rank-
ing produced by the baseline clearly decreases as the
size of the PPDB resource increases due to the higher
number of retained paraphrases which makes rank-
ing harder.

The results in the upper part of the table show
that the vector-space models provide a better rank-
ing than the PPDB estimates and largely outperform
the random baseline. The three models perform
similarly on this ranking task according to average
GAP with the syntactically-informed models getting
slightly higher scores. Differences between Syn.Vec
and Filter.Vec, as well as between Bow.Vec and the
syntactic models, are highly significant in the XL

and XXL packages (p-value < 0.001) as computed
with approximate randomisation (Padó, 2006). In
the L package, the difference between Syn.Vec and
Filter.Vec is significant (p < 0.05) and the one be-
tween Bow.Vec and Filter.Vec is highly significant.
Finally, in the M package, only the difference be-
tween Bow.Vec and Filter.Vec is significant (p <
0.05), while Syn.Vec and Filter.Vec seem to deal
similarly well with the contents of this package.

Two PPDB ranking methods, AGiga and Ppdb2,
obtain good results. AgigaSim reflects the distribu-
tional similarity of the paraphrases in the Annotated
Gigaword corpus (Napoles et al., 2011). As noted
by Kremer et al. (2014), the whole-document an-
notation in COINCO faces the natural skewed dis-
tribution towards predominant senses which favors
non-contextualised baseline models. The good per-
formance of Ppdb2 is due to the use of a super-
vised scoring model trained on human judgments
of paraphrase quality. The human judgments were
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used to fit a regression to the features available in
PPDB 1.0 plus numerous new features including co-
sine word embedding similarity, lexical overlap fea-
tures, WordNet features and distributional similarity
features.8 The small difference observed between
the Ppdb2 and the syntactic models score in the
XXL package is highly significant. For the moment,
Ppdb2 scores are available in the PPDB only for En-
glish. Since the vector-space methodology is unsu-
pervised and language independent, it could be eas-
ily applied to paraphrase ranking in other languages.
The performance of the models remains high with
the XL package which contains paraphrase sets of
reasonable size (about 10 paraphrases per word) and
ensures a high coverage, and lowers in XXL which
contains 185 paraphrases in average per word (cf.
Table 1). To use this package more efficiently, one
could initially reduce the number of erroneous para-
phrases on the basis of the Ppdb2 score which pro-
vides a good ranking of the XXL package contents
before applying the vector-based models.

The increase in GAP score observed when words
with one paraphrase are considered shows that these
paraphrases are often correct. Here too, the contex-
tual models provide a better ranking than the out-of-
context scores and outperform the random baseline.
As in the previous case, the Ppdb2 score is slightly
higher in the XXL package.

5 Conclusion

We have shown that vector-based models of seman-
tics can be successfully applied to in-context ranking
of PPDB paraphrases. Allowing for better context-
informed substitutions, they can be used to filter
PPDB paraphrases on the fly and select variants pre-
serving the correct semantics of words and phrases
in texts. This processing would be beneficial to nu-
merous applications that need paraphrase support
(e.g. summarisation, query reformulation and lan-
guage learning), providing a practical means for ex-
ploiting the extensive multilingual knowledge avail-
able in the PPDB resource.

This study opens up many avenues for future
work. Although tested on English, the proposed
methodology can be applied to all languages in the

8The features used for computing the paraphrase ranking in
PPDB 2.0 are described in detail in Pavlick et al. (2015b).

PPDB even to the ones that do not dispose of a de-
pendency parser (as shown by the high performance
of the Bow.Vec models).

An ideal testbed for evaluation in a real applica-
tion and on multiple languages is offered by MT
evaluation. The METEOR-NEXT metric (Denkowski
and Lavie, 2010) provides a straightforward frame-
work for testing as it already exploits PPDB para-
phrases for capturing sense correspondences be-
tween text fragments. In its current version, the met-
ric views paraphrases as equivalent classes which
can lead to erroneous sense mappings due to seman-
tic distinctions present in the paraphrase sets. We
have recently showed that the context-based filtering
of semantic variants improves METEOR’s correlation
with human judgments of translation quality (Marie
and Apidianaki, 2015). We believe that a context-
based paraphrase ranking mechanism will enhance
correct substitutions and further improve the met-
ric. Last but not least, the paraphrase vectors can be
used for mapping the contents of the PPDB resource
to other multilingual resources for which vector rep-
resentations are available (Camacho-Collados et al.,
2015a; Camacho-Collados et al., 2015b). The in-
terest of mapping paraphrases in the vector space
to concepts found in existing semantic resources
is twofold: it would permit to analyse the seman-
tics of the paraphrases by putting them into corre-
spondence with explicit concept representations and
would serve to enrich other semantic resources (e.g.
BabelNet synsets) with semantically similar para-
phrases.

Handling phrasal paraphrases is another natural
extension of this work. We consider using a vector
space model of semantic composition to calculate
the meaning of longer candidate paraphrases (Dinu
et al., 2013; Paperno et al., 2014) and select appro-
priate substitutes for phrases in context.
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