
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1504–1515,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

CHARAGRAM: Embedding Words and Sentences via Character n-grams

John Wieting Mohit Bansal Kevin Gimpel Karen Livescu
Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
{jwieting,mbansal,kgimpel,klivescu}@ttic.edu

Abstract

We present CHARAGRAM embeddings, a sim-
ple approach for learning character-based
compositional models to embed textual se-
quences. A word or sentence is represented
using a character n-gram count vector, fol-
lowed by a single nonlinear transformation
to yield a low-dimensional embedding. We
use three tasks for evaluation: word simi-
larity, sentence similarity, and part-of-speech
tagging. We demonstrate that CHARAGRAM
embeddings outperform more complex archi-
tectures based on character-level recurrent and
convolutional neural networks, achieving new
state-of-the-art performance on several simi-
larity tasks.1

1 Introduction

Representing textual sequences such as words and
sentences is a fundamental component of natural
language understanding systems. Many functional
architectures have been proposed to model compo-
sitionality in word sequences, ranging from sim-
ple averaging (Mitchell and Lapata, 2010; Iyyer et
al., 2015) to functions with rich recursive struc-
ture (Socher et al., 2011; Zhu et al., 2015; Tai et
al., 2015; Bowman et al., 2016). Most work uses
words as the smallest units in the compositional ar-
chitecture, often using pretrained word embeddings
or learning them specifically for the task of inter-
est (Tai et al., 2015; He et al., 2015).

Some prior work has found benefit from using
character-based compositional models that encode

1Trained models and code are available at http://ttic.
uchicago.edu/˜wieting.

arbitrary character sequences into vectors. Exam-
ples include recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) on character
sequences, showing improvements for several NLP
tasks (Ling et al., 2015a; Kim et al., 2015; Balles-
teros et al., 2015; dos Santos and Guimarães, 2015).
By sharing subword information across words, char-
acter models have the potential to better represent
rare words and morphological variants.

Our approach, CHARAGRAM, uses a much sim-
pler functional architecture. We represent a charac-
ter sequence by a vector containing counts of char-
acter n-grams, inspired by Huang et al. (2013). This
vector is embedded into a low-dimensional space
using a single nonlinear transformation. This can
be interpreted as learning embeddings of character
n-grams, which are learned so as to produce effec-
tive sequence embeddings when a summation is per-
formed over the character n-grams in the sequence.

We consider three evaluations: word similar-
ity, sentence similarity, and part-of-speech tagging.
On multiple word similarity datasets, CHARAGRAM

outperforms RNNs and CNNs, achieving state-of-
the-art performance on SimLex-999 (Hill et al.,
2015). When evaluated on a large suite of sentence-
level semantic textual similarity tasks, CHARA-
GRAM embeddings again outperform the RNN and
CNN architectures as well as the PARAGRAM-
PHRASE embeddings of Wieting et al. (2016). We
also consider English part-of-speech (POS) tagging
using the bidirectional long short-term memory tag-
ger of Ling et al. (2015a). The three architectures
reach similar performance, though CHARAGRAM

converges fastest to high accuracy.

1504

We perform extensive analysis of our CHARA-
GRAM embeddings. We find large gains in perfor-
mance on rare words, showing the empirical ben-
efit of subword modeling. We also compare per-
formance across different character n-gram vocabu-
lary sizes, finding that the semantic tasks benefit far
more from large vocabularies than the syntactic task.
However, even for challenging semantic similarity
tasks, we still see strong performance with only a
few thousand character n-grams.

Nearest neighbors show that CHARAGRAM em-
beddings simultaneously address differences due to
spelling variation, morphology, and word choice.
Inspection of embeddings of particular character n-
grams reveals etymological links; e.g., die is close
to mort. We release our resources to the community
in the hope that CHARAGRAM can provide a strong
baseline for subword-aware text representation.

2 Related Work

We first review work on using subword informa-
tion in word embedding models. The simplest ap-
proaches append subword features to word embed-
dings, letting the model learn how to use the sub-
word information for particular tasks. Some added
knowledge-based morphological features to word
representations (Alexandrescu and Kirchhoff, 2006;
El-Desoky Mousa et al., 2013). Others learned em-
beddings jointly for subword units and words, defin-
ing simple compositional architectures (often based
on addition) to create word embeddings from sub-
word embeddings (Lazaridou et al., 2013; Botha and
Blunsom, 2014; Qiu et al., 2014; Chen et al., 2015).

A recent trend is to use richer functional archi-
tectures to convert character sequences into word
embeddings. Luong et al. (2013) used recur-
sive models to compose morphs into word embed-
dings, using unsupervised morphological analysis.
Ling et al. (2015a) used a bidirectional long short-
term memory (LSTM) RNN on characters to em-
bed arbitrary word types, showing strong perfor-
mance for language modeling and POS tagging.
Ballesteros et al. (2015) used this model to repre-
sent words for dependency parsing. Several have
used character-level RNN architectures for machine
translation, whether for representing source or tar-
get words (Ling et al., 2015b; Luong and Man-

ning, 2016), or for generating entire translations
character-by-character (Chung et al., 2016).

Sutskever et al. (2011) and Graves (2013) used
character-level RNNs for language modeling. Oth-
ers trained character-level RNN language models to
provide features for NLP tasks, including tokeniza-
tion and segmentation (Chrupała, 2013; Evang et al.,
2013), and text normalization (Chrupała, 2014).

CNNs with character n-gram filters have been
used to embed arbitrary word types for several tasks,
including language modeling (Kim et al., 2015),
part-of-speech tagging (dos Santos and Zadrozny,
2014), named entity recognition (dos Santos and
Guimarães, 2015), text classification (Zhang et
al., 2015), and machine translation (Costa-Jussà
and Fonollosa, 2016). Combinations of CNNs
and RNNs on characters have also been ex-
plored (Józefowicz et al., 2016).

Most closely-related to our approach is the DSSM
(instantiated variously as “deep semantic similarity
model” or “deep structured semantic model”) de-
veloped by Huang et al. (2013). For an informa-
tion retrieval task, they represented words using fea-
ture vectors containing counts of character n-grams.
Sperr et al. (2013) used a very similar technique to
represent words in neural language models for ma-
chine translation. Our CHARAGRAM embeddings
are based on this same idea. We show this strategy
to be extremely effective when applied to both words
and sentences, outperforming character LSTMs like
those used by Ling et al. (2015a) and character
CNNs like those from Kim et al. (2015).

3 Models

We now describe models that embed textual
sequences using their characters, including our
CHARAGRAM model and the baselines that we com-
pare to. We denote a character-based textual se-
quence by x = 〈x1, x2, ..., xm〉, which includes
space characters between words as well as spe-
cial start-of-sequence and end-of-sequence charac-
ters. We use xji to denote the subsequence of char-
acters from position i to position j inclusive, i.e.,
xji = 〈xi, xi+1, ..., xj〉, and we define xii = xi.

Our CHARAGRAM model embeds a character se-
quence x by adding the vectors of its character n-

1505

grams followed by an elementwise nonlinearity:

gCHAR(x) = h

b+

m+1∑

i=1

i∑

j=1+i−k

I
[
xij ∈ V

]
W xi

j

(1)
where h is a nonlinear function, b ∈ Rd is a bias
vector, k is the maximum length of any character n-
gram, I[p] is an indicator function that returns 1 if p
is true and 0 otherwise, V is the set of character n-
grams included in the model, and W xi

j ∈ Rd is the
vector for character n-gram xij .

The set V is used to restrict the model to a prede-
termined set (vocabulary) of character n-grams. Be-
low, we compare several choices for V . The num-
ber of parameters in the model is d + d|V |. This
model is based on the letter n-gram hashing tech-
nique developed by Huang et al. (2013). One can
also view Eq. (1) (as they did) as first populating
a vector of length |V | with counts of character n-
grams followed by a nonlinear transformation.

We compare the CHARAGRAM model to two
other models. First we consider LSTM architec-
tures (Hochreiter and Schmidhuber, 1997) over the
character sequence x, using the version from Gers et
al. (2003). We use a forward LSTM over the char-
acters in x, then take the final LSTM hidden vector
as the representation of x. Below we refer to this
model as “charLSTM.”

We also compare to convolutional neural net-
work (CNN) architectures, which we refer to below
as “charCNN.” We use the architecture from Kim
(2014) with a single convolutional layer followed by
an optional fully-connected layer. We use filters of
varying lengths of character n-grams, using two pri-
mary configurations of filter sets, one of which is
identical to that used by Kim et al. (2015). Each
filter operates over the entire sequence of character
n-grams in x and we use max pooling for each fil-
ter. We tune over the choice of nonlinearity for both
the convolutional filters and for the optional fully-
connected layer. We give more details below about
filter sets, n-gram lengths, and nonlinearities.

We note that using character n-gram convolu-
tional filters is similar to our use of character n-
grams in the CHARAGRAM model. The difference
is that, in the CHARAGRAM model, the n-gram must
match exactly for its vector to affect the representa-

tion, while in the CNN each filter will affect the rep-
resentation of all sequences (depending on the non-
linearity being used). So the CHARAGRAM model is
able to learn precise vectors for particular character
n-grams with specific meanings, while there is pres-
sure for the CNN filters to capture multiple similar
patterns that recur in the data. Our qualitative analy-
sis shows the specificity of the learned character n-
gram vectors learned by the CHARAGRAM model.

4 Experiments

We perform three sets of experiments. The goal of
the first two (Section 4.1) is to produce embeddings
for textual sequences such that the embeddings for
paraphrases have high cosine similarity. Our third
evaluation (Section 4.2) is a classification task, and
follows the setup of the English part-of-speech tag-
ging experiment from Ling et al. (2015a).

4.1 Word and Sentence Similarity
We compare the ability of our models to capture se-
mantic similarity for both words and sentences. We
train on noisy paraphrase pairs from the Paraphrase
Database (PPDB; Ganitkevitch et al., 2013) with an
L2 regularized contrastive loss objective function,
following the training procedure of Wieting et al.
(2015) and Wieting et al. (2016). More details are
provided in the supplementary material.

4.1.1 Datasets
For word similarity, we focus on two of the

most commonly used datasets for evaluating seman-
tic similarity of word embeddings: WordSim-353
(WS353) (Finkelstein et al., 2001) and SimLex-999
(SL999) (Hill et al., 2015). We also evaluate our best
model on the Stanford Rare Word Similarity Dataset
(Luong et al., 2013).

For sentence similarity, we evaluate on a diverse
set of 22 textual similarity datasets, including all
datasets from every SemEval semantic textual simi-
larity (STS) task from 2012 to 2015. We also eval-
uate on the SemEval 2015 Twitter task (Xu et al.,
2015) and the SemEval 2014 SICK Semantic Relat-
edness task (Marelli et al., 2014). Given two sen-
tences, the aim of the STS tasks is to predict their
similarity on a 0-5 scale, where 0 indicates the sen-
tences are on different topics and 5 indicates that
they are completely equivalent.

1506

Each STS task consists of 4-6 datasets cover-
ing a wide variety of domains, including newswire,
tweets, glosses, machine translation outputs, web
forums, news headlines, image and video captions,
among others. Most submissions for these tasks use
supervised models that are trained and tuned on pro-
vided training data or similar datasets from older
tasks. Further details are provided in the official task
descriptions (Agirre et al., 2012; Agirre et al., 2013;
Agirre et al., 2014; Agirre et al., 2015).

4.1.2 Preliminaries
For training data, we use pairs from PPDB. For

word similarity experiments, we train on word pairs
and for sentence similarity, we train on phrase pairs.
PPDB comes in different sizes (S, M, L, XL, XXL,
and XXXL), where each larger size subsumes all
smaller ones. The pairs in PPDB are sorted by a
confidence measure and so the smaller sets contain
higher precision paraphrases. PPDB is derived au-
tomatically from naturally-occurring bilingual text,
and versions of PPDB have been released for many
languages without the need for any manual annota-
tion (Ganitkevitch and Callison-Burch, 2014).

Before training the CHARAGRAM model, we need
to populate V , the vocabulary of character n-grams
included in the model. We obtain these from the
training data used for the final models in each set-
ting, which is either the lexical or phrasal section of
PPDB XXL. We tune over whether to include the
full sets of character n-grams in these datasets or
only those that appear more than once.

When extracting n-grams, we include spaces and
add an extra space before and after each word or
phrase in the training and evaluation data to ensure
that the beginning and end of each word is repre-
sented. We note that strong performance can be ob-
tained using far fewer character n-grams; we explore
the effects of varying the number of n-grams and the
n-gram orders in Section 4.4.

We used Adam (Kingma and Ba, 2014) with a
learning rate of 0.001 to learn the parameters in the
following experiments.

4.1.3 Word Embedding Experiments
Training and Tuning For hyperparameter tuning,
we used one epoch on the lexical section of PPDB
XXL, which consists of 770,007 word pairs. We

Model Tuned on WS353 SL999

charCNN SL999 26.31 30.64
WS353 33.19 16.73

charLSTM SL999 48.27 54.54
WS353 51.43 48.83

CHARAGRAM
SL999 53.87 63.33
WS353 58.35 60.00

inter-annotator agreement - 75.6 78

Table 1: Word similarity results (Spearman’s ρ × 100). The

inter-annotator agreement is the average Spearman’s ρ between

a single annotator and the average of all others.

used either WS353 or SL999 for model selection
(reported below). We then took the selected hyper-
parameters and trained for 50 epochs to ensure that
all models had a chance to converge.

Full details of our tuning procedure are provided
in the supplementary material. In short, we tuned all
models thoroughly, tuning the activation functions
for CHARAGRAM and charCNN, as well as the reg-
ularization strength, mini-batch size, and sampling
type for all models. For charCNN, we experimented
with two filter sets: one uses 175 filters for each n-
gram size ∈ {2, 3, 4}, and the other uses the set of
filters from Kim et al. (2015), consisting of 25 filters
of size 1, 50 of size 2, 75 of size 3, 100 of size 4, 125
of size 5, and 150 of size 6. We also experimented
with using dropout (Srivastava et al., 2014) on the
inputs to the final layer of charCNN in place of L2

regularization, as well as removing the last feedfor-
ward layer. Neither variation significantly improved
performance on our suite of tasks for word or sen-
tence similarity. However, using more filters does
improve performance, apparently linearly with the
square of the number of filters.

Architecture Comparison The results are shown
in Table 1. The CHARAGRAM model outperforms
both the charLSTM and charCNN models, and also
outperforms recent strong results on SL999.

We also found that the charCNN and charLSTM
models take far more epochs to converge than the
CHARAGRAM model. We noted this trend across ex-
periments and explore it further in Section 4.3.

Comparison to Prior Work We found that per-
formance of CHARAGRAM on word similarity tasks
can be improved by using more character n-grams.
This is explored in Section 4.4. Our best result from
these experiments was obtained with the largest

1507

Model SL999
Hill et al. (2014) 52
Schwartz et al. (2015) 56
Faruqui and Dyer (2015) 58
Wieting et al. (2015) 66.7
CHARAGRAM (large) 70.6

Table 2: Spearman’s ρ× 100 on SL999. CHARAGRAM (large)

refers to the CHARAGRAM model described in Section 4.4.

This model contains 173,881 character n-grams, more than the

100,283 in the CHARAGRAM model used in Table 1.

model we considered, which contains 173,881 n-
gram embeddings. When using WS353 for model
selection and training for 25 epochs, this model
achieves 70.6 on SL999. To our knowledge, this is
the best result reported on SL999 in this setting; Ta-
ble 2 shows comparable recent results. Note that a
higher SL999 number is reported by Mrkšić et al.
(2016), but the setting is not comparable to ours as
they started with embeddings tuned on SL999.

Lastly, we evaluated our model on the Stanford
Rare Word Similarity Dataset (Luong et al., 2013),
using SL999 for model selection. We obtained a
Spearman’s ρ of 47.1, which outperforms the 41.8
result from Soricut and Och (2015) and is compet-
itive with the 47.8 reported by Pennington et al.
(2014), which used a 42B-token corpus for training.

4.1.4 Sentence Embedding Experiments

Training and Tuning We did initial training of
our models using one pass through PPDB XL, which
consists of 3,033,753 unique phrase pairs. Follow-
ing Wieting et al. (2016), we use the annotated
phrase pairs developed by Pavlick et al. (2015) as
our validation set, using Spearman’s ρ to rank the
models. We then take the highest performing mod-
els and train on the 9,123,575 unique phrase pairs in
the phrasal section of PPDB XXL for 10 epochs.

For all experiments, we fix the mini-batch size
to 100, the margin δ to 0.4, and use MAX sam-
pling (see supplementary material). For CHARA-
GRAM, V contains all 122,610 character n-grams
(n ∈ {2, 3, 4}) in the PPDB XXL phrasal section.
Other tuning settings are the same as Section 4.1.3.

For another baseline, we train the PARAGRAM-
PHRASE model of Wieting et al. (2016),
tuning its regularization strength over
{10−5, 10−6, 10−7, 10−8}. The PARAGRAM-
PHRASE model simply uses word averaging as its

composition function, but outperforms many more
complex models.

In this section, we refer to our model as
CHARAGRAM-PHRASE because the input is a char-
acter sequence containing multiple words rather
than only a single word as in Section 4.1.3. Since
the vocabulary V is defined by the training data se-
quences, the CHARAGRAM-PHRASE model includes
character n-grams that span multiple words, per-
mitting it to capture some aspects of word order
and word co-occurrence, which the PARAGRAM-
PHRASE model is unable to do.

We encountered difficulties training the char-
LSTM and charCNN models for this task. We
tried several strategies to improve their chance at
convergence, including clipping gradients, increas-
ing training data, and experimenting with different
optimizers and learning rates. We found success
by using the original (confidence-based) ordering
of the PPDB phrase pairs for the initial epoch of
learning, then shuffling them for subsequent epochs.
This is similar to curriculum learning (Bengio et al.,
2009). The higher-confidence phrase pairs tend to be
shorter and have many overlapping words, possibly
making them easier to learn from.

Results An abbreviated version of the sentence
similarity results is shown in Table 3; the sup-
plementary material contains the full results. For
comparison, we report performance for the median
(50%), third quartile (75%), and top-performing
(Max) systems from the shared tasks. We ob-
serve strong performance for the CHARAGRAM-
PHRASE model. It always does better than the char-
CNN and charLSTM models, and outperforms the
PARAGRAM-PHRASE model on 15 of the 22 tasks.
Furthermore, CHARAGRAM-PHRASE matches or ex-
ceeds the top-performing task-tuned systems on 5
tasks, and is within 0.003 on 2 more. The charLSTM
and charCNN models are significantly worse, with
the charCNN being the better of the two and beating
PARAGRAM-PHRASE on 4 of the tasks.

We emphasize that there are many other mod-
els that could be compared to, such as an LSTM
over word embeddings. This and many other mod-
els were explored by Wieting et al. (2016). Their
PARAGRAM-PHRASE model, which simply learns
word embeddings within an averaging composition

1508

Dataset 50% 75% Max charCNN charLSTM PARAGRAM-
PHRASE

CHARAGRAM-
PHRASE

STS 2012 Average 54.5 59.5 70.3 56.5 40.1 58.5 66.1
STS 2013 Average 45.3 51.4 65.3 47.7 30.7 57.7 57.2
STS 2014 Average 64.7 71.4 76.7 64.7 46.8 71.5 74.7
STS 2015 Average 70.2 75.8 80.2 66.0 45.5 75.7 76.1
2014 SICK 71.4 79.9 82.8 62.9 50.3 72.0 70.0
2015 Twitter 49.9 52.5 61.9 48.6 39.9 52.7 53.6
Average 59.7 65.6 73.6 59.2 41.9 66.2 68.7

Table 3: Results on SemEval textual similarity datasets (Pearson’s r× 100). The highest score in each row is in boldface (omitting

the official task score columns). The last row shows the average performance over all 22 textual similarity datasets

Model Accuracy (%)
charCNN 97.02
charLSTM 96.90
CHARAGRAM 96.99
CHARAGRAM (2-layer) 97.10

Table 4: Results on part-of-speech tagging.

function, was among their best-performing models.
We used this model in our experiments as a strongly-
performing representative of their results.

Lastly, we note other recent work that consid-
ers a similar transfer learning setting. The Fast-
Sent model (Hill et al., 2016) uses the 2014 STS
task in its evaluation and reports an average Pear-
son’s r of 61.3. On the same data, the C-PHRASE
model (Pham et al., 2015) has an average Pearson’s
r of 65.7.2 Both results are lower than the 74.7
achieved by CHARAGRAM-PHRASE on this dataset.

4.2 POS Tagging Experiments

We now consider part-of-speech (POS) tagging,
since it has been used as a testbed for evaluating ar-
chitectures for character-level word representations.
It also differs from semantic similarity, allowing us
to evaluate our architectures on a syntactic task.
We replicate the POS tagging experimental setup
of Ling et al. (2015a). Their model uses a bidirec-
tional LSTM over character embeddings to represent
words. They then use the resulting word representa-
tions in another bidirectional LSTM that predicts the
tag for each word. We replace their character bidi-
rectional LSTM with our three architectures: char-
CNN, charLSTM, and CHARAGRAM.

We use the Wall Street Journal portion of the Penn
Treebank, using Sections 1-18 for training, 19-21 for
tuning, and 22-24 for testing. We set the dimension-
ality of the character embeddings to 50 and that of

2Both the results for FastSent and C-PHRASE were com-
puted from Table 4 in (Hill et al., 2016).

the (induced) word representations to 150. For opti-
mization, we use stochastic gradient descent with a
mini-batch size of 100 sentences. The learning rate
and momentum are set to 0.2 and 0.95 respectively.
We train the models for 50 epochs, again to ensure
that all models have an opportunity to converge.

The other settings for our models are mostly the
same as for the word and sentence experiments (Sec-
tion 4.1). We again use character n-grams with
n ∈ {2, 3, 4}, tuning over whether to include all
54,893 in the training data or only those that occur
more than once. However, there are two minor dif-
ferences from the previous sections. First, we add
a single binary feature to indicate if the token con-
tains a capital letter. Second, our tuning considers
rectified linear units as the activation function for the
CHARAGRAM and charCNN architectures.3

The results are shown in Table 4. Performance
is similar across models. We found that adding a
second fully-connected 150 dimensional layer to the
CHARAGRAM model improved results slightly.4

4.3 Convergence
One observation we made during our experiments
was that different models converged at significantly
different rates. Figure 1 plots the performance of the
word similarity and tagging tasks as a function of
training epoch. For word similarity, we plot the or-
acle Spearman’s ρ on SL999, while for tagging we
plot accuracy on the tuning set. We evaluate every
quarter epoch (approximately every 194,252 word
pairs) for word similarity and every epoch for tag-

3We did not consider ReLU for the similarity experiments
because the final embeddings are used directly to compute co-
sine similarities, which led to poor performance when restrict-
ing the embeddings to be non-negative.

4We also tried adding a second (300 dimensional) layer for
the word and sentence similarity models and found it to hurt
performance.

1509

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

Epoch

Sp
ea

rm
an

’s
ρ

Word Similarity

2 4 6 8 10

0.8

0.85

0.9

0.95

1

Epoch

A
cc

ur
ac

y

POS Tagging

CHARAGRAM

charLSTM
charCNN

Figure 1: Plots of performance versus training epoch for word

similarity and POS tagging.

ging. We only show the first 10 epochs of training in
the tagging plot.

The plots show that the CHARAGRAM model con-
verges quickly to high performance. The charCNN
and charLSTM models take many more epochs to
converge. Even with tagging, which uses a very high
learning rate, CHARAGRAM converges significantly
faster than the others. For word similarity, it ap-
pears that charCNN and charLSTM are still slowly
improving at the end of 50 epochs. This suggests
the possibility that these models could eventually
surpass CHARAGRAM with more epochs. However,
due to the large training sets available from PPDB
and the computational requirements of these archi-
tectures, we were unable to explore the regime of
training for many epochs. We conjecture that slow
convergence could also be the reason for the infe-
rior performance of LSTMs for similarity tasks as
reported by Wieting et al. (2016).

4.4 Model Size Experiments
The default setting for our CHARAGRAM and
CHARAGRAM-PHRASE models is to use all charac-
ter bigram, trigrams, and 4-grams that occur in the
training data at least C times, tuning C over the set
{1, 2}. This results in a large number of param-
eters, which could be seen as an unfair advantage
over the comparatively smaller charCNN and char-
LSTM similarity models, which have up to 881,025

Task # n-grams 2 2,3 2,3,4 2,3,4,5 2,3,4,5,6

POS 100 95.52 96.09 96.15 96.13 96.16

Tagging 1,000 96.72 96.86 96.97 97.02 97.03
50,000 96.81 97.00 97.02 97.04 97.09

Word 100 6.2 7.0 7.7 9.1 8.8

Similarity 1,000 15.2 33.0 38.7 43.2 43.9
50,000 14.4 52.4 67.8 69.2 69.5

Sentence 100 40.2 33.8 32.5 31.2 29.8

Similarity 1,000 50.1 60.3 58.6 56.6 55.6
50,000 45.7 64.7 66.6 63.0 61.3

Table 5: Results of using different numbers and different com-

binations of character n-grams.

and 763,200 parameters respectively (including 134
character embeddings for each).

However, for a given sequence, very few param-
eters in the CHARAGRAM model are actually used.
For charCNN and charLSTM, by contrast, all pa-
rameters are used except character embeddings for
characters not present in the sequence. For a 100-
character sequence, the 300-dimensional CHARA-
GRAM model uses approximately 90,000 parame-
ters, about one-tenth of those used by charCNN and
charLSTM for the same sequence.

We performed a series of experiments to inves-
tigate how the CHARAGRAM and CHARAGRAM-
PHRASE models perform with different numbers and
lengths of character n-grams. For a given k, we
took the k most frequent character n-grams for each
value of n in use. We experimented with k values
in {100, 1000, 50000}. If there were fewer than k
unique character n-grams for a given n, we used all
of them. For these experiments, we did very little
tuning, setting the regularization strength to 0 and
only tuning the activation function. For word simi-
larity, we report performance on SL999 after 5 train-
ing epochs on the lexical section of PPDB XXL. For
sentence similarity, we report the average Pearson’s
r over all 22 datasets after 5 training epochs on the
phrasal section of PPDB XL. For tagging, we report
accuracy on the tuning set after 50 training epochs.

The results are shown in Table 5. When using ex-
tremely small models with only 100 n-grams of each
order, we still see relatively strong performance on
tagging. However, the similarity tasks require far
more n-grams to yield strong performance. Using
1000 n-grams clearly outperforms 100, and 50,000
n-grams performs best. We also found that models
converged more quickly on tagging than on the sim-
ilarity tasks. We suspect this is due to differences
in task complexity. In tagging, the model does not

1510

need to learn all facets of each word’s semantics; it
only needs to map a word to its syntactic categories.
Therefore, simple surface-level features like affixes
can help tremendously. However, learning repre-
sentations that reflect detailed differences in word
meaning is a more fine-grained endeavor and this is
presumably why larger models are needed and con-
vergence is slower.

5 Analysis

5.1 Quantitative Analysis

One of our primary motivations for character-based
models is to address the issue of out-of-vocabulary
(OOV) words, which were found to be one of the
main sources of error for the PARAGRAM-PHRASE

model from Wieting et al. (2016). They reported a
negative correlation (Pearson’s r of -0.45) between
OOV rate and performance. We took the 12,108 sen-
tence pairs in all 20 SemEval STS tasks and binned
them by the total number of unknown words in the
pairs.5 We computed Pearson’s r over each bin. The
results are shown in Table 6.

Number of
Unknown Words N

PARAGRAM-
PHRASE

CHARAGRAM-
PHRASE

0 11,292 71.4 73.8
1 534 68.8 78.8
2 194 66.4 72.8

≥ 1 816 68.6 77.9
≥ 0 12,108 71.0 74.0

Table 6: Performance (Pearson’s r × 100) as a function of

the number of unknown words in the sentence pairs over all

20 SemEval STS datasets. N is the number of sentence pairs.

The CHARAGRAM-PHRASE model has better per-
formance for each number of unknown words. The
PARAGRAM-PHRASE model degrades when more
unknown words are present, presumably because it
is forced to use the same unknown word embedding
for all unknown words. The CHARAGRAM-PHRASE

model has no notion of unknown words, as it can
embed any character sequence.

We next investigated the sensitivity of the two
models to length, as measured by the maximum

5Unknown words were defined as those not present in
the 1.7 million unique (case-insensitive) tokens that com-
prise the vocabulary for the GloVe embeddings available at
http://nlp.stanford.edu/projects/glove/.
The PARAGRAM-SL999 embeddings, used to initialize the
PARAGRAM-PHRASE model, use this same vocabulary.

of the lengths of the two sentences in a pair. We
binned all of the 12,108 sentence pairs in the 20
SemEval STS tasks by length and then again found
the Pearson’s r for both the PARAGRAM-PHRASE

and CHARAGRAM-PHRASE models. The results are
shown in Table 7.

Max Length N
PARAGRAM-

PHRASE
CHARAGRAM-

PHRASE

≤ 4 71 67.9 72.9
5 216 71.1 71.9
6 572 67.0 69.7
7 1,097 71.5 74.0
8 1,356 74.2 74.5
9 1,266 71.7 72.7

10 1,010 70.7 74.2
11-15 3,143 71.8 73.7
16-20 1,559 73.0 75.1
≥ 21 1,818 74.5 75.4

Table 7: Performance (Pearson’s r × 100) as a function of the

maximum number of tokens in the sentence pairs over all 20

SemEval STS datasets. N is the number of sentence pairs.

Both models are robust to sentence length, achiev-
ing the highest correlations on the longest sentences.
We also find that CHARAGRAM-PHRASE outper-
forms PARAGRAM-PHRASE at all sentence lengths.

5.2 Qualitative Analysis

Bigram CHARAGRAM-PHRASE PARAGRAM-PHRASE

not capable incapable, unable, incapacity not, capable, stalled
not able unable, incapable, incapacity not, able, stalled
not possible impossible impracticable unable not, stalled, possible
not sufficient insufficient, sufficient, inadequate not, sufficient, stalled
not easy easy, difficult, tough not, stalled, easy

Table 8: Nearest neighboring words of selected bigrams under

CHARAGRAM-PHRASE and PARAGRAM-PHRASE embeddings.

Aside from OOVs, the PARAGRAM-PHRASE

model lacks the ability to model word order or
cooccurrence, since it simply averages the words in
the sequence. We were interested to see whether
CHARAGRAM-PHRASE could handle negation, since
it does model limited information about word order
(via character n-grams that span multiple words).
We made a list of “not” bigrams that could be repre-
sented by a single word, then embedded each bigram
using both models and did a nearest-neighbor search
over a working vocabulary.6 The results, in Ta-
ble 8, show how the CHARAGRAM-PHRASE embed-
dings model negation. In all cases but one, the near-

6This has all words in PPDB-XXL, our evaluations, and two
other datasets: SST (Socher et al., 2013) and SNLI (Bowman et
al., 2015), resulting in 93,217 unique (up-to-casing) tokens.

1511

Word Nearest Neighbors
vehicals vehical, vehicles, vehicels, vehicular, cars, vehicle, automobiles, car
serious-looking serious, grave, acute, serious-minded, seriousness, gravity, serious-faced
near-impossible impossible, hard/impossible, audacious-impossible, impractical, unable
growths growth, grow, growing, increases, grows, increase, rise, growls, rising
litered liter, litering, lited, liters, literate, literature, literary, literal, lite, obliterated
journeying journey, journeys, voyage, trip, roadtrip, travel, tourney, voyages, road-trip
babyyyyyy babyyyyyyy, baby, babys, babe, baby.i, babydoll, babycake, darling
adirty dirty, dirtyyyyyy, filthy, down-and-dirty, dirtying, dirties, ugly, dirty-blonde

refunding refunds, refunded, refund, repayment, reimbursement, rebate, repay
reimbursements, reimburse, repaying, repayments, rebates, rebating, reimburses

professors professor, professorships, professorship, teachers, professorial, teacher
prof., teaches, lecturers, teachings, instructors, headteachers, teacher-student

huge enormous, tremendous, large, big, vast, overwhelming, immense, giant
formidable, considerable, massive, huger, large-scale, great, daunting

Table 9: Nearest neighbors of CHARAGRAM-PHRASE embeddings. Above the double horizontal line are nearest neighbors of

words that were not in our training data, and below it are nearest neighbors of words that were in our training data.

est neighbor is a paraphrase for the bigram and the
next neighbors are mostly paraphrases as well. The
PARAGRAM-PHRASE model, unsurprisingly, is inca-
pable of modeling negation. In all cases, the nearest
neighbor is not, as it carries much more weight than
the word it modifies. The remaining nearest neigh-
bors are either the modified word or stalled.

We did two additional nearest neighbor ex-
plorations with our CHARAGRAM-PHRASE model.
First, we collected nearest neighbors for words that
were not in the training data (i.e., PPDB XXL), but
were in our working vocabulary. These are shown
in the upper part of Table 9. In the second, we col-
lected nearest neighbors of words that were in our
training data, shown in the lower part of Table 9.

Several kinds of similarity are being captured si-
multaneously. One kind is similarity in terms of
spelling variation, including misspellings (vehicals,
vehicels) and repetition for emphasis (babyyyyyyy).
Another kind is similarity in terms of morpholog-
ical variants of a shared root (e.g., journeying and
journey). We also find many synonym relationships
without significant amounts of overlapping charac-
ters (e.g., vehicles, cars, automobiles). Words in
the training data, which tend to be more commonly
used, do tend to have higher precision in their near-
est neighbors (e.g., neighbors of huge). We see oc-
casional mistakes for words that share many char-
acters but are not paraphrases (e.g., litered, a likely
misspelling of littered).

Lastly, since our model learns embeddings for
character n-grams, we show an analysis of charac-
ter n-gram nearest neighbors in Table 10. They ap-
pear to be grouped into themes, such as death (row

n-gram Nearest Neighbors
die dy, die, dead, dyi, rlif, mort, ecea, rpse, d aw
foo foo, eat, meal, alim, trit, feed, grai, din, nutr, toe
pee peed, hast, spee, fast, mpo , pace, vel, loci, ccel
aiv waiv, aive, boli, epea, ncel, abol, lift, bort, bol
ngu ngue, uist, ongu, tong, abic, gual, fren, ocab, ingu
2 2 , 02, 02 , tw, dua, xx, ii , xx, o 14, d .2

Table 10: Nearest neighbors of character n-gram embeddings

from trained CHARAGRAM-PHRASE model. The underscore in-

dicates a space, which signals the beginning or end of a word.

1), food (row 2), and speed (row 3), but have differ-
ent granularities. The n-grams in the last row appear
in paraphrases of 2, whereas the second-to-last row
shows n-grams in words related to language.

6 Conclusion
We performed a careful empirical comparison of
character-based compositional architectures on three
NLP tasks. We found a consistent trend: the sim-
plest architecture converges fastest to high perfor-
mance. These results, coupled with those from
Wieting et al. (2016), suggest that practitioners
should begin with simple architectures rather than
moving immediately to RNNs and CNNs. We re-
lease our code and trained models so they can be
used by the NLP community for general-purpose,
character-based text representation.

Acknowledgments
We thank the anonymous reviewers for their valu-
able comments. This research used resources of the
Argonne Leadership Computing Facility, which is a
DOE Office of Science User Facility supported un-
der Contract DE-AC02-06CH11357. We thank the
developers of Theano (Theano Development Team,
2016) and NVIDIA Corporation for donating GPUs
used in this research.

1512

References
Eneko Agirre, Mona Diab, Daniel Cer, and Aitor

Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In Proceedings
of the First Joint Conference on Lexical and Com-
putational Semantics-Volume 1: Proceedings of the
main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Confer-
ence and the Shared Task: Semantic Textual Similarity.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. SemEval-2014 task 10: Multilingual seman-
tic textual similarity. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval
2014).

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mihal-
cea, German Rigau, Larraitz Uria, and Janyce Wiebe.
2015. SemEval-2015 task 2: Semantic textual similar-
ity, English, Spanish and pilot on interpretability. In
Proceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015).

Andrei Alexandrescu and Katrin Kirchhoff. 2006. Fac-
tored neural language models. In Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by modeling
characters instead of words with LSTMs. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. 2009. Curriculum learning. In Pro-
ceedings of the 26th annual international conference
on machine learning.

Jan A. Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and D. Christopher Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, Christopher D. Manning, and Christo-
pher Potts. 2016. A fast unified model for parsing and
sentence understanding. In Proceedings of ACL.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and
Huanbo Luan. 2015. Joint learning of character and
word embeddings. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI).

Grzegorz Chrupała. 2013. Text segmentation with
character-level text embeddings. arXiv preprint
arXiv:1309.4628.

Grzegorz Chrupała. 2014. Normalizing tweets with edit
scripts and recurrent neural embeddings. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers).

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without explicit
segmentation for neural machine translation. arXiv
preprint arXiv:1603.06147.

Marta R. Costa-Jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. arXiv
preprint arXiv:1603.00810.

Cicero dos Santos and Victor Guimarães. 2015. Boost-
ing named entity recognition with neural character em-
beddings. In Proceedings of the Fifth Named Entity
Workshop.

Cicero dos Santos and Bianca Zadrozny. 2014. Learn-
ing character-level representations for part-of-speech
tagging. In Proceedings of the 31st International Con-
ference on Machine Learning (ICML-14).

Amr El-Desoky Mousa, Hong-Kwang Jeff Kuo, Lidia
Mangu, and Hagen Soltau. 2013. Morpheme-based
feature-rich language models using deep neural net-
works for LVCSR of Egyptian Arabic. In 2013 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE.

Kilian Evang, Valerio Basile, Grzegorz Chrupała, and
Johan Bos. 2013. Elephant: Sequence labeling for
word and sentence segmentation. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. arXiv
preprint arXiv:1506.05230.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th international
conference on World Wide Web. ACM.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014).

1513

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of HLT-NAACL.

Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmid-
huber. 2003. Learning precise timing with LSTM re-
current networks. The Journal of Machine Learning
Research, 3.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with convo-
lutional neural networks. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Felix Hill, Kyunghyun Cho, Sebastien Jean, Coline
Devin, and Yoshua Bengio. 2014. Embedding word
similarity with neural machine translation. arXiv
preprint arXiv:1412.6448.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4).

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences from
unlabelled data. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8).

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using click-
through data. In Proceedings of the 22nd ACM inter-
national conference on Conference on information &
knowledge management. ACM.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers).

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the limits
of language modeling. CoRR, abs/1602.02410.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural language
models. CoRR, abs/1508.06615.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Angeliki Lazaridou, Marco Marelli, Roberto Zamparelli,
and Marco Baroni. 2013. Compositional-ly derived
representations of morphologically complex words in
distributional semantics. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso,
Ramon Fermandez, Silvio Amir, Luis Marujo, and
Tiago Luis. 2015a. Finding function in form: Com-
positional character models for open vocabulary word
representation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015b. Character-based neural machine trans-
lation. arXiv preprint arXiv:1511.04586.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. arXiv preprint
arXiv:1604.00788.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceedings
of the Seventeenth Conference on Computational Nat-
ural Language Learning.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zampar-
elli. 2014. SemEval-2014 task 1: Evaluation of com-
positional distributional semantic models on full sen-
tences through semantic relatedness and textual entail-
ment. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014).

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive Science,
34(8).

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting word vectors to linguistic con-
straints. arXiv preprint arXiv:1603.00892.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevich,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of Empirical Methods in
Natural Language Processing (EMNLP 2014).

1514

Nghia The Pham, Germán Kruszewski, Angeliki Lazari-
dou, and Marco Baroni. 2015. Jointly optimizing
word representations for lexical and sentential tasks
with the c-phrase model. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers).

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu. 2014. Co-learning of word representations and
morpheme representations. In Proceedings of COL-
ING 2014, the 25th International Conference on Com-
putational Linguistics: Technical Papers.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceedings of
the Nineteenth Conference on Computational Natural
Language Learning.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural Infor-
mation Processing Systems.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Henning Sperr, Jan Niehues, and Alex Waibel. 2013.
Letter n-gram-based input encoding for continuous
space language models. In Proceedings of the Work-
shop on Continuous Vector Space Models and their
Compositionality.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1).

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML-11).

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers).

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688, May.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and back.
Transactions of the ACL (TACL).

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of International
Conference on Learning Representations.

Wei Xu, Chris Callison-Burch, and William B Dolan.
2015. SemEval-2015 task 1: Paraphrase and semantic
similarity in Twitter (PIT). In Proceedings of the 9th
International Workshop on Semantic Evaluation (Sem-
Eval).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015.
Long short-term memory over recursive structures. In
Proceedings of the 32nd International Conference on
Machine Learning.

1515

