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Abstract

We present an approach to simultaneously per-
form semantic segmentation and prepositional
phrase attachment resolution for captioned
images. Some ambiguities in language can-
not be resolved without simultaneously rea-
soning about an associated image. If we con-
sider the sentence “I shot an elephant in my
pajamas”, looking at language alone (and not
using common sense), it is unclear if it is the
person or the elephant wearing the pajamas
or both. Our approach produces a diverse
set of plausible hypotheses for both semantic
segmentation and prepositional phrase attach-
ment resolution that are then jointly reranked
to select the most consistent pair. We show
that our semantic segmentation and preposi-
tional phrase attachment resolution modules
have complementary strengths, and that joint
reasoning produces more accurate results than
any module operating in isolation. Multiple
hypotheses are also shown to be crucial to im-
proved multiple-module reasoning. Our vi-
sion and language approach significantly out-
performs the Stanford Parser (De Marneffe et
al., 2006) by 17.91% (28.69% relative) and
12.83% (25.28% relative) in two different ex-
periments. We also make small improvements
over DeepLab-CRF (Chen et al., 2015).

1 Introduction

Perception and intelligence problems are hard.
Whether we are interested in understanding an im-
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Figure 1: Overview of our approach. We propose a model
for simultaneous 2D semantic segmentation and preposi-
tional phrase attachment resolution by reasoning about
sentence parses. The language and vision modules each
produce M diverse hypotheses, and the goal is to select
a pair of consistent hypotheses. In this example the am-
biguity to be resolved from the image caption is whether
the dog is standing on or next to the couch. Both modules
benefit by selecting a pair of compatible hypotheses.

age or a sentence, our algorithms must operate un-
der tremendous levels of ambiguity. When a hu-
man reads the sentence “I eat sushi with tuna”, it
is clear that the preposition phrase “with tuna” mod-
ifies “sushi” and not the act of eating, but this may
be ambiguous to a machine. This problem of deter-
mining whether a prepositional phrase (“with tuna”)
modifies a noun phrase (“sushi”) or verb phrase
(“eating”) is formally known as Prepositional Phrase
Attachment Resolution (PPAR) (Ratnaparkhi et al.,
1994). Consider the captioned scene shown in Fig-
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ure 1. The caption “A dog is standing next to a
woman on a couch” exhibits a PP attachment am-
biguity – “(dog next to woman) on couch” vs “dog
next to (woman on couch)”. It is clear that having
access to image segmentations can help resolve this
ambiguity, and having access to the correct PP at-
tachment can help image segmentation.

There are two main roadblocks that keep us from
writing a single unified model (say a graphical
model) to perform both tasks: (1) Inaccurate Mod-
els – empirical studies (Meltzer et al., 2005, Szeliski
et al., 2008, Kappes et al., 2013) have repeatedly
found that models are often inaccurate and miscali-
brated – their “most-likely” beliefs are placed on so-
lutions far from the ground-truth. (2) Search Space
Explosion – jointly reasoning about multiple modal-
ities is difficult due to the combinatorial explosion of
search space ({exponentially-many segmentations}
× {exponentially-many sentence-parses}).

Proposed Approach and Contributions. In this
paper, we address the problem of simultaneous ob-
ject segmentation (also called semantic segmenta-
tion) and PPAR in captioned scenes. To the best of
our knowledge this is the first paper to do so.

Our main thesis is that a set of diverse plausible
hypotheses can serve as a concise interpretable sum-
mary of uncertainty in vision and language ‘mod-
ules’ (What does the semantic segmentation mod-
ule see in the world? What does the PPAR mod-
ule describe?) and form the basis for tractable joint
reasoning (How do we reconcile what the semantic
segmentation module sees in the world with how the
PPAR module describes it?).

Given our two modules with M hypotheses each,
how can we integrate beliefs across the segmenta-
tion and sentence parse modules to pick the best
pair of hypotheses? Our key focus is consistency
– correct hypotheses from different modules will be
correct in a consistent way, but incorrect hypotheses
will be incorrect in incompatible ways. Specifically,
we develop a MEDIATOR model that scores pairs for
consistency and searches over all M2 pairs to pick
the highest scoring one. We demonstrate our ap-
proach on three datasets – ABSTRACT-50S (Vedan-
tam et al., 2014), PASCAL-50S, and PASCAL-
Context-50S (Mottaghi et al., 2014). We show that
our vision+language approach significantly outper-
forms the Stanford Parser (De Marneffe et al., 2006)

by 20.66% (36.42% relative) for ABSTRACT-50S,
17.91% (28.69% relative) for PASCAL-50S, and
by 12.83% (25.28% relative) for PASCAL-Context-
50S. We also make small but consistent improve-
ments over DeepLab-CRF (Chen et al., 2015).

2 Related Work

Most works at the intersection of vision and NLP
tend to be ‘pipeline’ systems, where vision tasks
take 1-best inputs from NLP (e.g., sentence pars-
ings) without trying to improve NLP performance
and vice-versa. For instance, Fidler et al. (2013)
use prepositions to improve object segmentation and
scene classification, but only consider the most-
likely parse of the sentence and do not resolve ambi-
guities in text. Analogously, Yatskar et al. (2014) in-
vestigate the role of object, attribute, and action clas-
sification annotations for generating human-like de-
scriptions. While they achieve impressive results at
generating descriptions, they assume perfect vision
modules to generate sentences. Our work uses cur-
rent (still imperfect) vision and NLP modules to rea-
son about images and provided captions, and simul-
taneously improve both vision and language mod-
ules. Similar to our philosophy, an earlier work by
Barnard and Johnson (2005) used images to help
disambiguate word senses (e.g. piggy banks vs snow
banks). In a more recent work, Gella et al. (2016)
studied the problem of reasoning about an image and
a verb, where they attempt to pick the correct sense
of the verb that describes the action depicted in the
image. Berzak et al. (2015) resolve linguistic ambi-
guities in sentences coupled with videos that repre-
sent different interpretations of the sentences. Per-
haps the work closest to us is Kong et al. (2014),
who leverage information from an RGBD image
and its sentential description to improve 3D seman-
tic parsing and resolve ambiguities related to co-
reference resolution in the sentences (e.g., what “it”
refers to). We focus on a different kind of ambiguity
– the Prepositional Phrase (PP) attachment resolu-
tion. In the classification of parsing ambiguities, co-
reference resolution is considered a discourse am-
biguity (Poesio and Artstein, 2005) (arising out of
two different words across sentences for the same
object), while PP attachment is considered a syntac-
tic ambiguity (arising out of multiple valid sentence
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structures) and is typically considered much more
difficult to resolve (Bach, 2016, Davis, 2016).

A number of recent works have studied problems
at the intersection of vision and language, such as
Visual Question Answering (Antol et al., 2015, Ge-
man et al., 2014, Malinowski et al., 2015), Vi-
sual Madlibs (Yu et al., 2015), and image caption-
ing (Vinyals et al., 2015, Fang et al., 2015). Our
work falls in this domain with a key difference that
we produce both vision and NLP outputs.

Our work also has similarities with works on
‘spatial relation learning’ (Malinowski and Fritz,
2014, Lan et al., 2012), i.e. learning a visual rep-
resentation for noun-preposition-noun triplets (“car
on road”). While our approach can certainly utilize
such spatial relation classifiers if available, the focus
of our work is different. Our goal is to improve se-
mantic segmentation and PPAR by jointly reranking
segmentation-parsing solution pairs. Our approach
implicitly learns spatial relationships for preposi-
tions (“on”, “above”) but these are simply emergent
latent representations that help our reranker pick out
the most consistent pair of solutions.

Our work utilizes a line of work (Batra et al.,
2012, Batra, 2012, Prasad et al., 2014) on pro-
ducing diverse plausible solutions from probabilis-
tic models, which has been successfully applied
to a number of problem domains (Guzman-Rivera
et al., 2013, Yadollahpour et al., 2013, Gimpel et
al., 2013, Premachandran et al., 2014, Sun et al.,
2015, Ahmed et al., 2015).

3 Approach

In order to emphasize the generality of our approach,
and to show that our approach is compatible with a
wide class of implementations of semantic segmen-
tation and PPAR modules, we present our approach
with the modules abstracted as “black boxes” that
satisfy a few general requirements and minimal as-
sumptions. In Section 4, we describe each of the
modules in detail, making concrete their respective
features, and other details.

3.1 What is a Module?

The goal of a module is to take input variables
x ∈ X (images or sentences), and predict out-
put variables y ∈ Y (semantic segmentation) and

z ∈ Z (prepositional attachment expressed in sen-
tence parse). The two requirements on a module are
that it needs to be able to produce scores S(y|x) for
potential solutions and a list of plausible hypotheses
Y = {y1,y2, . . . ,yM}.

Multiple Hypotheses. In order to be useful, the
set Y of hypotheses must provide an accurate sum-
mary of the score landscape. Thus, the hypotheses
should be plausible (i.e., high-scoring) and mutu-
ally non-redundant (i.e., diverse). Our approach (de-
scribed next) is applicable to any choice of diverse
hypothesis generators. In our experiments, we use
the k-best algorithm of Huang and Chiang (2005)
for the sentence parsing module and the DivMBest
algorithm (Batra et al., 2012) for the semantic seg-
mentation module. Once we instantiate the modules
in Section 4, we describe the diverse solution gener-
ation in more detail.

3.2 Joint Reasoning Across Multiple Modules

We now show how to intergrate information from
both segmentation and PPAR modules. Recall that
our key focus is consistency – correct hypotheses
from different modules will be correct in a consis-
tent way, but incorrect hypotheses will be incorrect
in incompatible ways. Thus, our goal is to search
for a pair (semantic segmentation, sentence parsing)
that is mutually consistent.

Let Y = {y1, . . . ,yM} denote the M seman-
tic segmentation hypotheses and Z = {z1, . . . , zM}
denote the M PPAR hypotheses.

MEDIATOR Model. We develop a “mediator”
model that identifies high-scoring hypotheses across
modules in agreement with each other. Concretely,
we can express the MEDIATOR model as a fac-
tor graph where each node corresponds to a mod-
ule (semantic segmentation and PPAR). Working
with such a factor graph is typically completely in-
tractable because each node y, z has exponentially-
many states (image segmentations, sentence pars-
ing). As illustrated in Figure 2, in this factor-graph
view, the hypothesis sets Y,Z can be considered
‘delta-approximations’ for reducing the size of the
output spaces.

Unary factors S(·) capture the score/likelihood
of each hypothesis provided by the corresponding
module for the image/sentence at hand. Pairwise
factors C(·, ·) represent consistency factors. Impor-
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Figure 2: Illustrative inter-module factor graph. Each node takes exponentially-many or infinitely-many states and we
use a ‘delta approximation’ to limit support.

tantly, since we have restricted each module vari-
ables to just M states, we are free to capture ar-
bitrary domain-specific high-order relationships for
consistency, without any optimization concerns. In
fact, as we describe in our experiments, these con-
sistency factors may be designed to exploit domain
knowledge in fairly sophisticated ways.

Consistency Inference. We perform exhaustive
inference over all possible tuples.

argmax
i,j∈{1,...,M}

{
M(yi, zj) = S(yi) + S(zj) + C(yi, zj)

}
.

(1)

Notice that the search space with M hypotheses
each isM2. In our experiments, we allow each mod-
ule to take a different value for M , and typically
use around 10 solutions for each module, leading to
a mere 100 pairs, which is easily enumerable. We
found that even with such a small set, at least one of
the solutions in the set tends to be highly accurate,
meaning that the hypothesis sets have relatively high
recall. This shows the power of using a small set of
diverse hypotheses. For a large M , we can exploit a
number of standard ideas from the graphical models
literature (e.g. dual decomposition or belief propaga-
tion). In fact, this is one reason we show the factor
in Figure 2; there is a natural decomposition of the
problem into modules.

Training MEDIATOR. We can express the ME-
DIATOR score as M(yi, zj) = wᵀφ(x,yi, zj), as
a linear function of score and consistency features
φ(x,yi, zj) = [φS(y

i);φS(z
j);φC(y

i, zj)] , where
φS(·) are the single-module (semantic segmentation
and PPAR module) score features, and φC(·, ·) are
the inter-module consistency features. We describe
these features in detail in the experiments. We learn
these consistency weights w from a dataset anno-
tated with ground-truth for the two modules y, z.
Let {y∗, z∗} denote the oracle pair, composed of

the most accurate solutions in the hypothesis sets.
We learn the MEDIATOR parameters in a discrimina-
tive learning fashion by solving the following Struc-
tured SVM problem:

min
w,ξij

1

2
wᵀw + C

∑

ij

ξij (2a)

s.t. wᵀφ(x,y∗, z∗)︸ ︷︷ ︸
Score of oracle tuple

− wᵀφ(x,yi, zj)︸ ︷︷ ︸
Score of any other tuple

≥ 1︸︷︷︸
Margin

− ξij
L(yi, zj)︸ ︷︷ ︸

Slack scaled by loss

∀i, j ∈ {1, . . . ,M}.

(2b)

Intuitively, we can see that the constraint (2b) tries
to maximize the (soft) margin between the score of
the oracle pair and all other pairs in the hypothe-
sis sets. Importantly, the slack (or violation in the
margin) is scaled by the loss of the tuple. Thus,
if there are other good pairs not too much worse
than the oracle, the margin for such tuples will
not be tightly enforced. On the other hand, the mar-
gin between the oracle and bad tuples will be very
strictly enforced.

This learning procedure requires us to define the
loss function L(yi, zj), i.e., the cost of predicting
a tuple (semantic segmentation, sentence parsing).
We use a weighted average of individual losses:

L(yi, zj) = α`(ygt,yi) + (1− α)`(zgt, zj) (3)

The standard measure for evaluating semantic seg-
mentation is average Jaccard Index (or Intersection-
over-Union) (Everingham et al., 2010), while for
evaluating sentence parses w.r.t. their prepositional
phrase attachment, we use the fraction of preposi-
tions correctly attached. In our experiments, we re-
port results with such a convex combination of mod-
ule loss functions (for different values of α).
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4 Experiments

We now describe the setup of our experiments, pro-
vide implementation details of the modules, and de-
scribe the consistency features.

Datasets. Access to rich annotated image +
caption datasets is crucial for performing quanti-
tative evaluations. Since this is the first paper
to study the problem of joint segmentation and
PPAR, no standard datasets for this task exist so
we had to curate our own annotations for PPAR
on three image caption datasets – ABSTRACT-
50S (Vedantam et al., 2014), PASCAL-50S (Vedan-
tam et al., 2014) (expands the UIUC PASCAL
sentence dataset (Rashtchian et al., 2010) from 5
captions per image to 50), and PASCAL-Context-
50S (Mottaghi et al., 2014) (which uses the PAS-
CAL Context image annotations and the same sen-
tences as PASCAL-50S). Our annotations are pub-
licly available on the authors’ webpages. To cu-
rate the PASCAL-Context-50S PPAR annotations,
we first select all sentences that have preposition
phrase attachment ambiguities. We then plotted the
distribution of prepositions in these sentences. The
top 7 prepositions are used, as there is a large drop
in the frequencies beyond these. The 7 prepositions
are: “on”, “with”, “next to”, “in front of”, “by”,
“near”, and “down”. We then further sampled sen-
tences to ensure uniform distribution across prepo-
sitions. We perform a similar filtering for PASCAL-
50S and ABSTRACT-50S (using the top-6 preposi-
tions for ABSTRACT-50S). Details are in the sup-
plement. We consider a preposition ambiguous if
there are at least two parsings where one of the two
objects in the preposition dependency is the same
across the two parsings while the other object is dif-
ferent (e.g. (dog on couch) and (woman on couch)).
To summarize the statistics of all three datasets:

1. ABSTRACT-50S (Vedantam et al., 2014):
25,000 sentences (50 per image) with 500
images from abstract scenes made from cli-
part. Filtering for captions containing the top-6
prepositions resulted in 399 sentences describ-
ing 201 unique images. These 6 prepositions
are: “with”, ‘next to”, “on top of”, “in front
of”, “behind”, and “under”. Overall, there are
502 total prepositions, 406 ambiguous preposi-
tions, 80.88% ambiguity rate and 60 sentences

with multiple ambiguous prepositions.
2. PASCAL-50S (Vedantam et al., 2014): 50,000

sentences (50 per image) for the images in the
UIUC PASCAL sentence dataset (Rashtchian
et al., 2010). Filtering for the top-7 preposi-
tions resulted in a total of 30 unique images,
and 100 image-caption pairs, where ground-
truth PPAR were carefully annotated by two
vision + NLP graduate students. Overall,
there are 213 total prepositions, 147 ambigu-
ous prepositions, 69.01% ambiguity rate and
35 sentences with multiple ambiguous prepo-
sitions.

3. PASCAL-Context-50S (Mottaghi et al.,
2014): We use images and captions from
PASCAL-50S, but with PASCAL Context
segmentation annotations (60 categories in-
stead of 21). This makes the vision task more
challenging. Filtering this dataset for the top-7
prepositions resulted in a total of 966 unique
images and 1,822 image-caption pairs. Ground
truth annotations for the PPAR were collected
using Amazon Mechanical Turk. Workers
were shown an image and a prepositional
attachment (extracted from the corresponding
parsing of the caption) as a phrase (“woman
on couch”), and asked if it was correct. A
screenshot of our interface is available in the
supplement. Overall, there are 2,540 total
prepositions, 2,147 ambiguous prepositions,
84.53% ambiguity rate and 283 sentences with
multiple ambiguous prepositions.

Setup. Single Module: We first show that visual
features help PPAR by using the ABSTRACT-50S
dataset, which contains clipart scenes where the ex-
tent and position of all the objects in the scene is
known. This allows us to consider a scenario with a
perfect vision system.

Multiple Modules: In this experiment we use
imperfect language and vision modules, and show
improvements on the PASCAL-50S and PASCAL-
Context-50S datasets.

Module 1: Semantic Segmentation (SS) y. We
use DeepLab-CRF (Chen et al., 2015) and Di-
vMBest (Batra et al., 2012) to produce M diverse
segmentations of the images. To evaluate we use
image-level class-averaged Jaccard Index.

Module 2: PP Attachment Resolution (PPAR)
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z. We use a recent version (v3.3.1; released 2014)
of the PCFG Stanford parser module (De Marn-
effe et al., 2006, Huang and Chiang, 2005) to pro-
duce M parsings of the sentence. In addition to
the parse trees, the module can also output depen-
dencies, which make syntactical relationships more
explicit. Dependencies come in the form depen-
dency type(word1, word2), such as the preposition
dependency prep on(woman-8, couch-11) (the num-
ber indicates the word position in sentence). To eval-
uate, we count the percentage of preposition attach-
ments that the parse gets correct.

Baselines:
• INDEP. In our experiments, we compare our

proposed approach (MEDIATOR) to the highest
scoring solution predicted independently from
each module. For semantic segmentation this is
the output of DeepLab-CRF (Chen et al., 2015)
and for the PPAR module this is the 1-best out-
put of the Stanford Parser (De Marneffe et al.,
2006, Huang and Chiang, 2005). Since our hy-
pothesis lists are generated by greedy M-Best
algorithms, this corresponds to predicting the
(y1, z1) tuple. This comparison establishes the
importance of joint reasoning. To the best of
our knowledge, there is no existing (or even
natural) joint model to compare to.

• DOMAIN ADAPTATION. We learn a reranker
on the parses. Note that domain adaptation is
only needed for PPAR since the Stanford parser
is trained on Penn Treebank (Wall Street Jour-
nal text) and not on text about images (such as
image captions). Such domain adaptation is not
necessary for semantic segmentation. This is
a competitive single-module baseline. Specifi-
cally, we use the same parse-based features as
our approach, and learn a reranker over the Mz

parse trees (Mz = 10).
Our approach (MEDIATOR) significantly outper-

forms both baselines. The improvements over IN-
DEP show that joint reasoning produces more ac-
curate results than any module (vision or language)
operating in isolation. The improvements over DO-
MAIN ADAPTATION establish the source of im-
provements is indeed vision, and not the reranking
step. Simply adapting the parse from its original
training domain (Wall Street Journal) to our domain
(image captions) is not enough.

Ablative Study. Ours-CASCADE: This ablation
studies the importance of multiple hypothesis. For
each module (say y), we feed the single-best out-
put of the other module z1 as input. Each module
learns its own weight w using exactly the same con-
sistency features and learning algorithm as MEDI-
ATOR and predicts one of the plausible hypotheses
ŷCASCADE = argmaxy∈Y wᵀφ(x,y, z1). This ab-
lation of our system is similar to (Heitz et al., 2008)
and helps us in disentangling the benefits of multiple
hypothesis and joint reasoning.

Finally, we note that Ours-CASCADE can be
viewed as special cases of MEDIATOR. Let MEDI-
ATOR-(My,Mz) denote our approach run with My

hypotheses for the first module and Mz for the sec-
ond. Then INDEP corresponds to MEDIATOR-(1, 1)
and CASCADE corresponds to predicting the y so-
lution from MEDIATOR-(My, 1) and the z solution
from MEDIATOR-(1,Mz). To get an upper-bound
on our approach, we report oracle, the accuracy
of the most accurate tuple in 10× 10 tuples.

In the main paper, our results are presented where
MEDIATOR was trained with equally weighted loss
(α = 0.5), but we provide additional results for
varying values of α in the supplement.

MEDIATOR and Consistency Features. Recall
that we have two types of features – (1) score fea-
tures φS(yi) and φS(zj), which try to capture how
likely solutions yi and zj are respectively, and (2)
consistency features φC(yi, zj), which capture how
consistent the PP attachments in zj are with the
segmentation in yi. For each (object1, preposi-
tion, object2) in zj , we compute 6 features between
object1 and object2 segmentations in yi. Since the
humans writing the captions may use multiple syn-
onymous words (e.g. dog, puppy) for the same vi-
sual entity, we use word2vec (Mikolov et al., 2013)
similarities to map the nouns in the sentences to the
corresponding dataset categories.

• Semantic Segmentation Score Features
(φS(yi)) (2-dim): We use ranks and solution
scores from DeepLab-CRF (Chen et al., 2015).

• PPAR Score Features (φS(zi)) (9-dim): We
use ranks and the log probability of parses
from (De Marneffe et al., 2006), and 7 binary
indicators for PASCAL (6 for ABSTRACT-
50S) denoting which prepositions are present
in the parse.
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Figure 3: Example on PASCAL-50S (“A dog is stand-
ing next to a woman on a couch.”). The ambiguity in this
sentence “(dog next to woman) on couch” vs “dog next to
(woman on couch)”. We calculate the horizontal and ver-
tical distances between the segmentation centers of “per-
son” and “couch” and between the segmentation centers
of “dog” and “couch”. We see that the “dog” is much fur-
ther below the couch (53.91) than the woman (2.65). So,
if the MEDIATOR model learned that “on” means the first
object is above the second object, we would expect it to
choose the “person on couch” preposition parsing.

• Inter-Module Consistency Features (56-
dim): For each of the 7 prepositions, 8 features
are calculated:

– One feature is the Euclidean distance
between the center of the segmentation
masks of the two objects connected by
the preposition. These two objects in the
segmentation correspond to the categories
with which the soft similarity of the two
objects in the sentence is highest among
all PASCAL categories.

– Four features capture max{0, (normalized
-directional-distance)}, where directional-
distance measures above/below/left/right
displacements between the two objects in
the segmentation, and normalization in-
volves dividing by height/width.

– One feature is the ratio of sizes between
object1 and object2 in the segmentation.

– Two features capture the word2vec sim-
ilarity between the two objects in PPAR
(say ‘puppy’ and ‘kitty’) with their most
similar PASCAL category (say ‘dog’ and
‘cat’), where these features are 0 if the cat-
egories are not present in segmentation.

A visual illustration for some of these features
for PASCAL can be seen in Figure 3. In the
case where an object parsed from zj is not

present in the segmentation yi, the distance
features are set to 0. The ratio of areas fea-
tures (area of smaller object / area of larger ob-
ject) are also set to 0 assuming that the smaller
object is missing. In the case where an ob-
ject has two or more connected components in
the segmentation, the distances are computed
w.r.t. the centroid of the segmentation and the
area is computed as the number of pixels in
the union of the instance segmentation masks.
We also calculate 20 features for PASCAL-50S
and 59 features for PASCAL-Context-50S that
capture that consistency between yi and zj , in
terms of presence/absence of PASCAL cate-
gories. For each noun in PPAR we compute
its word2vec similarity with all PASCAL cat-
egories. For each of the PASCAL categories,
the feature is the sum of similarities (with the
PASCAL category) over all nouns if the cate-
gory is present in segmentation, and is -1 times
the sum of similarities over all nouns otherwise.
This feature set was not used for ABSTRACT-
50S, since these features were intended to help
improve the accuracy of the semantic segmen-
tation module. For ABSTRACT-50S, we only
use the 5 distance features, resulting in a 30-
dim feature vector.

4.1 Single-Module Results
We performed a 10-fold cross-validation on the
ABSTRACT-50S dataset to pick M (=10) and the
weight on the hinge-loss for MEDIATOR (C). The
results are presented in Table 1. Our approach sig-
nificantly outpeforms 1-best outputs of the Stan-
ford Parser (De Marneffe et al., 2006) by 20.66%
(36.42% relative). This shows a need for diverse hy-
potheses and reasoning about visual features when
picking a sentence parse. oracle denotes the best
achievable performance using these 10 hypotheses.

Module
Stanford
Parser

Domain
Adaptation Ours oracle

PPAR 56.73 57.23 77.39 97.53

Table 1: Results on our subset of ABSTRACT-50S.

4.2 Multiple-Module Results
We performed 10-fold cross-val for our results of
PASCAL-50S and PASCAL-Context-50S, with 8
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(a) ABSTRACT-50S (b) PASCAL-50S (c) PASCAL-Context-50S
Figure 4: (a) Validation accuracies for different values of M on ABSTRACT-50S, (b) for different values of My,Mz

on PASCAL-50S, (c) for different values of My,Mz on PASCAL-Context-50S.

PASCAL-50S PASCAL-Context-50S

Instance-Level
Jaccard Index PPAR Acc. Average

Instance-Level
Jaccard Index PPAR Acc. Average

DeepLab-CRF 66.83 - - 43.94 - -
Stanford Parser - 62.42 - - 50.75 -
Average - - 64.63 - - 47.345

Domain Adaptation - 72.08 - - 58.32 -

Ours CASCADE 67.56 75.00 71.28 43.94 63.58 53.76
Ours MEDIATOR 67.58 80.33 73.96 43.94 63.58 53.76
oracle 69.96 96.50 83.23 49.21 75.75 62.48

Table 2: Results on our subset of the PASCAL-50S and PASCAL-Context-50S datasets. We are able to significantly
outperform the Stanford Parser and make small improvements over DeepLab-CRF for PASCAL-50S.

train folds, 1 val fold, and 1 test fold, where
the val fold was used to pick My, Mz, and C. Fig-
ure 4 shows the average combined accuracy on val,
which was found to be maximal atMy = 5,Mz = 3
for PASCAL-50S, and My = 1,Mz = 10 for
PASCAL-Context-50S, which are used at test time.

We present our results in Table 2. Our
approach significantly outperforms the Stanford
Parser (De Marneffe et al., 2006) by 17.91%
(28.69% relative) for PASCAL-50S, and 12.83%
(25.28% relative) for PASCAL-Context-50S. We
also make small improvements over DeepLab-
CRF (Chen et al., 2015) in the case of PASCAL-50S.
To measure statistical significance of our results, we
performed paired t-tests between MEDIATOR and
INDEP. For both modules (and average), the null
hypothesis (that the accuracies of our approach and
baseline come from the same distribution) can be
successfully rejected at p-value 0.05. For sake of
completeness, we also compared MEDIATOR with
our ablated system (CASCADE) and found statisti-
cally significant differences only in PPAR.

These results demonstrate a need for each mod-
ule to produce a diverse set of plausible hypothe-
ses for our MEDIATOR model to reason about. In
the case of PASCAL-Context-50S, MEDIATOR per-
forms identical to CASCADE since My is chosen
as 1 (which is the CASCADE setting) in cross-
validation. Recall that MEDIATOR is a larger model
class than CASCADE (in fact, CASCADE is a special
case of MEDIATOR with My = 1). It is interesting
to see that the large model class does not hurt, and
MEDIATOR gracefully reduces to a smaller capac-
ity model (CASCADE) if the amount of data is not
enough to warrant the extra capacity. We hypothe-
size that in the presence of more training data, cross-
validation may pick a different setting of My and
Mz, resulting in full utilization of the model capac-
ity. Also note that our domain adaptation baseline
achieved an accuracy higher than MAP/Stanford-
Parser, but significantly lower than our approach for
both PASCAL-50S and PASCAL-Context-50S. We
also performed this for our single-module experi-
ment and picked Mz (=10) with cross-validation,
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on by with

Figure 5: Visualizations for
3 different prepositions (red =
high scores, blue = low scores).
We can see that our model
has implicitly learned spatial ar-
rangements unlike other spatial
relation learning (SRL) works.

PASCAL-50S PASCAL-Context-50S

Feature set
Instance-Level
Jaccard Index PPAR Acc. PPAR Acc.

All features 67.58 80.33 63.58
Drop all consistency 66.96 66.67 61.47
Drop Euclidean distance 67.27 77.33 63.77
Drop directional distance 67.12 78.67 63.63
Drop word2vec 67.58 78.33 62.72
Drop category presence 67.48 79.25 61.19

Table 3: Ablation study of different feature combinations. Only PPAR Acc. is
shown for PASCAL-Context-50S because My = 1.

which resulted in an accuracy of 57.23%. Again,
this is higher than MAP/Stanford-Parser (56.73%),
but significantly lower than our approach (77.39%).
Clearly, domain adaptation alone is not sufficient.
We also see that oracle performance is fairly high,
suggesting that when there is ambiguity and room
for improvement, MEDIATOR is able to rerank ef-
fectively.

Ablation Study for Features. Table 3 displays
results of an ablation study on PASCAL-50S and
PASCAL-Context-50S to show the importance of
the different features. In each row, we retain the
module score features and drop a single set of con-
sistency features. We can see all consistency fea-
tures contribute to the performance of MEDIATOR.

Visualizing Prepositions. Figure 5 shows a vi-
sualization for what our MEDIATOR model has im-
plicitly learned about 3 prepositions (“on”, “by”,
“with”). These visualizations show the score ob-
tained by taking the dot product of distance fea-
tures (Euclidean and directional) between object1
and object2 connected by the preposition with the
corresponding learned weights of the model, consid-
ering object2 to be at the center of the visualization.
Notice that these were learned without explicit train-
ing for spatial learning as in spatial relation learning
(SRL) works (Malinowski and Fritz, 2014, Lan et
al., 2012). These were simply recovered as an in-
termediate step towards reranking SS + PPAR hy-
potheses. Also note that SRL cannot handle multi-
ple segmentation hypotheses, which our work shows
are important (Table 2 CASCADE). In addition, our
approach is more general.

5 Discussions and Conclusion

We presented an approach to the simultaneous rea-
soning about prepositional phrase attachment res-

olution of captions and semantic segmentation in
images that integrates beliefs across the modules
to pick the best pair of a diverse set of hypothe-
ses. Our full model (MEDIATOR) significantly
improves the accuracy of PPAR over the Stan-
ford Parser by 17.91% for PASCAL-50S and by
12.83% for PASCAL-Context-50S, and achieves
a small improvement on semantic segmentation
over DeepLab-CRF for PASCAL-50S. These results
demonstrate a need for information exchange be-
tween the modules, as well as a need for a diverse set
of hypotheses to concisely capture the uncertainties
of each module. Large gains in PPAR validate our
intuition that vision is very helpful for dealing with
ambiguity in language. Furthermore, we see even
larger gains are possible from the oracle accuracies.

While we have demonstrated our approach on
a task involving simultaneous reasoning about lan-
guage and vision, our approach is general and can
be used for other applications. Overall, we hope our
approach will be useful in a number of settings.
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