
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1153–1162,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Convolutional Neural Network Language Models

Ngoc-Quan Pham and German Kruszewski and Gemma Boleda
Center for Mind/Brain Sciences

University of Trento
{firstname.lastname}@unitn.it

Abstract

Convolutional Neural Networks (CNNs) have
shown to yield very strong results in several
Computer Vision tasks. Their application to
language has received much less attention,
and it has mainly focused on static classifica-
tion tasks, such as sentence classification for
Sentiment Analysis or relation extraction. In
this work, we study the application of CNNs
to language modeling, a dynamic, sequential
prediction task that needs models to capture
local as well as long-range dependency infor-
mation. Our contribution is twofold. First,
we show that CNNs achieve 11-26% better
absolute performance than feed-forward neu-
ral language models, demonstrating their po-
tential for language representation even in se-
quential tasks. As for recurrent models, our
model outperforms RNNs but is below state of
the art LSTM models. Second, we gain some
understanding of the behavior of the model,
showing that CNNs in language act as feature
detectors at a high level of abstraction, like in
Computer Vision, and that the model can prof-
itably use information from as far as 16 words
before the target.

1 Introduction

Convolutional Neural Networks (CNNs) are the
family of neural network models that feature a type
of layer known as the convolutional layer. This layer
can extract features by convolving a learnable filter
(or kernel) along different positions of a vectorial in-
put.

CNNs have been successfully applied in Com-
puter Vision in many different tasks, including ob-

ject recognition, scene parsing, and action recogni-
tion (Gu et al., 2015), but they have received less
attention in NLP. They have been somewhat ex-
plored in static classification tasks where the model
is provided with a full linguistic unit as input (e.g. a
sentence) and classes are treated as independent of
each other. Examples of this are sentence or docu-
ment classification for tasks such as Sentiment Anal-
ysis or Topic Categorization (Kalchbrenner et al.,
2014; Kim, 2014), sentence matching (Hu et al.,
2014), and relation extraction (Nguyen and Grish-
man, 2015). However, their application to sequen-
tial prediction tasks, where the input is construed to
be part of a sequence (for example, language model-
ing or POS tagging), has been rather limited (with
exceptions, such as Collobert et al. (2011)). The
main contribution of this paper is a systematic evalu-
ation of CNNs in the context of a prominent sequen-
tial prediction task, namely, language modeling.

Statistical language models are a crucial compo-
nent in many NLP applications, such as Automatic
Speech Recognition, Machine Translation, and In-
formation Retrieval. Here, we study the problem
under the standard formulation of learning to predict
the upcoming token given its previous context. One
successful approach to this problem relies on count-
ing the number of occurrences of n-grams while
using smoothing and back-off techniques to esti-
mate the probability of an upcoming word (Kneser
and Ney, 1995). However, since each individual
word is treated independently of the others, n-gram
models fail to capture semantic relations between
words. In contrast, neural network language mod-
els (Bengio et al., 2006) learn to predict the up-
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coming word given the previous context while em-
bedding the vocabulary in a continuous space that
can represent the similarity structure between words.
Both feed-forward (Schwenk, 2007) and recurrent
neural networks (Mikolov et al., 2010) have been
shown to outperform n-gram models in various se-
tups (Mikolov et al., 2010; Hai Son et al., 2011).
These two types of neural networks make different
architectural decisions. Recurrent networks take one
token at a time together with a hidden “memory”
vector as input and produce a prediction and an up-
dated hidden vector for the next time step. In con-
trast, feed-forward language models take as input the
last n tokens, where n is a fixed window size, and
use them jointly to predict the upcoming word.

In this paper we define and explore CNN-based
language models and compare them with both feed-
forward and recurrent neural networks. Our results
show a 11-26% perplexity reduction of the CNN
with respect to the feed-forward language model,
comparable or higher performance compared to
similarly-sized recurrent models, and lower perfor-
mance with respect to larger, state-of-the-art recur-
rent language models (LSTMs as trained in Zaremba
et al. (2014)).

Our second contribution is an analysis of the kind
of information learned by the CNN, showing that the
network learns to extract a combination of grammat-
ical, semantic, and topical information from tokens
of all across the input window, even those that are
the farthest from the target.

2 Related Work

Convolutional Neural Networks (CNNs) were orig-
inally designed to deal with hierarchical representa-
tion in Computer Vision (LeCun and Bengio, 1995).
Deep convolutional networks have been success-
fully applied in image classification and understand-
ing (Simonyan and Zisserman, 2014; He et al.,
2015). In such systems the convolutional kernels
learn to detect visual features at both local and more
abstract levels.

In NLP, CNNs have been mainly applied to static
classification tasks for discovering latent structures
in text. Kim (2014) uses a CNN to tackle sentence
classification, with competitive results. The same
work also introduces kernels with varying window

sizes to learn complementary features at different
aggregation levels. Kalchbrenner et al. (2014) pro-
pose a convolutional architecture for sentence repre-
sentation that vertically stacks multiple convolution
layers, each of which can learn independent convo-
lution kernels. CNNs with similar structures have
also been applied to other classification tasks, such
as semantic matching (Hu et al., 2014), relation ex-
traction (Nguyen and Grishman, 2015), and infor-
mation retrieval (Shen et al., 2014). In contrast, Col-
lobert et al. (2011) explore a CNN architecture to
solve various sequential and non-sequential NLP
tasks such as part-of-speech tagging, named entity
recognition and also language modeling. This is per-
haps the work that is closest to ours in the existing
literature. However, their model differs from ours in
that it uses a max-pooling layer that picks the most
activated feature across time, thus ignoring tempo-
ral information, whereas we explicitly avoid doing
so. More importantly, the language models trained
in that work are only evaluated through downstream
tasks and through the quality of the learned word
embeddings, but not on the sequence prediction task
itself, as we do here.

Besides being applied to word-based sequences,
the convolutional layers have also been used to
model sequences at the character level. Kim et al.
(2015) propose a recurrent language model that re-
places the word-indexed projection matrix with a
convolution layer fed with the character sequence
that constitutes each word to find morphological pat-
terns. The main difference between that work and
ours is that we consider words as the smallest lin-
guistic unit, and thus apply the convolutional layer
at the word level.

Statistical language modeling, the task we tackle,
differs from most of the tasks where CNNs have
been applied before in multiple ways. First, the input
typically consists of incomplete sequences of words
rather than complete sentences. Second, as a classi-
fication problem, it features an extremely large num-
ber of classes (the words in a large vocabulary). Fi-
nally, temporal information, which can be safely dis-
carded in many settings with little impact in perfor-
mance, is critical here: An n-gram appearing close
to the predicted word may be more informative, or
yield different information, than the same n-gram
appearing several tokens earlier.
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3 Models

Our model is constructed by extending a feed-
forward language model (FFLM) with convolutional
layers. In what follows, we first explain the imple-
mentation of the base FFLM and then describe the
CNN model that we study.

3.1 Baseline FFLM

Our baseline feed-forward language model (FFLM)
is almost identical to the original model proposed
by Bengio et al. (2006), with only slight changes to
push its performance as high as we can, producing
a very strong baseline. In particular, we extend it
with highway layers and use Dropout as regulariza-
tion. The model is illustrated in Figure 1 and works
as follows. First, each word in the input n-gram is
mapped to a low-dimensional vector (viz. embed-
ding) though a shared lookup table. Next, these
word vectors are concatenated and fed to a highway
layer (Srivastava et al., 2015). Highway layers im-
prove the gradient flow of the network by computing
as output a convex combination between its input
(called the carry) and a traditional non-linear trans-
formation of it (called the transform). As a result, if
there is a neuron whose gradient cannot flow through
the transform component (e.g., because the activa-
tion is zero), it can still receive the back-propagation
update signal through the carry gate. We empiri-
cally observed the usage of a single highway layer to
significantly improve the performance of the model.
Even though a systematic evaluation of this aspect is
beyond the scope of the current paper, our empirical
results demonstrate that the resulting model is a very
competitive one (see Section 4).

Finally, a softmax layer computes the model pre-
diction for the upcoming word. We use ReLU for all
non-linear activations, and Dropout (Hinton et al.,
2012) is applied between each hidden layer.

3.2 CNN and variants

The proposed CNN network is produced by inject-
ing a convolutional layer right after the words in the
input are projected to their embeddings (Figure 2).
Rather than being concatenated into a long vector,
the embeddings xi ∈ Rk are concatenated transver-
sally producing a matrix x1:n ∈ Rn×k, where n is
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Figure 1: Overview of baseline FFLM.

the size of the input and k is the embedding size.
This matrix is fed to a time-delayed layer, which
convolves a sliding window of w input vectors cen-
tered on each word vector using a parameter matrix
W ∈ Rw×k. Convolution is performed by taking
the dot-product between the kernel matrix W and
each sub-matrix xi−w/2:i+w/2 resulting in a scalar
value for each position i in input context. This value
represents how much the words encompassed by the
window match the feature represented by the filter
W . A ReLU activation function is applied subse-
quently so negative activations are discarded. This
operation is repeated multiple times using various
kernel matrices W , learning different features in-
dependently. We tie the number of learned kernels
to be the same as the embedding dimensionality k,
such that the output of this stage will be another ma-
trix of dimensions n × k containing the activations
for each kernel at each time step. The number of
kernels was tied to the embedding size for two rea-
sons, one practical, namely, to limit the hyper pa-
rameter search, one methodological, namely, to keep
the network structure identical to that of the baseline
feed-forward model.

Next, we add a batch normalization stage imme-
diately after the convolutional output, which facil-
itates learning by addressing the internal covariate
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shift problem and regularizing the learned represen-
tations (Ioffe and Szegedy, 2015).

Finally, this feature matrix is directly fed into
a fully connected layer that can project the ex-
tracted features into a lower-dimensional represen-
tation. This is different from previous work, where
a max-over-time pooling operation was used to find
the most activated feature in the time series. Our
choice is motivated by the fact that the max pooling
operator loses the specific position where the feature
was detected, which is important for word predic-
tion.

After this initial convolutional layer, the network
proceeds identically to the FFNN by feeding the pro-
duced features into a highway layer, and then, to a
softmax output.

This is our basic CNN architecture. We also ex-
periment with three expansions to the basic model,
as follows. First, we generalize the CNN by ex-
tending the shallow linear kernels with deeper multi-
layer perceptrons, in what is called a MLP Convolu-
tion (MLPConv) structure (Lin et al., 2013). This
allows the network to produce non-linear filters, and
it has achieved state-of-the-art performance in object
recognition while reducing the number of total lay-
ers compared to other mainstream networks. Con-
cretely, we implement MLPConv networks by using
another convolutional layer with a 1 × 1 kernel on
top of the convolutional layer output. This results in
an architecture that is exactly equivalent to sliding a
one-hidden-layer MLP over the input. Notably, we
do not include the global pooling layer in the origi-
nal Network-in-Network structure (Lin et al., 2013).

Second, we explore stacking convolutional lay-
ers on top of each other (Multi-layer CNN or ML-
CNN) to connect the local features into broader re-
gional representations, as commonly done in com-
puter vision. While this proved to be useful for
sentence representation (Kalchbrenner et al., 2014),
here we have found it to be rather harmful for lan-
guage modeling, as shown in Section 4. It is impor-
tant to note that, in ML-CNN experiments, we stack
convolutions with the same kernel size and number
of kernels on top of each other, which is to be distin-
guished from the MLPConv that refers to the deeper
structure in each CNN layer mentioned above.

Finally, we consider combining features learned
through different kernel sizes (COM), as depicted in
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Figure 3. For example, we can have a combination
of kernels that learn filters over 3-grams with oth-
ers that learn over 5-grams. This is achieved simply
by applying in parallel two or more sets of kernels
to the input and concatenating their respective out-
puts (Kim, 2014).

4 Experiments

We evaluate our model on three English corpora of
different sizes and genres, the first two of which
have been used for language modeling evaluation
before. The Penn Treebank contains one mil-
lion words of newspaper text with 10K words in
the vocabulary. We reuse the preprocessing and
training/test/validation division from Mikolov et
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al. (2014). Europarl-NC is a 64-million word cor-
pus that was developed for a Machine Translation
shared task (Bojar et al., 2015), combining Europarl
data (from parliamentary debates in the European
Union) and News Commentary data. We prepro-
cessed the corpus with tokenization and true-casing
tools from the Moses toolkit (Koehn et al., 2007).
The vocabulary is composed of words that occur at
least 3 times in the training set and contains approx-
imately 60K words. We use the validation and test
set of the MT shared task. Finally, we took a sub-
set of the ukWaC corpus, which was constructed
by crawling UK websites (Baroni et al., 2009). The
training subset contains 200 million words and the
vocabulary consists of the 200K words that appear
more than 5 times in the training subset. The val-
idation and test sets are different subsets of the
ukWaC corpus, both containing 120K words. We
preprocessed the data similarly to what we did for
Europarl-NC.

We train our models using Stochastic Gradient
Descent (SGD), which is relatively simple to tune
compared to other optimization methods that involve
additional hyper parameters (such as alpha in RM-
Sprop) while being still fast and effective. SGD is
commonly used in similar work (Devlin et al., 2014;
Zaremba et al., 2014; Sukhbaatar et al., 2015). The
learning rate is kept fixed during a single epoch, but
we reduce it by a fixed proportion every time the val-
idation perplexity increases by the end of the epoch.
The values for learning rate, learning rate shrinking
and mini-batch sizes as well as context size are fixed
once and for all based on insights drawn from pre-
vious work (Hai Son et al., 2011; Sukhbaatar et al.,
2015; Devlin et al., 2014) as well as experimentation
with the Penn Treebank validation set.

Specifically, the learning rate is set to 0.05, with
mini-batch size of 128 (we do not take the average of
loss over the batch, and the training set is shuffled).
We multiply the learning rate by 0.5 every time we
shrink it and clip the gradients if their norm is larger
than 12. The network parameters are initialized ran-
domly on a range from -0.01 to 0.01 and the context
size is set to 16. In Section 6 we show that this large
context window is fully exploited.

For the base FFNN and CNN we varied em-
bedding sizes (and thus, number of kernels) k =
128, 256. For k = 128 we explore the simple CNN,

incrementally adding MLPConv and COM varia-
tions (in that order) and, alternatively, using a ML-
CNN. For k = 256, we only explore the former
three alternatives (i.e. all but the ML-CNN). For the
kernel size, we set it to w = 3 words for the sim-
ple CNN (out of options 3, 5, 7, 9), whereas for the
COM variant we use w = 3 and 5, based on experi-
mentation on PTB. However, we observed the mod-
els to be generally robust to this parameter. Dropout
rates are tuned specifically for each combination of
model and dataset based on the validation perplex-
ity. We also add small dropout (p = 0.05–0.15)
when we train the networks on the smaller corpus
(Penn Treebank).

The experimental results for recurrent neural net-
work language models, such as Recurrent Neural
Networks (RNN) and Long-Short Term Memory
models (LSTM), on the Penn Treebank are quoted
from previous work; for Europarl-NC, we train our
own models (we also report the performance of these
in-house trained RNN and LSTM models on the
Penn Treebank for reference). Specifically, we train
LSTMs with embedding size k = 256 and number
of layers L = 2 as well as k = 512 with L = 1, 2.
We train one RNN with k = 512 and L = 2. To train
these models, we use the published source code from
Zaremba et al. (2014). Our own models are also
implemented in Torch7 for easier comparison.1 Fi-
nally, we selected the best performing convolutional
and recurrent language models on Europarl-NC and
the Baseline FFLM to be evaluated on the ukWaC
corpus.

For all models trained on Europarl-NC and
ukWaC, we speed up training by approximating
the softmax with Noise Contrastive Estimation
(NCE) (Gutmann and Hyvärinen, 2010), with the
parameters being set following previous work (Chen
et al., 2015). Concretely, for each predicted word,
we sample 10 words from the unigram distribution,
and the normalization factor is such that lnZ = 9. 2

For comparison, we also implemented a simpler
version of the FFNN without dropout and highway
layers (Bengio et al., 2006). These networks have
two hidden layers (Arisoy et al., 2012) with the size

1Available at https://github.com/quanpn90/NCE CNNLM.
2We also experimented with Hierarchical Softmax (Mikolov

et al., 2011) and found out that the NCE gave better perfor-
mance in terms of speed and perplexity.
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of 2 times the embedding size (k), thus having the
same number of parameters as our baseline.

5 Results

Our experimental results are summarized in Table 1.
First of all, we can see that, even though the

FFNN gives a very competitive performance,3 the
addition of convolutional layers clearly improves
it even further. Concretely, we observe a solid
11-26% reduction of perplexity compared to the
feed-forward network after using MLP Convolution,
depending on the setup and corpus. CNN alone
yields a sizable improvement (5-24%), while MLP-
Conv, in line with our expectations, adds another
approximately 2-5% reduction in perplexity. A fi-
nal (smaller) improvement comes from combining
kernels of size 3 and 5, which can be attributed to
a more expressive model that can learn patterns of
n-grams of different sizes. In contrast to the suc-
cessful two variants above, the multi-layer CNN did
not help in better capturing the regularities of text,
but rather the opposite: the more convolutional lay-
ers were stacked, the worse the performance. This
also stands in contrast to the tradition of convolu-
tional networks in Computer Vision, where using
very deep convolutional neural networks is key to
having better models. Deep convolution for text
representation is in contrast rather rare, and to our
knowledge it has only been successfuly applied to
sentence representation (Kalchbrenner et al., 2014).
We conjecture that the reason why deep CNNs may
not be so effective for language could be the effect of
the convolution on the data: The convolution output
for an image is akin to a new, more abstract image,
which yet again can be subject to new convolution
operations, whereas the textual counterpart may no
longer have the same properties, in the relevant as-
pects, as the original linguistic input.

Regarding the comparison with a stronger LSTM,
our models can perform competitively under the
same embedding dimension (e.g. see k = 256 of
k = 512) on the first two datasets. However, the
LSTM can be easily scaled using larger models, as
shown in Zaremba et al. (2014), which gives the

3In our experiments, increasing the number of fully con-
nected layers of the FFNN is harmful. Two hidden layers with
highway connections is the best setting we could find.

best known results to date. This is not an option for
our model, which heavily overfits with large hidden
layers (around 1000) even with very large dropout
values. Furthermore, the experiments on the larger
ukWaC corpus show an even clearer advantage for
the LSTM, which seems to be more efficient at har-
nessing this volume of data, than in the case of the
two smaller corpora.

To sum up, we have established that the results
of our CNN model are well above those of sim-
ple feed forward networks and recurrent neural net-
works. While they are below state of the art LSTMs,
they are able to perform competitively with them for
small and moderate-size models. Scaling to larger
sizes may be today the main roadblock for CNNs
to reach the same performances as large LSTMs in
language modeling.

6 Model Analysis

In what follows, we obtain insights into the inner
workings of the CNN by looking into the linguis-
tic patterns that the kernels learn to extract and also
studying the temporal information extracted by the
network in relation to its prediction capacity.

Learned patterns To get some insight into the
kind of patterns that each kernel is learning to de-
tect, we fed trigrams from the validation set of the
Penn Treebank to each of the kernels, and extracted
the ones that most highly activated the kernel, simi-
larly to what was done in Kalchbrenner et al. (2014).
Some examples are shown in Figure 4. Since the
word windows are made of embeddings, we can ex-
pect patterns with similar embeddings to have close
activation outputs. This is borne out in the analysis:
The kernels specialize in distinct features of the data,
including more syntactic-semantic constructions (cf.
the “comparative kernel” including as . . . as pat-
terns, but also of more than) and more lexical or top-
ical features (cf. the “ending-in-month-name” ker-
nel). Even in the more lexicalized features, how-
ever, we see linguistic regularities at different lev-
els being condensed in a single kernel: For instance,
the “spokesman” kernel detects phrases consisting
of an indefinite determiner, a company name (or the
word company itself) and the word “spokesman”.
We hypothesize that the convolutional layer adds an
“I identify one specific feature, but at a high level of
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Model k w Penn Treebank Europarl-NC ukWaC
val test #p val test #p val test #p

FFNN (Bengio et al., 2006) 128 - 156 147 4.5 - - - - - -
Baseline FFNN 128 - 114 109 4.5 - - - - - -

+CNN 128 3 108 102 4.5 - - - - - -
+MLPConv 128 3 102 97 4.5 - - - - - -

+MLPConv+COM 128 3+5 96 92 8 - - - - - -
+ML-CNN (2 layers) 128 3 113 108 8 - - - - - -
+ML-CNN (4 layers) 128 3 130 124 8 - - - - - -

FFNN (Bengio et al., 2006) 256 - 161 152 8.2 - - - - - -
Baseline FFNN 256 - 110 105 8.2 133 174 48 136 147 156

+CNN 256 3 104 98 8.3 112 133 48 - - -
+MLPConv 256 3 97 93 8.3 107 128 48 108 116 156

+MLPConv+COM 256 3+5 95 91 18 108 128 83 - - -
+MLPConv+COM 512 3+5 96 92 52 - - - - - -

Model k L Penn Treebank Europarl-NC ukWaC
val test #p val test #p val test #p

RNN (Mikolov et al., 2014) 300 1 133 129 6 - - - - - -
LSTM (Mikolov et al., 2014) 300 1 120 115 6.3 - - - - - -
LSTM (Zaremba et al., 2014) 1500 2 82 78 48 - - - - - -

LSTM (trained in-house) 256 2 108 103 5.1 137 155 31 - - -
LSTM (trained in-house) 512 1 123 118 12 133 149 62 - - -
LSTM (trained in-house) 512 2 94 90 11 114 124 63 79 83 205
RNN (trained in-house) 512 2 129 121 10 152 173 61 - - -

Table 1: Results on Penn Treebank and Europarl-NC. Figure of merit is perplexity (lower is better). Legend: k: embedding size

(also number of kernels for the convolutional models and hidden layer size for the recurrent models); w: kernel size; val: results on

validation data; test: results on test data; #p: number of parameters in millions; L: number of layers.
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Figure 4: Some example phrases that have highest activations for 8 example kernels (each box), extracted from the validation set

of the Penn Treebank. Model trained with 256 kernels for 256-dimensional word vectors.

abstraction” dimension to a feed-forward neural net-
work, similarly to what has been observed in image
classification (Krizhevsky et al., 2012).

Temporal information To the best of our knowl-
edge, the longest context used in feed-forward lan-
guage models is 10 tokens (Hai Son et al., 2012),
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sitions, where 1 is the position closest to the predicted word.

where no significant change in terms of perplexity
was observed for bigger context sizes, even though
in that work only same-sentence contexts were con-
sidered. In our experiments, we use a larger context
size of 16 while removing the sentence boundary
limit (as commonly done in n-gram language mod-
els) such that the network can take into account the
words in the previous sentences.

To analyze whether all this information was
effectively used, we took our best model, the
CNN+MLPConv+COM model with embedding size
of 256 (fifth line of second block in Table 1), and
we identified the weights in the model that map the
convolutional output (of size n × k) to a lower di-
mensional vector (the “mapping” layer in Figure 2).
Recall that the output of the convolutional layer is a
matrix indexed by time step and kernel index con-
taining the activation of the kernel when convolved
with a window of text centered around the word
at the given time step. Thus, output units of the
above mentioned mapping predicate over an ensem-
ble of kernel activations for each time step. We
can identify the patterns that they learn to detect by
extracting the time-kernel combinations for which
they have positive weights (since we have ReLU ac-
tivations, negative weights are equivalent to ignor-
ing a feature). First, we asked ourselves whether
these units tend to be more focused on the time steps
closer to the target or not. To test this, we calculated
the sum of the positive weights for each position in
time using an average of the mappings that corre-
spond to each output unit. The results are shown in
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Figure 5. As could be expected, positions that are
close to the token to be predicted have many active
units (local context is very informative; see positions
2-4). However, surprisingly, positions that are actu-
ally far from the target are also quite active. It seems
like the CNN is putting quite a lot of effort on char-
acterizing long-range dependencies.

Next, we checked that the information extracted
from the positions that are far in the past are actu-
ally used for prediction. To measure this, we arti-
ficially lesioned the network so it would only read
the features from a given range of time steps (words
in the context). To lesion the network we manually
masked the weights of the mapping that focus on
times outside of the target range by setting them to
zero. We started using only the word closest to the
final position and sequentially unmasked earlier po-
sitions until the full context was used again. The re-
sult of this experiment is presented in Figure 6, and
it confirms our previous observation that positions
that are the farthest away contribute to the predic-
tions of the model. The perplexity drops dramati-
cally as the first positions are unmasked, and then
decreases more slowly, approximately in the form
of a power law (f(x) ∝ x−0.9). Even though the ef-
fect is smaller, the last few positions still contribute
to the final perplexity.

7 Conclusion

In this work, we have investigated the potential of
Convolutional Neural Networks for one prominent
NLP task, language modeling, a sequential predic-
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tion task. We incorporate a CNN layer on top of
a strong feed-forward model enhanced with modern
techniques like Highway Layers and Dropout. Our
results show a solid 11-26% reduction in perplexity
with respect to the feed-forward model across three
corpora of different sizes and genres when the model
uses MLP Convolution and combines kernels of dif-
ferent window sizes. However, even without these
additions we show CNNs to effectively learn lan-
guage patterns that allow it to significantly decrease
the model perplexity.

In our view, this improvement responds to two
key properties of CNNs, highlighted in the analysis.
First, as we have shown, they are able to integrate
information from larger context windows, using in-
formation from words that are as far as 16 positions
away from the predicted word. Second, as we have
qualitatively shown, the kernels learn to detect spe-
cific patterns at a high level of abstraction. This is
analogous to the role of convolutions in Computer
Vision. The analogy, however, has limits; for in-
stance, a deeper model stacking convolution layers
harms performance in language modeling, while it
greatly helps in Computer Vision. We conjecture
that this is due to the differences in the nature of vi-
sual vs. linguistic data. The convolution creates sort
of abstract images that still retain significant proper-
ties of images. When applied to language, it detects
important textual features but distorts the input, such
that it is not text anymore.

As for recurrent models, even if our model out-
performs RNNs, it is well below state-of-the-art
LSTMs. Since CNNs are quite different in nature,
we believe that a fruitful line of future research could
focus on integrating the convolutional layer into a
recurrent structure for language modeling, as well
as other sequential problems, perhaps capturing the
best of both worlds.
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