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Abstract

We investigate mutual benefits between syn-
tax and semantic roles using neural network
models, by studying a parsing→SRL pipeline,
a SRL→parsing pipeline, and a simple joint
model by embedding sharing. The integra-
tion of syntactic and semantic features gives
promising results in a Chinese Semantic Tree-
bank, demonstrating large potentials of neural
models for joint parsing and semantic role la-
beling.

1 Introduction

The correlation between syntax and semantics has
been a fundamental problem in natural language
processing (Steedman, 2000). As a shallow seman-
tic task, semantic role labeling (SRL) models have
traditionally been built upon syntactic parsing re-
sults (Gildea and Jurafsky, 2002; Gildea and Palmer,
2002; Punyakanok et al., 2005). It has been shown
that parser output features play a crucial role for ac-
curate SRL (Pradhan et al., 2005; Surdeanu et al.,
2007).

On the reverse direction, semantic role features
have been used to improve parsing (Boxwell et al.,
2010). Existing methods typically use semantic fea-
tures to rerank n-best lists of syntactic parsing mod-
els (Surdeanu et al., 2008; Hajič et al., 2009). There
has also been attempts to learn syntactic parsing and
semantic role labeling models jointly, but most such
efforts have led to negative results (Sutton and Mc-
Callum, 2005; Van Den Bosch et al., 2012; Boxwell
et al., 2010).

∗Work done while the first author was visiting SUTD.

With the rise of deep learning, neural network
models have been used for semantic role label-
ing (Collobert et al., 2011). Recently, it has been
shown that a neural semantic role labeler can give
state-of-the-art accuracies without using parser out-
put features, thanks to the use of recurrent neural
network structures that automatically capture syn-
tactic information (Zhou and Xu, 2015; Wang et al.,
2015). In the parsing domain, neural network mod-
els have also been shown to give state-of-the-art re-
sults recently (Dyer et al., 2015; Weiss et al., 2015;
Zhou et al., 2015).

The availability of parser-independent neural SRL
models allows parsing and SRL to be performed
by both parsing→SRL and SRL→parsing pipelines,
and gives rise to the interesting research question
whether mutual benefits between syntax and seman-
tic roles can be better exploited under the neural
setting. Different from traditional models that rely
on manual feature combinations for joint learning
tasks (Sutton and McCallum, 2005; Zhang and
Clark, 2008a; Finkel and Manning, 2009; Lewis et
al., 2015), neural network models induce non-linear
feature combinations automatically from input word
and Part-of-Speech (POS) embeddings. This al-
lows more complex feature sharing between multi-
ple tasks to be achieved effectively (Collobert et al.,
2011).

We take a first step1 in such investigation by cou-

1Recently, Swayamdipta et al. (2016) independently pro-
posed a similar idea to perform joint syntactic and semantic
dependency parsing. Their work mainly focuses on extending
actions of a greedy transition-based parser to support the joint
task, achieving good performance on an English shared task,
while we use a neural network for multi-task learning and we
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pling a state-of-the-art neural semantic role labeler
(Wang et al., 2015) and a state-of-the-art neural
parser (Dyer et al., 2015). First, we propose a novel
parsing→SRL pipeline using a tree Long Short-
Term Memory (LSTM) model (Tai et al., 2015) to
represent parser outputs, before feeding them to the
neural SRL model as inputs. Second, we investigate
a SRL→parsing pipeline, using semantic role label
embeddings to enrich parser features. Third, we
build a joint training model by embedding sharing,
which is the most shallow level of parameter sharing
between deep neural networks. This simple strat-
egy is immune to significant differences between the
network structures of the two models, which pre-
vent direct sharing of deeper network parameters.
We choose a Chinese semantic role treebank (Qiu et
al., 2016) for preliminary experiments, which offers
consistent dependency between syntax and seman-
tic role representations, thereby facilitates the ap-
plication of standard LSTM models. Results show
that the methods give improvements to both parsing
and SRL accuracies, demonstrating large potentials
of neural networks for the joint task.

Our contributions can be summarized as:
•We show that the state-of-the-art LSTM seman-

tic role labeler of Zhou and Xu (2015), which has
been shown to be able to induce syntactic features
automatically, can still be improved using parser
output features via tree LSTM (Tai et al., 2015);
•We show that state-of-the-art neural parsing can

be improved by using semantic role features;
•We show that parameter sharing between neural

parsing and SRL improves both sub tasks, which is
in line with the observation of Collobert et al. (2011)
between POS tagging, chunking and SRL.
• Our code and all models are released at

https://github.com/ShiPeng95/ShallowJoint.

2 Models

2.1 Semantic Role Labeler

We employ the SRL model of Wang et al. (2015),
which uses a bidirectional Long Short-term Mem-
ory (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005; Graves et al., 2013) for se-
quential labeling.

work on a Chinese dataset.

Figure 1: Bi-LSTM Semantic Role Labeler

Given the sentence “人类(human) 的(de) 发
展(development) 面临(face) 挑战(challenge)”, the
structure of the model is shown in Figure 1. For
each word wt, the LSTM model uses a set of vec-
tors to control information flow: an input gate it, a
forget gate ft, a memory cell ct, an output gate ot,
and a hidden state ht. The computation of each vec-
tor is as follows:

it = σ(W (i)xt + U (i)ht−1 + V (i)ct−1 + b(i))

ft = 1.0− it
ct = ft � ct−1 + it � tanh(W (u)xt + U (u)ht−1 + b(u))

ot = σ(W (o)xt + U (o)ht−1 + V (o)ct + b(o))

ht = ot � tanh(ct)

Here σ denotes component-wise sigmoid function
and � is component-wise multiplication.

The representation of xt is from four sources: an
embedding for the word wt, two hidden states of
the last LSTM cells in a character-level bidirectional
LSTM (Ballesteros et al., 2015) (denoted as

−→
cht

and
←−
cht, respectively), and a learned vector Part-of-

Speech (POS) representation (post). A linear trans-
formation is applied to the vector representations
before feeding them into a component-wise ReLU
(Nair and Hinton, 2010) function.

xt = max{0, V (x)[wt;
−→
cht;
←−
cht; post] + b(x)}

The hidden state vectors at the t-th word from both
directions (denote as

−→
ht and

←−
ht , respectively) are

passed through the ReLU function, before a softmax
layer for semantic role detection.

2.2 Stack-LSTM Dependency Parser
We employ the Stack-LSTM model of Dyer et al.
(2015) for dependency parsing. As shown in Figure
2, it uses a buffer (B) to order input words, a stack
(S) to store partially constructed syntactic trees, and
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Figure 2: Stack-LSTM Parser

takes the following types of actions to build trees
from input.
• SHIFT, which pops the top element off the

buffer, pushing it into stack.
• REDUCE-LEFT/REDUCE-RIGHT, which

pop the top two elements off the stack, pushing back
the composition of the two elements with a depen-
dent relation.

The parser is initialized by pushing input embed-
dings into the buffer in the reverse order. The repre-
sentation of the token is same as the previous bidi-
rectional LSTM (Bi-LSTM) model. The buffer (B),
stack (S) and action history sequence (A) are all rep-
resented by LSTMs, with S being represented by a
novel stack LSTM. At a time step t, the parser pre-
dicts an action according to current parser state pt:

pt = max{0,W (parser)[st; bt; at] + dp},
y

(parser)
t = softmax(V (parser)pt + dy)

W , V and d are model parameters.

2.3 DEP→SRL Pipeline

In this pipeline model, we apply Stack-LSTM pars-
ing first and feed the results as additional features
for SRL. For each word wt to the SRL system, the
corresponding input becomes,

x
(dep)
t = max{0, V (dep)[wt;

−→
cht;
←−
cht; post;dept]}

where dept is the t-th word’s dependency informa-
tion from parser output and V (dep) is a weight ma-
trix. There are multiple ways to define dept. A sim-
ple method is to use embeddings of the dependency
label at wt. However, this input does not embody
full arc information.

We propose a novel way of defining dept̄, by us-
ing hidden vector ht̄ of a dependency tree LSTM

(Tai et al., 2015) at wt̄ as dept̄. Given a depen-
dency tree output, we define tree LSTM inputs xt̄
in the same way as Section 2.1. The tree LSTM is
a bottom-up generalization of the sequence LSTM,
with a node ht̄ having multiple predecessors hkt̄−1,
which corresponding to the syntactic dependents of
the word wt̄. The computation of ht̄ for each wt̄ is
(unlike t, which is a left-to-right index, t̄ is a bottom-
up index, still with one ht̄ being computed for each
wt̄):

h̃t̄−1 =
∑

k

hkt̄−1

it̄ = σ(W (i)xt̄ + U (i)h̃t̄−1 + b(i))

ft̄k=σ(W (f)xt̄+U
(f)hk

t̄−1
+b(f))

c
t̄=

∑
k f

k
t̄
�ck

t̄−1
+it̄�tanh(W (u)xt̄+U

(u)h̃t̄−1+b(u))

o
t̄=σ(W (o)xt̄+U

(o)h̃t̄−1+b(o))

ht̄=ot̄�tanh(ct̄)

For training, we construct a corpus with all words
being associated with automatic dependency labels
by applying 10-fold jackknifing.

2.4 SRL→DEP Pipeline
In this pipeline model, we conduct SRL first, and
feed the output semantic roles to the Stack-LSTM
parser in the token level. The representation of a
token becomes:

x
(srl)
t = max{0, V (srl)[wt;

−→
cht;
←−
cht; post; srlt]}

where srlt is the t-th word’s predicted semantic role
embedding and V (srl) is a weight matrix.

For training, we construct a training corpus with
automatically tagged semantic role labels by using
10-fold jackknifing.

2.5 Joint Model by Parameter Sharing
The structure of the joint system is shown in Fig-
ure 3. Here the parser and semantic role labeler are
coupled in the embedding layer, sharing the vector
lookup tables for characters, words and POS. More
specifically, the Bi-LSTM model of Section 2.1 and
the Stack-LSTM model of Section 2.2 are used for
the SRL task and the parsing task, respectively. The
Bi-LSTM labeler and Stack-LSTM parser share the
embedding layer. During training, we maximize the
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Figure 3: Joint Multi-task Model

sum of log-likelihood for the two different tasks.
The loss from the semantic role labeler and the
parser both propagate to the embedding layer, re-
sulting in a better vector representation of each to-
ken, which benefits both tasks at the same time. On
the other hand, due to different neural structures,
there is no sharing of other parameters. The joint
model offers the simplest version of shared training
(Collobert et al., 2011), but does not employ shared
decoding (Sutton and McCallum, 2005; Zhang and
Clark, 2008b). Syntax and semantic roles are as-
signed separately, avoiding error propagation.

3 Experiments

3.1 Experimental Settings

Datasets We choose Chinese Semantic Tree-
bank (Qiu et al., 2016) for our experiments. Similar
to the CoNLL corpora (Surdeanu et al., 2008; Hajič
et al., 2009) and different from PropBank (Kings-
bury and Palmer, 2002; Xue and Palmer, 2005),
it is a dependency-based corpus rather than a
constituent-based corpus. The corpus contains syn-
tactic dependency arc and semantic role annotations
in a consistent form, hence facilitating the joint task.
We follow the standard split for the training, devel-
opment and test sets, as shown in Table 1.

Training Details. There is a large number of sin-
gletons in the training set and a large number of
out-of-vocabulary (OOV) words in the development
set. We use the mechanism of Dyer et al. (2015) to
stochastically set singletons as UNK token in each
training iteration with a probability punk. The hyper-
parameter punk is set to 0.2.

For parameters used in Stack-LSTM, we follow
Dyer et al. (2015). We set the number of embed-
dings by intuition, and decide to have the size of
word embedding twice as large as that of charac-

Dataset Words Types Singletons OOV
Train 280,043 24,866 12,012 -
Dev 23,724 5,492 - 1,505
Test 32,326 6,989 - 1,893

Table 1: Statistics of Chinese Semantic Treebank.

ter embedding, and the size of character embedding
larger than the size of POS embedding. More specif-
ically, we fix the size of word embeddings nw to 64,
character embeddings nchar to 32, POS embeddings
npos to 30, action embeddings ndep to 30, and se-
mantic role embeddings nsrl to 30. The LSTM input
size is set to 128 and the LSTM hidden size to 128.

We randomly initialize each parameter to a real

value in [−
√

6
r+c ,

√
6
r+c ], where r is the number of

input unit and c is the number of output unit (Glo-
rot and Bengio, 2010). To minimize the influence
of external information, we did not pretrain the em-
bedding values. In addition, we apply a Gaussian
noise N(0, 0.2) to word embeddings during training
to prevent overfitting.

We optimize model parameters using stochastic
gradient descent with momentum. The same learn-
ing rate decay mechanism of Dyer et al. (2015) is
used. The best model parameters are selected ac-
cording to a score metric on the development set.
For different tasks, we use different score metrics to
evaluate the parameters. Since there are there met-
rics, F1, UAS and LAS, possibly reported at the
same time, we use the weighted average to con-
sider the effect of all metrics when choosing the best
model on the dev set. In particular, we use F1 for
SRL, 0.5 × LAS + 0.5 × UAS for parsing, and
0.5×F1 + 0.25×UAS+ 0.25×LAS for the joint
task.

3.2 Results

The final results are shown in Table 2, where F1 rep-
resents the F1-score of semantic roles, and UAS and
LAS represent parsing accuracies. The Bi-LSTM
row represents the bi-directional semantic role la-
beler, the S-LSTM row represents the Stack-LSTM
parser, the DEP→SRL row represents the depen-
dency parsing→ SRL pipeline, the SRL→DEP row
represents the SRL→ dependency parsing pipeline,
and the Joint row represents the parameter-shared
model. For the DEP→SRL pipeline, lab and lstm

971



Model F1 UAS LAS
Bi-LSTM 72.71 - -
S-LSTM - 84.33 82.10
DEP→SRL(lab/lstm) 73.00/74.18 84.33 82.10
SRL→DEP 72.71 84.75 82.62
Joint 73.84 85.15 82.91

Table 2: Results. Bi-LSTM and S-LSTM are two baseline

models for SRL and parsing, respectively. DEP→SRL and

SRL→DEP are two pipeline models. ‘Joint’ denotes the pro-

posed model for joint parsing and semantic role labeling. lab

uses only the dependency label as features, while lstm applies

features extracted from dependency trees using tree LSTMs.

represents the use of dependency label embeddings
and tree LSTM hidden vectors for the additional
SRL features dept, respectively.

Comparison between Bi-LSTM and DEP→SRL
shows that slight improvement is brought by intro-
ducing dependency label features to the semantic
role labeler (72.71→73.00). By introducing full
tree information, the lstm integration leads to much
higher improvements (72.71→74.18). This demon-
strates that the LSTM SRL model of Zhou and Xu
(2015) can still benefit from parser outputs, despite
that it can learn syntactic information independently.

In the reverse direction, comparison between
S-LSTM and SRL→DEP shows improvement to
UAS/LAS by integrating semantic role features
(82.10→82.62). This demonstrates the usefulness
of semantic roles to parsing and is consistent with
observations on discrete models (Boxwell et al.,
2010). To our knowledge, we are the first to report
results using a SRL → Parsing pipeline, which is
enabled by the neural SRL model.

Using shared embeddings, the joint model gives
improvements on both SRL and parsing. The most
salient difference between the joint model and the
two pipelines is the shared parameter space.

These results are consistent with the finds of Col-
lobert et al. (2011) who show that POS, chunking
and semantic role information can bring benefit to
each other in joint neural training. In contrast to their
results (SRL 74.15→74.29, POS 97.12→97.22,
CHUNK 93.37→93.75), we find that parsing and
SRL benefit relatively more from each other (SRL
72.72→73.84, DEP 84.33→85.15). This is intuitive
because parsing offers deeper syntactic information
compared to POS and shallow syntactic chunking.

4 Conclusion

We investigated the mutual benefits between depen-
dency syntax and semantic roles using two state-of-
the-art LSTM models, finding that both can be fur-
ther improved. In addition, simple multitask learn-
ing is also effective. These results demonstrate po-
tentials for deeper joint neural models between these
tasks.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. ACL.

Jenny Rose Finkel and Christopher D Manning. 2009.
Joint parsing and named entity recognition. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
326–334. Association for Computational Linguistics.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational linguistics,
28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The necessity
of parsing for predicate argument recognition. In Pro-
ceedings of the 40th Annual Meeting on Association
for Computational Linguistics, pages 239–246. Asso-
ciation for Computational Linguistics.

972



Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In International conference on artificial in-
telligence and statistics, pages 249–256.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

A. Graves, A. Mohamed, and G. Hinton. 2013. Speech
recognition with deep recurrent neural networks.
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Màrquez, Adam Meyers, Joakim Nivre, Sebastian
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