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Abstract

Convolutional neural networks (CNN) have
achieved the top performance for event de-
tection due to their capacity to induce the
underlying structures of the k-grams in the
sentences. However, the current CNN-based
event detectors only model the consecutive
k-grams and ignore the non-consecutive k-
grams that might involve important structures
for event detection. In this work, we propose
to improve the current CNN models for ED
by introducing the non-consecutive convolu-
tion. Our systematic evaluation on both the
general setting and the domain adaptation set-
ting demonstrates the effectiveness of the non-
consecutive CNN model, leading to the signif-
icant performance improvement over the cur-
rent state-of-the-art systems.

1 Introduction

The goal of event detection (ED) is to locate event
triggers of some specified types in text. Triggers
are generally single verbs or nominalizations that
evoke the events of interest. This is an important and
challenging task of information extraction in natu-
ral language processing (NLP), as the same event
might appear in various expressions, and an expres-
sion might express different events depending on
contexts.

The current state-of-the-art systems for ED have
involved the application of convolutional neural net-
works (CNN) (Nguyen and Grishman, 2015b; Chen
et al., 2015) that automatically learn effective fea-
ture representations for ED from sentences. This has

overcome the two fundamental limitations of the tra-
ditional feature-based methods for ED: (i) the com-
plicated feature engineering for rich feature sets and
(ii) the error propagation from the NLP toolkits and
resources (i.e, parsers, part of speech taggers etc)
that generate such features.

The prior CNN models for ED are characterized
by the temporal convolution operators that linearly
map the vectors for the k-grams in the sentences
into the feature space. Such k-gram vectors are ob-
tained by concatenating the vectors of the k con-
secutive words in the sentences (Nguyen and Grish-
man, 2015b; Chen et al., 2015). In other words,
the previous CNN models for ED only focus on
modeling the consecutive k-grams. Unfortunately,
such consecutive mechanism is unable to capture the
long-range and non-consecutive dependencies that
are necessary to the prediction of trigger words. For
instance, consider the following sentence with the
trigger word “leave” from the ACE 2005 corpus:

The mystery is that she took the job in the first
place or didn’t leave earlier.

The correct event type for the trigger word
“leave” in this case is “End-Org”. However, the
previous CNN models might not be able to detect
“leave” as an event trigger or incorrectly predict its
type as “Movement”. This is caused by their reliance
on the consecutive local k-grams such as “leave ear-
lier”. Consequently, we need to resort to the non-
consecutive pattern “job leave” to correctly deter-
mine the event type of “leave” in this case.

Guided by this intuition, we propose to improve
the previous CNN models for ED by operating the
convolution on all possible non-consecutive k-grams
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in the sentences. We aggregate the resulting con-
volution scores via the max-pooling function to un-
veil the most important non-consecutive k-grams
for ED. The aggregation over all the possible non-
consecutive k-grams is made efficient with dynamic
programming.

Note that our work is related to (Lei et al., 2015)
who employ the non-consecutive convolution for
the sentence and news classification problems. Our
work is different from (Lei et al., 2015) in that we
model the relative distances of words to the trigger
candidates in the sentences via position embeddings,
while (Lei et al., 2015) use the absolute distances
between words in the k-grams to compute the decay
weights for aggregation. To the best of our knowl-
edge, this is the first work on non-consecutive CNN
for ED.

We systematically evaluate the proposed model in
the general setting as well as the domain adaptation
setting. The experiment results demonstrate that our
model significantly outperforms the current state-of-
the-art models in such settings.

2 Model

We formalize ED as a multi-class classification
problem. Given a sentence, for every token in that
sentence, we want to predict if the current token is an
event trigger of some event in the pre-defined event
set or not? The current token along with its context
in the sentence constitute an event trigger candidate.

In order to make it compatible with the pre-
vious work, we follow the procedure in (Nguyen
and Grishman, 2015b) to process the trigger candi-
dates for CNN. In particular, we limit the context
of the trigger candidates to a fixed window size by
trimming longer sentences and padding shorter sen-
tences with a special token when necessary. Let
2n + 1 be the fixed window size, and W =
[w0, w1, . . . , wn, . . . , w2n�1, w2n] be some trigger
candidate where the current token is positioned in
the middle of the window (token wn). Before enter-
ing CNN, each token wi is first transformed into a
real-valued vector xi using the concatenation of the
following vectors:

1. The word embedding vector of wi: This is ob-
tained by looking up a pre-trained word embedding
table D (Turian et al., 2010; Mikolov et al., 2013a).

2. The position embedding vector of wi: We ob-
tain this vector by looking up the position embed-
ding table for the relative distance i � n from the
token wi to the current token wn. The position em-
bedding table is initialized randomly.

3. The real-valued embedding vector for the en-
tity type of wi: This vector is generated by look-
ing up the entity type embedding table (initialized
randomly) for the entity type of wi. Note that we
employ the BIO annotation schema to assign entity
type labels to each token in the sentences using the
entity mention heads as in (Nguyen and Grishman,
2015b).

The transformation from the token wi to the vec-
tor xi (xi 2 Rd) essentially converts the input can-
didate W into a sequence of real-valued vectors
X = (x0, x1, . . . , x2n). This sequence is used as
input in the following CNN models.

2.1 The Traditional CNN

Given the window size k, the traditional CNN mod-
els for ED consider the following set of 2n + 1 con-
secutive k-gram vectors:

C = {ui : 0  i  2n} (1)

Vector ui is the concatenation of the k consecutive
vectors preceding position i in the sequence X: ui =
[xi�k+1, xi�k+2, . . . , xi] 2 Rdk where the out-of-
index vectors are simply set to all zeros.

The core of the CNN models is the convolution
operation, specified by the filter vector f 2 Rdk. In
CNN, f can be seen as a feature extractor for the
k-grams that operates via the dot product with each
element in C. This produces the following convolu-
tion score set: S(C) = {fT ui : 0  i  2n}.

In the next step, we aggregate the features in S
with the max function, resulting in the aggregation
score:

pf
k = max S(C) = max{si : 0  i  2n} (2)

Afterward, pf
k is often transformed by a non-

linear function G1 to generate the transformed score
G(pf

k), functioning as the extracted feature for the
initial trigger candidate W .

1The tanh function in this work.
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We can then repeat this process for different win-
dow sizes k and filters f , generating multiple fea-
tures G(pf

k) to capture various aspects of the trig-
ger candidate W . Finally, such features are concate-
nated into a single representation vector for W , to be
fed into a feed-forward neural network with a soft-
max layer in the end to perform classification.

2.2 The Non-consecutive CNN

As mentioned in the introduction, the limitation of
the previous CNN models for ED is the inability to
encode the non-consecutive k-grams that might be
crucial to the trigger prediction. This limitation orig-
inates from Equation 1 in which only the consecu-
tive k-gram vectors are considered. In order to over-
come such limitation, we propose to model all pos-
sible non-consecutive k-grams in the trigger candi-
date, leading to the following set of non-consecutive
k-gram vectors:

N = {vi1i2...ik : 0  i1 < i2 < . . . < ik  2n}

where: vi1i2...ik = [xi1 , xi2 , . . . , xik ] 2 Rdk and the
number of elements in N is |N | =

�
2n+1

k

�
.

The non-consecutive CNN model then follows the
procedure of the traditional CNN model in Section
2.1 to compute the representation vector for classifi-
cation. The only difference is that the computation
is done on the input set N instead of C. In partic-
ular, the convolution score set in this case would be
S(N) = {fT v : v 2 N}, while the aggregating
score would be:

pf
k = max S(N) = max{s : s 2 S(N)} (3)

2.3 Implementation

Note that the maximum operation in Equation 2 only
requires O(n) operations while the naive implemen-
tation of Equation 3 would need O(|N |) = O(nk)
operations. In this work, we employ the dynamic
programming (DP) procedure below to reduce the
computation time for Equation 3.

Assuming the filter vector f is the concatenation
of the k vectors f1, . . . , fk 2 Rd: f = [f1, . . . , fk],
Equation 3 can be re-written by:

pf
k = max{fT

1 xi1 + . . . + fT
k xik

: 0  i1 < i2 < . . . < ik  2n}

Let Dj
t be the dynamic programming table repre-

senting the maximum convolution score for the sub-
filter [f1, . . . , fj ] over all possible non-consecutive j-
gram vectors in the subsequence (x0, x1, . . . , xt) of
X:

Dj
t = max{fT

1 xi1 + . . . + fT
j xij

: 0  i1 < i2 < . . . < ij  t}

where 1  j  k, j � 1  t  2n.
Note that pf

k = Dk
2n.

We can solve this DP problem by the following
recursive formulas2:

Dj
t = max{Dj

t�1, D
j�1
t�1 + fT

j xt}

The computation time for this procedure is O(kn)
and remains linear in the sequence length.

2.4 Training

We train the networks using stochastic gradient de-
scent with shuffled mini-batches, the AdaDelta up-
date rule, back-propagation and dropout. During
the training, we also optimize the embedding tables
(i.e, word, position and entity type embeddings) to
achieve the optimal states. Finally, we rescale the
weights whose l2-norms exceed a predefined thresh-
old (Nguyen and Grishman (2015a)).

3 Experiments

3.1 Dataset, Parameters and Resources

We apply the same parameters and resources as
(Nguyen and Grishman, 2015b) to ensure the com-
patible comparison. Specifically, we employ the
window sizes in the set {2, 3, 4, 5} for the convo-
lution operation with 150 filters for each window
size. The window size of the trigger candidate is
31 while the dimensionality of the position embed-
dings and entity type embeddings is 50. We use
word2vec from (Mikolov et al., 2013b) as the pre-
trained word embeddings. The other parameters in-
clude the dropout rate ⇢ = 0.5, the mini-batch size
= 50, the predefined threshold for the l2 norms = 3.

Following the previous studies (Li et al., 2013;
Chen et al., 2015; Nguyen and Grishman, 2015b),
we evaluate the models on the ACE 2005 corpus

2We ignore the base cases as they are trivial.
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with 33 event subtypes. In order to make it compat-
ible, we use the same test set with 40 newswire ar-
ticles, the same development set with 30 other doc-
uments and the same training set with the remain-
ing 529 documents. All the data preprocessing and
evaluation criteria follow those in (Nguyen and Gr-
ishman, 2015b).

3.2 The General Setting

We compares the non-consecutive CNN model (NC-
CNN) with the state-of-the-art systems on the ACE
2005 dataset in Table 1. These systems include:

1) The feature-based systems with rich hand-
designed feature sets, including: the MaxEnt model
with local features in (Li et al., 2013) (MaxEnt); the
structured perceptron model for joint beam search
with local features (Joint+Local), and with both lo-
cal and global features (Joint+Local+Global) in (Li
et al., 2013); and the sentence-level and cross-entity
models in (Hong et al., 2011).

2) The neural network models, i.e, the CNN
model in (Nguyen and Grishman, 2015b) (CNN),
the dynamic multi-pooling CNN model (DM-CNN)
in (Chen et al., 2015) and the bidirectional recurrent
neural networks (B-RNN) in (Nguyen et al., 2016a).

3) The probabilistic soft logic based model to cap-
ture the event-event correlation in (Liu et al., 2016).

Methods F
Sentence-level in Hong et al (2011) 59.7
MaxEnt (Li et al., 2013) 65.9
Joint+Local (Li et al., 2013) 65.7
Joint+Local+Global (Li et al., 2013) 67.5
Cross-entity in Hong et al. (2011) † 68.3
Probabilistic soft logic (Liu et al., 2016) † 69.4
CNN (Nguyen and Grishman, 2015b) 69.0
DM-CNN (Chen et al., 2015) 69.1
B-RNN (Nguyen et al., 2016a) 69.3
NC-CNN 71.3

Table 1: Performance with Gold-Standard Entity Men-
tions and Types. † beyond sentence level.

The most important observation from the table is
that the non-consecutive CNN model significantly
outperforms all the compared models with large
margins. In particular, NC-CNN is 2% better than
B-RNN (Nguyen et al., 2016a), the state-of-the-
art system that only relies on the context informa-
tion within the sentences of the trigger candidates.
In addition, although NC-CNN only employs the

sentence-level information, it is still better than the
other models that further exploit the document-level
information for prediction (an improvement of 1.9%
over the probabilistic soft logic based model in (Liu
et al., 2016)). Finally, comparing NC-CNN and
the CNN model in (Nguyen and Grishman, 2015b),
we see that the non-consecutive mechanism signifi-
cantly improves the performance of the traditional
CNN model for ED (up to 2.3% in absolute F-
measures with p < 0.05).

3.3 The Domain Adaptation Experiments

Previous studies have shown that the NLP models
would suffer from a significant performance loss
when domains shift (Blitzer et al., 2006; Daume III,
2007; Plank and Moschitti, 2013; Nguyen et al.,
2015c). In particular, if a model is trained on some
source domain and applied to a different domain (the
target domain), its performance would degrade sig-
nificantly. The domain adaptation (DA) studies aim
to overcome this issue by developing robust tech-
niques across domains.

The best reported system in the DA setting
for ED is (Nguyen and Grishman, 2015b), which
demonstrated that the CNN model outperformed the
feature-based models in the cross-domain setting. In
this section, we compare NC-CNN with the CNN
model in (Nguyen and Grishman, 2015b) (as well as
the other models above) in the DA setting to further
investigate their effectiveness.

3.3.1 Dataset

This section also uses the ACE 2005 dataset but
focuses more on the difference between domains.
The ACE 2005 corpus includes 6 different domains:
broadcast conversation (bc), broadcast news (bn),
telephone conversation (cts), newswire (nw), usenet
(un) and webblogs (wl). Following (Nguyen and Gr-
ishman, 2015b), we use news (the union of bn and
nw) as the source domain and bc, cts, wl and un as
four different target domains3. We take half of bc as
the development set and use the remaining data for
testing. Our data split is the same as that in (Nguyen
and Grishman, 2015b).

3Note that (Nguyen and Grishman, 2015b) does not report
the performance on un but we include it here for completeness.
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System In-domain(bn+nw) bc cts wl un
P R F P R F P R F P R F P R F

MaxEnt 74.5 59.4 66.0 70.1 54.5 61.3 66.4 49.9 56.9 59.4 34.9 43.9 - - -
Joint+Local 73.5 62.7 67.7 70.3 57.2 63.1 64.9 50.8 57.0 59.5 38.4 46.7 - - -
Joint+Local+Global 72.9 63.2 67.7 68.8 57.5 62.6 64.5 52.3 57.7 56.4 38.5 45.7 - - -
B-RNN 71.4 63.5 67.1 70.7 62.1 66.1 70.0 54.4 61.0 52.7 38.3 44.2 66.2 46.0 54.1
DM-CNN 75.9 62.7 68.7 75.3 59.3 66.4 74.8 52.3 61.5 59.2 37.4 45.8 72.2 44.5 55.0
CNN 69.2 67.0 68.0 70.2 65.2 67.6 68.3 58.2 62.8 54.8 42.0 47.5 64.6 49.9 56.2
NC-CNN 74.9 66.5 70.4† 73.6 64.7 68.8† 71.7 57.3 63.6 57.8 40.3 47.4 71.7 49.0 58.1†

Table 2: Performance on the source domain and on the target domains. Cells marked with †designates that NC-CNN
significantly outperforms (p < 0.05) all the compared methods on the specified domain.

3.3.2 Performance
Table 2 reports the performance of the systems

with 5-fold cross validation. Note that we focus on
the systems exploiting only the sentence level infor-
mation in this section. For each system, we train a
model on the training data of the source domain and
evaluate this model on the test set of the source do-
main (in-domain performance) as well as on the four
target domains bc, cts, wl and un.

We emphasize that the performance of the sys-
tems MaxEnt, Joint+Local, Joint+Local+Global,
B-RNN, and CNN is obtained from the actual sys-
tems in the original work (Li et al., 2013; Nguyen
and Grishman, 2015b; Nguyen et al., 2016a). The
performance of DM-CNN, on the other hand, is from
our re-implementation of the system in (Chen et
al., 2015) using the same hyper-parameters and re-
sources as CNN and NC-CNN for a fair comparison.

From the table, we see that NC-CNN is signifi-
cantly better than the other models on the source
domain. This is consistent with the conclusions in
Section 3.2 and further confirms the effectiveness of
NC-CNN. More importantly, NC-CNN outperforms
CNN and the other models on the target domains bc,
cts and un, and performs comparably with CNN on
wl. The performance improvement is significant on
bc and un (p < 0.05), thereby verifying the robust-
ness of NC-CNN for ED across domains.

4 Related Work

There have been three major approaches to event de-
tection in the literature. First, the pattern-based ap-
proach explores the application of patterns to iden-
tify the instances of events, in which the patterns are
formed by predicates, event triggers and constraints
on the syntactic context (Grishman et al., 2005; Cao
et al., 2015a; Cao et al., 2015b).

Second, the feature-based approach relies on lin-
guistic intuition to design effective feature sets for
statistical models for ED, ranging from the local
sentence-level representations (Ahn, 2006; Li et al.,
2013), to the higher level structures such as the
cross-sentence or cross-event information (Ji and
Grishman, 2008; Gupta and Ji, 2009; Patwardhan
and Riloff, 2009; Liao and Grishman, 2011; Hong
et al., 2011; McClosky et al., 2011; Li et al., 2015).
Some recent work on the feature-based approach has
also investigated event trigger detection in the joint
inference with event argument prediction (Riedel et
al., 2009; Poon and Vanderwende, 2010; Li et al.,
2013; Venugopal et al., 2014) to benefit from their
inter-dependencies.

Finally, neural networks have been introduced
into ED very recently with the early work on con-
volutional neural networks (Nguyen and Grishman,
2015b; Chen et al., 2015). The other work includes:
(Nguyen et al., 2016a) who employ bidirectional
recurrent neural networks to perform event trig-
ger and argument labeling jointly, (Jagannatha and
Yu, 2016) who extract event instances from health
records with recurrent neural networks and (Nguyen
et al., 2016b) who propose a two-stage training al-
gorithm for event extension with neural networks.

5 Conclusion

We present a new CNN architecture for ED that
exploits the non-consecutive convolution for sen-
tences. Our evaluation of the proposed model on
the general setting and the DA setting demonstrates
the effectiveness of the non-consecutive mechanism.
We achieve the state-of-the-art performance for ED
in both settings. In the future, we plan to investigate
the non-consecutive architecture on other problems
such as relation extraction or slot filling.
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