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Abstract

In this paper we address the question of how
to render sequence-level networks better at
handling structured input. We propose a ma-
chine reading simulator which processes text
incrementally from left to right and performs
shallow reasoning with memory and atten-
tion. The reader extends the Long Short-Term
Memory architecture with a memory network
in place of a single memory cell. This en-
ables adaptive memory usage during recur-
rence with neural attention, offering a way to
weakly induce relations among tokens. The
system is initially designed to process a single
sequence but we also demonstrate how to inte-
grate it with an encoder-decoder architecture.
Experiments on language modeling, sentiment
analysis, and natural language inference show
that our model matches or outperforms the
state of the art.

1 Introduction

How can a sequence-level network induce relations
which are presumed latent during text processing?
How can a recurrent network attentively memorize
longer sequences in a way that humans do? In this
paper we design a machine reader that automatically
learns to understand text. The term machine read-
ing is related to a wide range of tasks from answer-
ing reading comprehension questions (Clark et al.,
2013), to fact and relation extraction (Etzioni et al.,
2011; Fader et al., 2011), ontology learning (Poon
and Domingos, 2010), and textual entailment (Da-
gan et al., 2005). Rather than focusing on a specific
task, we develop a general-purpose reading simula-

tor, drawing inspiration from human language pro-
cessing and the fact language comprehension is in-
cremental with readers continuously extracting the
meaning of utterances on a word-by-word basis.

In order to understand texts, our machine reader
should provide facilities for extracting and repre-
senting meaning from natural language text, storing
meanings internally, and working with stored mean-
ings to derive further consequences. Ideally, such
a system should be robust, open-domain, and de-
grade gracefully in the presence of semantic rep-
resentations which may be incomplete, inaccurate,
or incomprehensible. It would also be desirable to
simulate the behavior of English speakers who pro-
cess text sequentially, from left to right, fixating
nearly every word while they read (Rayner, 1998)
and creating partial representations for sentence pre-
fixes (Konieczny, 2000; Tanenhaus et al., 1995).

Language modeling tools such as recurrent neural
networks (RNN) bode well with human reading be-
havior (Frank and Bod, 2011). RNNs treat each sen-
tence as a sequence of words and recursively com-
pose each word with its previous memory, until the
meaning of the whole sentence has been derived. In
practice, however, sequence-level networks are met
with at least three challenges. The first one concerns
model training problems associated with vanishing
and exploding gradients (Hochreiter, 1991; Bengio
et al., 1994), which can be partially ameliorated with
gated activation functions, such as the Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997), and gradient clipping (Pascanu et al.,
2013). The second issue relates to memory com-
pression problems. As the input sequence gets com-
pressed and blended into a single dense vector, suf-
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The FBI is chasing a criminal on the run .
TheThe FBI is chasing a criminal on the run .
TheThe FBIFBI is chasing a criminal on the run .
TheThe FBIFBI isis chasing a criminal on the run .
TheThe FBIFBI isis chasingchasing a criminal on the run .

TheThe FBIFBI isis chasingchasing aa criminal on the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal on the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon thethe run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon thethe runrun .

Figure 1: Illustration of our model while reading the
sentence The FBI is chasing a criminal on the run.
Color red represents the current word being fixated,
blue represents memories. Shading indicates the de-
gree of memory activation.

ficiently large memory capacity is required to store
past information. As a result, the network general-
izes poorly to long sequences while wasting memory
on shorter ones. Finally, it should be acknowledged
that sequence-level networks lack a mechanism for
handling the structure of the input. This imposes
an inductive bias which is at odds with the fact that
language has inherent structure. In this paper, we
develop a text processing system which addresses
these limitations while maintaining the incremental,
generative property of a recurrent language model.

Recent attempts to render neural networks more
structure aware have seen the incorporation of exter-
nal memories in the context of recurrent neural net-
works (Weston et al., 2015; Sukhbaatar et al., 2015;
Grefenstette et al., 2015). The idea is to use multiple
memory slots outside the recurrence to piece-wise
store representations of the input; read and write
operations for each slot can be modeled as an at-
tention mechanism with a recurrent controller. We
also leverage memory and attention to empower a
recurrent network with stronger memorization capa-
bility and more importantly the ability to discover
relations among tokens. This is realized by insert-
ing a memory network module in the update of a re-
current network together with attention for memory
addressing. The attention acts as a weak inductive
module discovering relations between input tokens,
and is trained without direct supervision. As a point
of departure from previous work, the memory net-
work we employ is internal to the recurrence, thus
strengthening the interaction of the two and lead-
ing to a representation learner which is able to rea-

son over shallow structures. The resulting model,
which we term Long Short-Term Memory-Network
(LSTMN), is a reading simulator that can be used
for sequence processing tasks.

Figure 1 illustrates the reading behavior of the
LSTMN. The model processes text incrementally
while learning which past tokens in the memory and
to what extent they relate to the current token being
processed. As a result, the model induces undirected
relations among tokens as an intermediate step of
learning representations. We validate the perfor-
mance of the LSTMN in language modeling, sen-
timent analysis, and natural language inference. In
all cases, we train LSTMN models end-to-end with
task-specific supervision signals, achieving perfor-
mance comparable or better to state-of-the-art mod-
els and superior to vanilla LSTMs.

2 Related Work

Our machine reader is a recurrent neural network ex-
hibiting two important properties: it is incremental,
simulating human behavior, and performs shallow
structure reasoning over input streams.

Recurrent neural network (RNNs) have been suc-
cessfully applied to various sequence modeling and
sequence-to-sequence transduction tasks. The latter
have assumed several guises in the literature such
as machine translation (Bahdanau et al., 2014), sen-
tence compression (Rush et al., 2015), and reading
comprehension (Hermann et al., 2015). A key con-
tributing factor to their success has been the abil-
ity to handle well-known problems with exploding
or vanishing gradients (Bengio et al., 1994), leading
to models with gated activation functions (Hochre-
iter and Schmidhuber, 1997; Cho et al., 2014), and
more advanced architectures that enhance the in-
formation flow within the network (Koutnı́k et al.,
2014; Chung et al., 2015; Yao et al., 2015).

A remaining practical bottleneck for RNNs is
memory compression (Bahdanau et al., 2014): since
the inputs are recursively combined into a single
memory representation which is typically too small
in terms of parameters, it becomes difficult to accu-
rately memorize sequences (Zaremba and Sutskever,
2014). In the encoder-decoder architecture, this
problem can be sidestepped with an attention mech-
anism which learns soft alignments between the de-
coding states and the encoded memories (Bahdanau
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et al., 2014). In our model, memory and attention
are added within a sequence encoder allowing the
network to uncover lexical relations between tokens.

The idea of introducing a structural bias to neu-
ral models is by no means new. For example, it is
reflected in the work of Socher et al. (2013a) who
apply recursive neural networks for learning natural
language representations. In the context of recur-
rent neural networks, efforts to build modular, struc-
tured neural models date back to Das et al. (1992)
who connect a recurrent neural network with an ex-
ternal memory stack for learning context free gram-
mars. Recently, Weston et al. (2015) propose Mem-
ory Networks to explicitly segregate memory stor-
age from the computation of neural networks in gen-
eral. Their model is trained end-to-end with a mem-
ory addressing mechanism closely related to soft at-
tention (Sukhbaatar et al., 2015) and has been ap-
plied to machine translation (Meng et al., 2015).
Grefenstette et al. (2015) define a set of differen-
tiable data structures (stacks, queues, and dequeues)
as memories controlled by a recurrent neural net-
work. Tran et al. (2016) combine the LSTM with an
external memory block component which interacts
with its hidden state. Kumar et al. (2016) employ
a structured neural network with episodic memory
modules for natural language and also visual ques-
tion answering (Xiong et al., 2016).

Similar to the above work, we leverage memory
and attention in a recurrent neural network for induc-
ing relations between tokens as a module in a larger
network responsible for representation learning. As
a property of soft attention, all intermediate rela-
tions we aim to capture are soft and differentiable.
This is in contrast to shift-reduce type neural mod-
els (Dyer et al., 2015; Bowman et al., 2016) where
the intermediate decisions are hard and induction is
more difficult. Finally, note that our model captures
undirected lexical relations and is thus distinct from
work on dependency grammar induction (Klein and
Manning, 2004) where the learned head-modifier re-
lations are directed.

3 The Machine Reader

In this section we present our machine reader which
is designed to process structured input while retain-
ing the incrementality of a recurrent neural network.
The core of our model is a Long Short-Term Mem-

ory (LSTM) unit with an extended memory tape that
explicitly simulates the human memory span. The
model performs implicit relation analysis between
tokens with an attention-based memory addressing
mechanism at every time step. In the following, we
first review the standard Long Short-Term Memory
and then describe our model.

3.1 Long Short-Term Memory

A Long Short-Term Memory (LSTM) recurrent neu-
ral network processes a variable-length sequence
x = (x1,x2, · · · ,xn) by incrementally adding new
content into a single memory slot, with gates con-
trolling the extent to which new content should be
memorized, old content should be erased, and cur-
rent content should be exposed. At time step t, the
memory ct and the hidden state ht are updated with
the following equations:
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775W · [ht�1, xt ] (1)

ct = ft � ct�1 + it � ĉt (2)

ht = ot � tanh(ct) (3)

where i, f , and o are gate activations. Compared
to the standard RNN, the LSTM uses additive mem-
ory updates and it separates the memory c from the
hidden state h, which interacts with the environment
when making predictions.

3.2 Long Short-Term Memory-Network

The first question that arises with LSTMs is the ex-
tent to which they are able to memorize sequences
under recursive compression. LSTMs can produce
a list of state representations during composition,
however, the next state is always computed from the
current state. That is to say, given the current state
ht , the next state ht+1 is conditionally independent of
states h1 · · ·ht�1 and tokens x1 · · ·xt . While the recur-
sive state update is performed in a Markov manner, it
is assumed that LSTMs maintain unbounded mem-
ory (i.e., the current state alone summarizes well the
tokens it has seen so far). This assumption may fail
in practice, for example when the sequence is long
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Figure 2: Long Short-Term Memory-Network.
Color indicates degree of memory activation.

or when the memory size is not large enough. An-
other undesired property of LSTMs concerns model-
ing structured input. An LSTM aggregates informa-
tion on a token-by-token basis in sequential order,
but there is no explicit mechanism for reasoning over
structure and modeling relations between tokens.

Our model aims to address both limitations. Our
solution is to modify the standard LSTM structure
by replacing the memory cell with a memory net-
work (Weston et al., 2015). The resulting Long
Short-Term Memory-Network (LSTMN) stores the
contextual representation of each input token with
a unique memory slot and the size of the memory
grows with time until an upper bound of the memory
span is reached. This design enables the LSTM to
reason about relations between tokens with a neural
attention layer and then perform non-Markov state
updates. Although it is feasible to apply both write
and read operations to the memories with attention,
we concentrate on the latter. We conceptualize the
read operation as attentively linking the current to-
ken to previous memories and selecting useful con-
tent when processing it. Although not the focus of
this work, the significance of the write operation
can be analogously justified as a way of incremen-
tally updating previous memories, e.g., to correct
wrong interpretations when processing garden path
sentences (Ferreira and Henderson, 1991).

The architecture of the LSTMN is shown in Fig-
ure 2 and the formal definition is provided as fol-
lows. The model maintains two sets of vectors
stored in a hidden state tape used to interact with the

environment (e.g., computing attention), and a mem-
ory tape used to represent what is actually stored in
memory.1 Therefore, each token is associated with
a hidden vector and a memory vector. Let xt de-
note the current input; Ct�1 = (c1, · · · ,ct�1) denotes
the current memory tape, and Ht�1 = (h1, · · · ,ht�1)
the previous hidden tape. At time step t, the model
computes the relation between xt and x1 · · ·xt�1
through h1 · · ·ht�1 with an attention layer:

at
i = vT tanh(Whhi +Wxxt +Wh̃h̃t�1) (4)

st
i = softmax(at

i) (5)

This yields a probability distribution over the hidden
state vectors of previous tokens. We can then com-
pute an adaptive summary vector for the previous
hidden tape and memory tape denoted by c̃t and h̃t ,
respectively:
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and use them for computing the values of ct and ht
in the recurrent update as:
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ct = ft � c̃t + it � ĉt (8)

ht = ot � tanh(ct) (9)

where v, Wh, Wx and Wh̃ are the new weight terms of
the network.

A key idea behind the LSTMN is to use attention
for inducing relations between tokens. These rela-
tions are soft and differentiable, and components of
a larger representation learning network. Although
it is appealing to provide direct supervision for the
attention layer, e.g., with evidence collected from
a dependency treebank, we treat it as a submod-
ule being optimized within the larger network in a
downstream task. It is also possible to have a more
structured relational reasoning module by stacking
multiple memory and hidden layers in an alternat-
ing fashion, resembling a stacked LSTM (Graves,

1For comparison, LSTMs maintain a hidden vector and a
memory vector; memory networks (Weston et al., 2015) have a
set of key vectors and a set of value vectors.
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2013) or a multi-hop memory network (Sukhbaatar
et al., 2015). This can be achieved by feeding the
output hk

t of the lower layer k as input to the upper
layer (k + 1). The attention at the (k + 1)th layer is
computed as:

at
i,k+1 = vT tanh(Whhk+1

i +Wlhk
t +Wh̃h̃k+1

t�1 ) (10)

Skip-connections (Graves, 2013) can be applied to
feed xt to upper layers as well.

4 Modeling Two Sequences with LSTMN

Natural language processing tasks such as machine
translation and textual entailment are concerned
with modeling two sequences rather than a single
one. A standard tool for modeling two sequences
with recurrent networks is the encoder-decoder ar-
chitecture where the second sequence (also known
as the target) is being processed conditioned on the
first one (also known as the source). In this section
we explain how to combine the LSTMN which ap-
plies attention for intra-relation reasoning, with the
encoder-decoder network whose attention module
learns the inter-alignment between two sequences.
Figures 3a and 3b illustrate two types of combina-
tion. We describe the models more formally below.

Shallow Attention Fusion Shallow fusion simply
treats the LSTMN as a separate module that can
be readily used in an encoder-decoder architecture,
in lieu of a standard RNN or LSTM. As shown in
Figure 3a, both encoder and decoder are modeled
as LSTMNs with intra-attention. Meanwhile, inter-
attention is triggered when the decoder reads a tar-
get token, similar to the inter-attention introduced in
Bahdanau et al. (2014).

Deep Attention Fusion Deep fusion combines
inter- and intra-attention (initiated by the decoder)
when computing state updates. We use different no-
tation to represent the two sets of attention. Follow-
ing Section 3.2, C and H denote the target memory
tape and hidden tape, which store representations of
the target symbols that have been processed so far.
The computation of intra-attention follows Equa-
tions (4)–(9). Additionally, we use A = [a1, · · · ,am]
and Y = [g1, · · · ,gm] to represent the source mem-
ory tape and hidden tape, with m being the length of
the source sequence conditioned upon. We compute

inter-attention between the input at time step t and
tokens in the entire source sequence as follows:

bt
j = uT tanh(Wgg j +Wxxt +Wg̃g̃t�1) (11)

pt
j = softmax(bt

j) (12)

After that we compute the adaptive representation of
the source memory tape ãt and hidden tape g̃t as:


g̃t
ãt
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(13)

We can then transfer the adaptive source represen-
tation ãt to the target memory with another gating
operation rt , analogous to the gates in Equation (7).

rt = s(Wr · [g̃t ,xt ]) (14)

The new target memory includes inter-alignment
rt � ãt , intra-relation ft � c̃t , and the new input in-
formation it � ĉt :

ct = rt � ãt + ft � c̃t + it � ĉt (15)

ht = ot � tanh(ct) (16)

As shown in the equations above and Figure 3b, the
major change of deep fusion lies in the recurrent
storage of the inter-alignment vector in the target
memory network, as a way to help the target net-
work review source information.

5 Experiments

In this section we present our experiments for eval-
uating the performance of the LSTMN machine
reader. We start with language modeling as it
is a natural testbed for our model. We then as-
sess the model’s ability to extract meaning repre-
sentations for generic sentence classification tasks
such as sentiment analysis. Finally, we examine
whether the LSTMN can recognize the semantic
relationship between two sentences by applying it
to a natural language inference task. Our code
is available at https://github.com/cheng6076/
SNLI-attention.
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(a) Decoder with shallow attention fusion. (b) Decoder with deep attention fusion.

Figure 3: LSTMNs for sequence-to-sequence modeling. The encoder uses intra-attention, while the decoder
incorporates both intra- and inter-attention. The two figures present two ways to combine the intra- and
inter-attention in the decoder.

Models Layers Perplexity
KN5 — 141
RNN 1 129
LSTM 1 115
LSTMN 1 108
sLSTM 3 115
gLSTM 3 107
dLSTM 3 109
LSTMN 3 102

Table 1: Language model perplexity on the Penn
Treebank. The size of memory is 300 for all models.

5.1 Language Modeling

Our language modeling experiments were con-
ducted on the English Penn Treebank dataset. Fol-
lowing common practice (Mikolov et al., 2010), we
trained on sections 0–20 (1M words), used sec-
tions 21–22 for validation (80K words), and sec-
tions 23–24 (90K words for testing). The dataset
contains approximately 1 million tokens and a vo-
cabulary size of 10K. The average sentence length
is 21. We use perplexity as our evaluation metric:
PPL = exp(NLL/T ), where NLL denotes the nega-
tive log likelihood of the entire test set and T the
corresponding number of tokens. We used stochas-
tic gradient descent for optimization with an ini-
tial learning rate of 0.65, which decays by a factor
of 0.85 per epoch if no significant improvement has
been observed on the validation set. We renormal-
ize the gradient if its norm is greater than 5. The
mini-batch size was set to 40. The dimensions of

the word embeddings were set to 150 for all models.

In this suite of experiments we compared the
LSTMN against a variety of baselines. The first
one is a Kneser-Ney 5-gram language model (KN5)
which generally serves as a non-neural baseline for
the language modeling task. We also present per-
plexity results for the standard RNN and LSTM
models. We also implemented more sophisti-
cated LSTM architectures, such as a stacked LSTM
(sLSTM), a gated-feedback LSTM (gLSTM; Chung
et al. (2015)) and a depth-gated LSTM (dLSTM;
Yao et al. (2015)). The gated-feedback LSTM has
feedback gates connecting the hidden states across
multiple time steps as an adaptive control of the in-
formation flow. The depth-gated LSTM uses a depth
gate to connect memory cells of vertically adjacent
layers. In general, both gLSTM and dLSTM are
able to capture long-term dependencies to some de-
gree, but they do not explicitly keep past memories.
We set the number of layers to 3 in this experiment,
mainly to agree with the language modeling exper-
iments of Chung et al. (2015). Also note that that
there are no single-layer variants for gLSTM and
dLSTM; they have to be implemented as multi-layer
systems. The hidden unit size of the LSTMN and all
comparison models (except KN5) was set to 300.

The results of the language modeling task are
shown in Table 1. Perplexity results for KN5 and
RNN are taken from Mikolov et al. (2015). As can
be seen, the single-layer LSTMN outperforms these
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he sits down at the piano and plays

our view is that we may see a profit decline

products < unk > have to be first to be winners

everyone in the world is watching us very closely

Figure 4: Examples of intra-attention (language
modeling). Bold lines indicate higher attention
scores. Arrows denote which word is being focused
when attention is computed, but not the direction of
the relation.

two baselines and the LSTM by a significant mar-
gin. Amongst all deep architectures, the three-layer
LSTMN also performs best. We can study the mem-
ory activation mechanism of the machine reader by
visualizing the attention scores. Figure 4 shows
four sentences sampled from the Penn Treebank val-
idation set. Although we explicitly encourage the
reader to attend to any memory slot, much attention
focuses on recent memories. This agrees with the
linguistic intuition that long-term dependencies are
relatively rare. As illustrated in Figure 4 the model
captures some valid lexical relations (e.g., the de-
pendency between sits and at, sits and plays, every-
one and is, is and watching). Note that arcs here
are undirected and are different from the directed
arcs denoting head-modifier relations in dependency
graphs.

5.2 Sentiment Analysis

Our second task concerns the prediction of senti-
ment labels of sentences. We used the Stanford Sen-
timent Treebank (Socher et al., 2013a), which con-
tains fine-grained sentiment labels (very positive,
positive, neutral, negative, very negative) for 11,855
sentences. Following previous work on this dataset,

Models Fine-grained Binary
RAE (Socher et al., 2011) 43.2 82.4
RNTN (Socher et al., 2013b) 45.7 85.4
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
DCNN (Blunsom et al., 2014) 48.5 86.8
CNN-MC (Kim, 2014) 48.0 88.1
T-CNN (Lei et al., 2015) 51.2 88.6
PV (Le and Mikolov, 2014) 48.7 87.8
CT-LSTM (Tai et al., 2015) 51.0 88.0
LSTM (Tai et al., 2015) 46.4 84.9
2-layer LSTM (Tai et al., 2015) 46.0 86.3
LSTMN 47.6 86.3
2-layer LSTMN 47.9 87.0

Table 2: Model accuracy (%) on the Sentiment Tree-
bank (test set). The memory size of LSTMN models
is set to 168 to be compatible with previously pub-
lished LSTM variants (Tai et al., 2015).

we used 8,544 sentences for training, 1,101 for val-
idation, and 2,210 for testing. The average sentence
length is 19.1. In addition, we also performed a bi-
nary classification task (positive, negative) after re-
moving the neutral label. This resulted in 6,920 sen-
tences for training, 872 for validation and 1,821 for
testing. Table 2 reports results on both fine-grained
and binary classification tasks.

We experimented with 1- and 2-layer LSTMNs.
For the latter model, we predict the sentiment la-
bel of the sentence based on the averaged hidden
vector passed to a 2-layer neural network classifier
with ReLU as the activation function. The mem-
ory size for both LSTMN models was set to 168 to
be compatible with previous LSTM models (Tai et
al., 2015) applied to the same task. We used pre-
trained 300-D Glove 840B vectors (Pennington et
al., 2014) to initialize the word embeddings. The
gradient for words with Glove embeddings, was
scaled by 0.35 in the first epoch after which all word
embeddings were updated normally.

We used Adam (Kingma and Ba, 2015) for op-
timization with the two momentum parameters set
to 0.9 and 0.999 respectively. The initial learning
rate was set to 2E-3. The regularization constant was
1E-4 and the mini-batch size was 5. A dropout rate
of 0.5 was applied to the neural network classifier.

We compared our model with a wide range of top-
performing systems. Most of these models (includ-
ing ours) are LSTM variants (third block in Table 2),
recursive neural networks (first block), or convolu-
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tional neural networks (CNNs; second block). Re-
cursive models assume the input sentences are rep-
resented as parse trees and can take advantage of
annotations at the phrase level. LSTM-type models
and CNNs are trained on sequential input, with the
exception of CT-LSTM (Tai et al., 2015) which op-
erates over tree-structured network topologies such
as constituent trees. For comparison, we also report
the performance of the paragraph vector model (PV;
Le and Mikolov (2014); see Table 2, second block)
which neither operates on trees nor sequences but
learns distributed document representations param-
eterized directly.

The results in Table 2 show that both 1- and
2-layer LSTMNs outperform the LSTM baselines
while achieving numbers comparable to state of the
art. The number of layers for our models was set to
be comparable to previously published results. On
the fine-grained and binary classification tasks our
2-layer LSTMN performs close to the best system
T-CNN (Lei et al., 2015). Figure 5 shows examples
of intra-attention for sentiment words. Interestingly,
the network learns to associate sentiment important
words such as though and fantastic or not and good.

5.3 Natural Language Inference

The ability to reason about the semantic relation-
ship between two sentences is an integral part of
text understanding. We therefore evaluate our model
on recognizing textual entailment, i.e., whether two
premise-hypothesis pairs are entailing, contradic-
tory, or neutral. For this task we used the Stan-
ford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015), which contains premise-
hypothesis pairs and target labels indicating their
relation. After removing sentences with unknown
labels, we end up with 549,367 pairs for training,
9,842 for development and 9,824 for testing. The
vocabulary size is 36,809 and the average sentence
length is 22. We performed lower-casing and tok-
enization for the entire dataset.

Recent approaches use two sequential LSTMs to
encode the premise and the hypothesis respectively,
and apply neural attention to reason about their logi-
cal relationship (Rocktäschel et al., 2016; Wang and
Jiang, 2016). Furthermore, Rocktäschel et al. (2016)
show that a non-standard encoder-decoder architec-
ture which processes the hypothesis conditioned on

it ’s tough to watch but it ’s a fantastic movie

although i did n’t hate this one , it ’s not very good either

Figure 5: Examples of intra-attention (sentiment
analysis). Bold lines (red) indicate attention be-
tween sentiment important words.

the premise results significantly boosts performance.
We use a similar approach to tackle this task with
LSTMNs. Specifically, we use two LSTMNs to read
the premise and hypothesis, and then match them
by comparing their hidden state tapes. We perform
average pooling for the hidden state tape of each
LSTMN, and concatenate the two averages to form
the input to a 2-layer neural network classifier with
ReLU as the activation function.

We used pre-trained 300-D Glove 840B vectors
(Pennington et al., 2014) to initialize the word em-
beddings. Out-of-vocabulary (OOV) words were
initialized randomly with Gaussian samples (µ=0,
s=1). We only updated OOV vectors in the first
epoch, after which all word embeddings were up-
dated normally. The dropout rate was selected from
[0.1, 0.2, 0.3, 0.4]. We used Adam (Kingma and Ba,
2015) for optimization with the two momentum pa-
rameters set to 0.9 and 0.999 respectively, and the
initial learning rate set to 1E-3. The mini-batch size
was set to 16 or 32. For a fair comparison against
previous work, we report results with different hid-
den/memory dimensions (i.e., 100, 300, and 450).

We compared variants of our model against dif-
ferent types of LSTMs (see the second block in Ta-
ble 3). Specifically, these include a model which
encodes the premise and hypothesis independently
with two LSTMs (Bowman et al., 2015), a shared
LSTM (Rocktäschel et al., 2016), a word-by-word
attention model (Rocktäschel et al., 2016), and a
matching LSTM (mLSTM; Wang and Jiang (2016)).
This model sequentially processes the hypothesis,
and at each position tries to match the current word
with an attention-weighted representation of the
premise (rather than basing its predictions on whole
sentence embeddings). We also compared our mod-
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Models h |q|M Test
BOW concatenation — — 59.8
LSTM (Bowman et al., 2015) 100 221k 77.6
LSTM-att (Rocktäschel et al., 2016) 100 252k 83.5
mLSTM (Wang and Jiang, 2016) 300 1.9M 86.1
LSTMN 100 260k 81.5
LSTMN shallow fusion 100 280k 84.3
LSTMN deep fusion 100 330k 84.5
LSTMN shallow fusion 300 1.4M 85.2
LSTMN deep fusion 300 1.7M 85.7
LSTMN shallow fusion 450 2.8M 86.0
LSTMN deep fusion 450 3.4M 86.3

Table 3: Parameter counts |q|M, size of hidden
unit h, and model accuracy (%) on the natural lan-
guage inference task.

els with a bag-of-words baseline which averages the
pre-trained embeddings for the words in each sen-
tence and concatenates them to create features for a
logistic regression classifier (first block in Table 3).

LSTMNs achieve better performance compared
to LSTMs (with and without attention; 2nd block
in Table 3). We also observe that fusion is gen-
erally beneficial, and that deep fusion slightly im-
proves over shallow fusion. One explanation is that
with deep fusion the inter-attention vectors are re-
currently memorized by the decoder with a gating
operation, which also improves the information flow
of the network. With standard training, our deep fu-
sion yields the state-of-the-art performance in this
task. Although encouraging, this result should be in-
terpreted with caution since our model has substan-
tially more parameters compared to related systems.
We could compare different models using the same
number of total parameters. However, this would in-
evitably introduce other biases, e.g., the number of
hyper-parameters would become different.

6 Conclusions

In this paper we proposed a machine reading simula-
tor to address the limitations of recurrent neural net-
works when processing inherently structured input.
Our model is based on a Long Short-Term Mem-
ory architecture embedded with a memory network,
explicitly storing contextual representations of in-
put tokens without recursively compressing them.
More importantly, an intra-attention mechanism is
employed for memory addressing, as a way to in-

duce undirected relations among tokens. The at-
tention layer is not optimized with a direct super-
vision signal but with the entire network in down-
stream tasks. Experimental results across three tasks
show that our model yields performance comparable
or superior to state of the art.

Although our experiments focused on LSTMs, the
idea of building more structure aware neural models
is general and can be applied to other types of net-
works. When direct supervision is provided, simi-
lar architectures can be adapted to tasks such as de-
pendency parsing and relation extraction. In the fu-
ture, we hope to develop more linguistically plausi-
ble neural architectures able to reason over nested
structures and neural models that learn to discover
compositionality with weak or indirect supervision.
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