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Abstract
Taxonomic relation identification aims to rec-
ognize the ‘is-a’ relation between two terms.
Previous works on identifying taxonomic re-
lations are mostly based on statistical and lin-
guistic approaches, but the accuracy of these
approaches is far from satisfactory. In this pa-
per, we propose a novel supervised learning
approach for identifying taxonomic relations
using term embeddings. For this purpose, we
first design a dynamic weighting neural net-
work to learn term embeddings based on not
only the hypernym and hyponym terms, but
also the contextual information between them.
We then apply such embeddings as features
to identify taxonomic relations using a super-
vised method. The experimental results show
that our proposed approach significantly out-
performs other state-of-the-art methods by 9%
to 13% in terms of accuracy for both general
and specific domain datasets.

1 Introduction

Taxonomies which serve as the backbone of struc-
tured knowledge are useful for many NLP applica-
tions such as question answering (Harabagiu et al.,
2003) and document clustering (Fodeh et al., 2011).
However, the hand-crafted, well-structured tax-
onomies including WordNet (Miller, 1995), Open-
Cyc (Matuszek et al., 2006) and Freebase (Bol-
lacker et al., 2008) that are publicly available may
not be complete for new or specialized domains. It
is also time-consuming and error prone to identify
taxonomic relations manually. As such, methods
for automatic identification of taxonomic relations
is highly desirable.

The previous methods for identifying taxonomic
relations can be generally classified into two cate-
gories: statistical and linguistic approaches. The sta-
tistical approaches rely on the idea that frequently
co-occurring terms are likely to have taxonomic re-
lationships. While such approaches can result in
taxonomies with relatively high coverage, they are
usually heavily dependent on the choice of feature
types, and suffer from low accuracy. The linguis-
tic approaches which are based on lexical-syntactic
patterns (e.g. ‘A such as B’) are simple and efficient.
However, they usually suffer from low precision and
coverage because the identified patterns are unable
to cover the wide range of complex linguistic struc-
tures, and the ambiguity of natural language com-
pounded by data sparsity makes these approaches
less robust.

Word embedding (Bengio et al., 2001), also
known as distributed word representation, which
represents words with high-dimensional and real-
valued vectors, has been shown to be effective in
exploring both linguistic and semantic relations be-
tween words. In recent years, word embedding has
been used quite extensively in NLP research, rang-
ing from syntactic parsing (Socher et al., 2013a),
machine translation (Zou et al., 2013) to senti-
ment analysis (Socher et al., 2013b). The cur-
rent methods for learning word embeddings have
focused on learning the representations from word
co-occurrence so that similar words will have simi-
lar embeddings. However, using the co-occurrence
based similarity learning alone is not effective for
the purpose of identifying taxonomic relations.

Recently, Yu et al. (2015) proposed a super-
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vised method to learn term embeddings based on
pre-extracted taxonomic relation data. However, this
method is heavily dependent on the training data to
discover all taxonomic relations, i.e. if a pair of
terms is not in the training set, it may become a
negative example in the learning process, and will
be classified as a non-taxonomic relation. The de-
pendency on training data is a huge drawback of the
method as no source can guarantee that it can cover
all possible taxonomic relations for learning. More-
over, the recent studies (Velardi et al., 2013; Levy
et al., 2014; Tuan et al., 2015) showed that contex-
tual information between hypernym and hyponym is
an important indicator to detect taxonomic relations.
However, the term embedding learning method pro-
posed in (Yu et al., 2015) only learns through the
pairwise relations of terms without considering the
contextual information between them. Therefore,
the resultant quality is not good in some specific do-
main areas.

In this paper, we propose a novel approach to
learn term embeddings based on dynamic weight-
ing neural network to encode not only the informa-
tion of hypernym and hyponym, but also the con-
textual information between them for the purpose
of taxonomic relation identification. We then ap-
ply the identified embeddings as features to find the
positive taxonomic relations using the supervised
method SVM. The experimental results show that
our proposed term embedding learning approach
outperforms other state-of-the-art embedding learn-
ing methods for identifying taxonomic relations
with much higher accuracy for both general and spe-
cific domains. In addition, another advantage of
our proposed approach is that it is able to general-
ize from the training dataset the taxonomic relation
properties for unseen pairs. Thus, it can recognize
some true taxonomic relations which are not even
defined in dictionary and training data. For the rest
of this paper, we will discuss the proposed term em-
bedding learning approach and its performance re-
sults.

2 Related work

Previous works on taxonomic relation identification
can be roughly divided into two main approaches of
statistical learning and linguistic pattern matching.

Statistical learning methods include co-occurrence
analysis (Lawrie and Croft, 2003), hierarchical la-
tent Dirichlet allocation (LDA) (Blei et al., 2004;
Petinot et al., 2011), clustering (Li et al., 2013), lin-
guistic feature-based semantic distance learning (Yu
et al., 2011), distributional representation (Roller et
al., 2014; Weeds et al., 2014; Kruszewski et al.,
2015) and co-occurrence subnetwork mining (Wang
et al., 2013). Supervised statistical methods (Petinot
et al., 2011) rely on hierarchical labels to learn the
corresponding terms for each label. These methods
require labeled training data which is costly and not
always available in practice. Unsupervised statis-
tical methods (Pons-Porrata et al., 2007; Li et al.,
2013; Wang et al., 2013) are based on the idea that
terms that frequently co-occur may have taxonomic
relationships. However, these methods generally
achieve low accuracies.

Linguistic approaches rely on lexical-syntactic
patterns (Hearst, 1992) (e.g. ‘A such as B’) to cap-
ture textual expressions of taxonomic relations, and
match them with the given documents or Web in-
formation to identify the relations between a term
and its hypernyms (Kozareva and Hovy, 2010; Nav-
igli et al., 2011; Wentao et al., 2012). These pat-
terns can be manually created (Kozareva and Hovy,
2010; Wentao et al., 2012) or automatically identi-
fied (Snow et al., 2004; Navigli et al., 2011). Such
liguistic pattern matching methods can generally
achieve higher precision than the statistical methods,
but they suffer from lower coverage. To balance the
precision and recall, Zhu et al. (2013) and Tuan et
al. (2014) have combined both unsupervised statis-
tical and linguistic methods for finding taxonomic
relations.

In recent years, there are a few studies on tax-
onomic relation identification using word embed-
dings such as the work of Tan et al. (2015) and Fu
et al. (2014). These studies are based on word em-
beddings from the Word2Vec model (Mikolov et al.,
2013a), which is mainly optimized for the purpose
of analogy detection using co-occurrence based sim-
ilarity learning. As such, these studies suffer from
poor performance on low accuracy for taxonomic re-
lation identification.

The approach that is closest to our work is the one
proposed by Yu et al. (2015), which also learns term
embeddings for the purpose of taxonomic relation
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identification. In the approach, a distance-margin
neural network is proposed to learn term embed-
dings based on the pre-extracted taxonomic relations
from the Probase database (Wentao et al., 2012).
However, the neural network is trained using only
the information of the term pairs (i.e. hypernym and
hyponym) without considering the contextual infor-
mation between them, which has been shown to be
an important indicator for identifying taxonomic re-
lations from previous studies (Velardi et al., 2013;
Levy et al., 2014; Tuan et al., 2014). Moreover, if
a pair of terms is not contained in the training set,
there is high possibility that it will become a nega-
tive example in the learning process, and will likely
be recognized as a non-taxonomic relation. The key
assumption behind the design of this approach is not
always true as no available dataset can possibly con-
tain all taxonomic relations.

3 Methodology

In this section, we first propose an approach for
learning term embeddings based on hypernym, hy-
ponym and the contextual information between
them. We then discuss a supervised method for iden-
tifying taxonomic relations based on the term em-
beddings.

3.1 Learning term embeddings
As shown in Figure 1, there are three steps for learn-
ing term embeddings: (i) extracting taxonomic rela-
tions; (ii) extracting training triples; and (iii) training
neural network. First, we extract from WordNet all
taxonomic relations as training data. Then, we ex-
tract from Wikipedia all sentences which contain at
least one pair of terms involved in a taxonomic rela-
tion in the training data, and from that we identify
the triples of hypernym, hyponym and contextual
words between them. Finally, using the extracted
triples as input, we propose a dynamic weighting
neural network to learn term embeddings based on
the information of these triples.

3.1.1 Extracting taxonomic relations
This step aims to extract a set of taxonomic re-

lations for training. For this purpose, we use Word-
Net hierarchies for extracting all (direct and indirect)
taxonomic relations between noun terms in Word-
Net. However, based on our experience, the rela-

Extracting taxonomic 
relations

Extracting training 
triples

Training neural network

Set of taxonomic 
relations

Set of 
training triples

Term embeddings

Figure 1: Proposed approach for learning term embeddings.

tions involving with top-level terms such as ‘object’,
‘entity’ or ‘whole’ are usually ambiguous and be-
come noise for the learning purpose. Therefore, we
exclude from the training set all relations which in-
volve with those top-level terms. Note that we also
exclude from training set all taxonomic relations that
are happened in the datasets used for testing in Sec-
tion 4.1. As a result, the total number of extracted
taxonomic relations is 236,058.

3.1.2 Extracting training triples

This step aims to extract the triples of hypernym,
hyponym and the contextual words between them.
These triples will serve as the inputs to the neural
network for training. In this research, we define
contextual words as all words located between the
hypernym and hyponym in a sentence. We use the
latest English Wikipedia corpus as the source for ex-
tracting such triples.

Using the set of taxonomic relations extracted
from the first step as reference, we extract from
the Wikipedia corpus all sentences which contain
at least two terms involved in a taxonomic relation.
Specifically, for each sentence, we use the Stanford
parser (Manning et al., 2014) to parse it, and check
whether there is any pair of terms which are nouns
or noun phrases in the sentence having a taxonomic
relationship. If yes, we extract the hypernym, hy-
ponym and all words between them from the sen-
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tence as a training triple. In total, we have extracted
15,499,173 training triples from Wikipedia.

Here, we apply the Stanford parser rather than
matching the terms directly in the sentence in order
to avoid term ambiguity as a term can serve for dif-
ferent grammatical functions such as noun or verb.
For example, consider the following sentence:

• Many supporters book tickets for the premiere
of his new publication.

The triple (‘publication’, ‘book’, ‘tickets for the pre-
miere of his new’) may be incorrectly added to the
training set due to the occurrence of the taxonomic
pair (‘publication’, ‘book’), even though the mean-
ing of ‘book’ in this sentence is not about the ‘pub-
lication’.

3.1.3 Training neural network
Contextual information is an important indicator

for detecting taxonomic relations. For example, in
the following two sentences:

• Dog is a type of animal which you can have as
a pet.
• Animal such as dog is more sensitive to sound

than human.

The occurrence of contextual words ‘is a type of’
and ‘such as’ can be used to identify the taxo-
nomic relation between ’dog’ and ’animal’ in the
sentences. Many works in the literature (Kozareva
and Hovy, 2010; Navigli et al., 2011; Wentao et al.,
2012) attempted to manually find these contextual
patterns, or automatically learn them. However, due
to the wide range of complex linguistic structures,
it is difficult to discover all possible contextual pat-
terns between hypernyms and hyponyms in order to
detect taxonomic relations effectively.

In this paper, instead of explicitly discovering the
contextual patterns of taxonomic relations, we pro-
pose a dynamic weighting neural network to encode
this information, together with the hypernym and
hyponym, for learning term embeddings. Specifi-
cally, the target of the neural network is to predict
the hypernym term from the given hyponym term
and contextual words. The architecture of the pro-
posed neural network is shown in Figure 2, which
consists of three layers: input layer, hidden layer and
output layer.

In our setting, the vocabulary size is V , and the
hidden layer size is N . The nodes on adjacent lay-
ers are fully connected. Given a term/word t in the
vocabulary, the input vector of t is encoded as a
one-hot V -dimensional vector xt, i.e. xt consists
of 0s in all elements except the element used to
uniquely identify t which is set as 1. The weights
between the input layer and output layer are repre-
sented by a V×N matrix W . Each row of W is a
N -dimensional vector representation vt of the asso-
ciated word/term t of the input layer.

Given a hyponym term hypo and k context words
c1, c2, .., ck in the training triple, the output of hid-
den layer h is calculated as:

h =W> · 1

2k
(k × xhypo + xc1 + xc2 + ...+ xck)

=
1

2k
(k × vhypo + vc1 + vc2 + ...+ vck)

(1)

where vt is the vector representation of the input
word/term t.

The weight of h in Equation (1) is calculated as
the average of the vector representation of hyponym
term and contextual words. Therefore, this weight
is not based on a fixed number of inputs. Instead,
it is dynamically updated based on the number of
contextual words k in the current training triple, and
the hyponym term. This model is called dynamic
weighting neural network to reflect its dynamic na-
ture. Note that to calculate h, we also multiply the
vector representation of hyponym by k to reduce the
bias problem of high number of contextual words,
so that the weight of the input vector of hyponym is
balanced with the total weight of contextual words.

From the hidden layer to the output layer, there
is another weight N × V for the output matrix W ′.
Each column of W ′ is a N -dimensional vector v′t
representing the output vector of t. Using these
weights, we can compute an output score ut for each
term/word t in the vocabulary:

ut = v′t
> · h (2)

where v′t is the output vector of t.
We then use soft-max, a log-linear classification

model, to obtain the posterior distribution of hyper-
nym terms as follows:
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Figure 2: The architecture of the proposed dynamic weighting neural network model.

p(hype|hypo, c1, c2, .., ck)

=
euhype

∑V
i=1 e

ui

=
ev

′>
hype· 12k (k×vhypo+

∑k
j=1 vcj )

∑V
i=1 e

v′>i · 12k (k×vhypo+
∑k

j=1 vcj )

(3)

The objective function is then defined as:

O =
1

T

T∑

t=1

log(p(hypet|hypot, c1t, c2t, .., ckt))

(4)
where T is the number of training triples; hypet,
hypot and cit are hypernym term, hyponym term
and contextual words respectively in the training
triple t.

After maximizing the log-likelihood objective
function in Equation (4) over the entire training set
using stochastic gradient descent, the term embed-
dings are learned accordingly.

3.2 Supervised taxonomic relation
identification

To decide whether a term x is a hypernym of term
y, we build a classifier that uses embedding vec-
tors as features for taxonomic relation identification.

Specifically, we use Support Vector Machine (SVM)
(Cortes and Vapnik, 1995) for this purpose. Given
an ordered pair (x, y), the input feature is the con-
catenation of embedding vectors (vx,vy) of x and y.
In addition, our term embedding learning approach
has the property that the embedding of hypernym is
encoded based on not only the information of hy-
ponym but also the information of contextual words.
Therefore, we add one more feature to the input of
SVM, i.e. the offset vector (vx − vy), to contain the
information of all contextual words between x and y.
In summary, the feature vector is a 3d dimensional
vector 〈vx, vy, vx − vy〉, where d is the dimension
of term embeddings. As will be shown later in the
experimental results, the offset vector plays an im-
portant role in the task of taxonomic relation identi-
fication of our approach.

4 Experiments

We conduct experiments to evaluate the perfor-
mance of our term embedding learning approach on
the general domain areas as well as the specific do-
main areas. In performance evaluation, we compare
our approach with two other state-of-the-art super-
vised term embedding learning methods in Yu et al.
(2015) and the Word2Vec model (Mikolov et al.,
2013a).
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4.1 Datasets

There are five datasets used in the experiments. Two
datasets, namely BLESS and ENTAILMENT, are
general domain datasets. The other three datasets,
namely Animal, Plant and Vehicle, are specific do-
main datasets.

• BLESS (Baroni and Lenci, 2011) dataset: It
covers 200 distinct, unambiguous concepts
(terms); each of which is involved with other
terms, called relata, in some relations. We ex-
tract from BLESS 14,547 pairs of terms for the
following four types of relations: taxonomic re-
lation, meronymy relation (a.k.a. part-of rela-
tion), coordinate relation (i.e. two terms hav-
ing the same hypernym), and random relation.
From these pairs, we set taxonomic relations as
positive examples, while other relations form
the negative examples.

• ENTAILMENT dataset (Baroni et al., 2012):
It consists of 2,770 pairs of terms, with equal
number of positive and negative examples of
taxonomic relations. Altogether, there are
1,376 unique hyponyms and 1,016 unique hy-
pernyms.

• Animal, Plant and Vehicle datasets (Velardi et
al., 2013): They are taxonomies constructed
based on the dictionaries and data crawled from
the Web for the corresponding domains. The
positive examples are created by extracting all
possible (direct and indirect) taxonomic rela-
tions from the taxonomies. The negative ex-
amples are generated by randomly pairing two
terms which are not involved in any taxonomic
relation.

The number of terms, positive examples and neg-
ative examples extracted from the five datasets are
summarized in Table 1.

Dataset # terms # positive # negative
BLESS 5229 1337 13210
ENTAILMENT 2392 1385 1385
Animal 659 4164 8471
Plant 520 2266 4520
Vehicle 117 283 586

Table 1: Datasets used in the experiments.

4.2 Comparison models
In the experiments, we use the following supervised
models for comparison:

• SVM+Our: This model uses SVM and the term
embeddings obtained by our learning approach.
The input is a 3d-dimensional vector 〈vx, vy,
vx− vy〉, where d is the dimension of term em-
beddings, x and y are two terms used to check
whether x is a hypernym of y or not, and vx, vy
are the term embeddings of x and y respec-
tively.

• SVM+Word2Vec: This model uses SVM and
the term embeddings obtained by applying the
Skip-gram model (Mikolov et al., 2013a) on
the entire English Wikipedia corpus. The in-
put is also a 3d-dimensional vector as in the
SVM+Our model. Note that the results of the
Skip-gram model are word embeddings. So if a
term is a multiword term, its embedding is cal-
culated as the average of all words in the term.

• SVM+Yu: This model uses SVM and the
term embeddings obtained by using Yu et al.’s
method (2015). According to the best setting
stated in (Yu et al., 2015), the input is a 2d+1
dimensional vector 〈O(x), E(y), ‖O(x)-E(y)‖1〉,
where O(x), E(y) and ‖O(x)-E(y)‖1 are hy-
ponym embedding of x, hypernym embedding
of y and 1-norm distance of the vector (O(x)-
E(y)) respectively.

Parameter settings. The SVM in the three models
is trained using a RBF kernel with λ= 0.03125 and
penalty term C = 8.0. For term embedding learning,
the vector’s dimension is set to 100. The tuning of
the dimension will be discussed in Section 4.6.

4.3 Performance on general domain datasets
For the general domain datasets, we have conducted
two experiments to evaluate the performance of our
proposed approach.

Experiment 1. For the BLESS dataset, we hold out
one concept for testing and train on the remaining
199 concepts. The hold-out concept and its rela-
tum constitute the testing set, while the remaining
199 concepts and their relatum constitute the train-
ing set. To further separate the training and test-
ing sets, we exclude from the training set any pair
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of terms that has one term appearing in the testing
set. We report the average accuracy across all con-
cepts. For the ENTAILMENT dataset, we use the
same evaluation method: hold out one hypernym for
testing and train on the remaining hypernyms, and
we also report the average accuracy across all hy-
pernyms. Furthermore, to evaluate the effect of the
offset vector to taxonomic relation identification, we
deploy a setting that removes the offset vector in the
feature vectors of SVM. Specifically, for SVM+Our
and SVM+Word2Vec, the input vector is changed
from 〈vx, vy, vx − vy〉 to 〈vx, vy〉. We use the sub-
script short to denote this setting.

Model Dataset Accuracy
SVM+Yu BLESS 90.4%
SVM+Word2Vecshort BLESS 83.8%
SVM+Word2Vec BLESS 84.0%
SVM+Ourshort BLESS 91.1%
SVM+Our BLESS 93.6%
SVM+Yu ENTAIL 87.5%
SVM+Word2Vecshort ENTAIL 82.8%
SVM+Word2Vec ENTAIL 83.3%
SVM+Ourshort ENTAIL 88.2%
SVM+Our ENTAIL 91.7%

Table 2: Performance results for the BLESS and ENTAIL-

MENT datasets.

Table 2 shows the performance of the three su-
pervised models in Experiment 1. Our approach
achieves significantly better performance than Yu’s
method and Word2Vec method in terms of accu-
racy (t-test, p-value < 0.05) for both BLESS and
ENTAILMENT datasets. Specifically, our approach
improves the average accuracy by 4% compared to
Yu’s method, and by 9% compared to the Word2Vec
method. The Word2Vec embeddings have the worst
result because it is based only on co-occurrence
based similarity, which is not effective for the clas-
sifier to accurately recognize all the taxonomic re-
lations. Our approach performs better than Yu’s
method and it shows that our approach can learn em-
beddings more effectively. Our approach encodes
not only hypernym and hyponym terms but also the
contextual information between them, while Yu’s
method ignores the contextual information for tax-
onomic relation identification.

Moreover, from the experimental results of
SVM+Our and SVM+Ourshort, we can observe that

the offset vector between hypernym and hyponym,
which captures the contextual information, plays an
important role in our approach as it helps to improve
the performance in both datasets. However, the off-
set feature is not so important for the Word2Vec
model. The reason is that the Word2Vec model is
targeted for the analogy task rather than taxonomic
relation identification.

Experiment 2. This experiment aims to evaluate the
generalization capability of our extracted term em-
beddings. In the experiment, we train the classifier
on the BLESS dataset, test it on the ENTAILMENT
dataset and vice versa. Similarly, we exclude from
the training set any pair of terms that has one term
appearing in the testing set. The experimental results
in Table 3 show that our term embedding learning
approach performs better than other methods in ac-
curacy. It also shows that the taxonomic properties
identified by our term embedding learning approach
have great generalization capability (i.e. less depen-
dent on the training set), and can be used generically
for representing taxonomic relations.

Model Training Testing Accuracy

SVM+Yu BLESS ENTAIL 83.7%
SVM+Word2Vecshort BLESS ENTAIL 76.5%
SVM+Word2Vec BLESS ENTAIL 77.1%
SVM+Ourshort BLESS ENTAIL 85.8%
SVM+Our BLESS ENTAIL 89.4%
SVM+Yu ENTAIL BLESS 87.1%
SVM+Word2Vecshort ENTAIL BLESS 78.0%
SVM+Word2Vec ENTAIL BLESS 78.9%
SVM+Ourshort ENTAIL BLESS 87.1%
SVM+Our ENTAIL BLESS 90.6%

Table 3: Performance results for the general domain datasets

when using one domain for training and another domain for

testing.

4.4 Performance on specific domain datasets

Similarly, for the specific domain datasets, we have
conducted two experiments to evaluate the perfor-
mance of our proposed approach.

Experiment 3. For each of the Animal, Plant and
Vehicle datasets, we also hold out one term for test-
ing and train on the remaining terms. The posi-
tive and negative examples which contain the hold-
out term constitute the testing set, while other pos-
itive and negative examples constitute the training
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set. We also exclude from the training set any pair
of terms that has one term appearing in the test-
ing set. The experimental results are given in Ta-
ble 4. We can observe that not only for general do-
main datasets but also for specific domain datasets,
our term embedding learning approach has achieved
significantly better performance than Yu’s method
and the Word2Vec method in terms of accuracy (t-
test, p-value < 0.05). Specifically, our approach im-
proves the average accuracy by 22% compared to
Yu’s method, and by 9% compared to the Word2Vec
method.

Model Dataset Accuracy
SVM+Yu Animal 67.8%
SVM+Word2Vec Animal 80.2%
SVM+Our Animal 89.3%
SVM+Yu Plant 65.7%
SVM+Word2Vec Plant 81.5%
SVM+Our Plant 92.1%
SVM+Yu Vehicle 70.5%
SVM+Word2Vec Vehicle 82.1%
SVM+Our Vehicle 89.6%

Table 4: Performance results for the Animal, Plant and Vehicle

datasets.

Another interesting point to observe is that the ac-
curacy of Yu’s method drops significantly in spe-
cific domain datasets (as shown in Table 4) when
compared to the general domain datasets (as shown
in Table 2). One possible explanation is the accu-
racy of Yu’s method depends on the training data.
As Yu’s method learns the embeddings using pre-
extracted taxonomic relations from Probase, and if a
relation does not exist in Probase, there is high pos-
sibility that it becomes a negative example and be
recognized as a non-taxonomic relation by the clas-
sifier. Therefore, the training data extracted from
Probase plays an important role in Yu’s method.
For general domain datasets (BLESS and ENTAIL-
MENT), there are about 75%-85% of taxonomic re-
lations in these datasets found in Probase, while
there are only about 25%-45% of relations in the
specific domains (i.e. Animal, Plant and Vehicle)
found in Probase. Therefore, Yu’s method achieves
better performance in general domain datasets than
the specific ones. Our approach, in contrast, less de-
pends on the training relations. Therefore, it can
achieve high accuracy in both the general and spe-

cific domain datasets.

Experiment 4. Similar to experiment 2, this ex-
periment aims to evaluate the generalization capa-
bility of our term embeddings. In this experiment,
for each of the Animal, Plant and Vehicle domains,
we train the classifier using the positive and nega-
tive examples in each domain and test the classifier
in other domains. The experimental results in Table
5 show that our approach achieves the best perfor-
mance compared to other state-of-the-art methods
for all the datasets. As also shown in Table 3, our ap-
proach has achieved high accuracy for both general
and specific domain datasets, while in Yu’s method,
there is a huge difference in accuracy between these
domain datasets.

Model Training Testing Accuracy
SVM+Yu Animal Plant 65.5%
SVM+Word2Vec Animal Plant 82.4%
SVM+Our Animal Plant 91.9%
SVM+Yu Animal Vehicle 66.2%
SVM+Word2Vec Animal Vehicle 81.3%
SVM+Our Animal Vehicle 89.5%
SVM+Yu Plant Animal 68.4%
SVM+Word2Vec Plant Animal 81.8%
SVM+Our Plant Animal 91.5%
SVM+Yu Plant Vehicle 65.2%
SVM+Word2Vec Plant Vehicle 81.0%
SVM+Our Plant Vehicle 88.5%
SVM+Yu Vehicle Animal 70.9%
SVM+Word2Vec Vehicle Animal 79.7%
SVM+Our Vehicle Animal 87.6%
SVM+Yu Vehicle Plant 66.2%
SVM+Word2Vec Vehicle Plant 78.7%
SVM+Our Vehicle Plant 87.7%

Table 5: Performance results for the specific domain datasets

when using one domain for training and another domain for

testing.

4.5 Empirical comparison with WordNet
By error analysis, we found that our results may
complement WordNet. For example, in the Animal
domain, our approach identifies ‘wild sheep’ as a
hyponym of ‘sheep’, but in WordNet, they are sib-
lings. However, many references 1, 2 consider ‘wild
sheep’ as a species of ‘sheep’. Another such ex-
ample is shown in the Plant domain, where our ap-

1http://en.wikipedia.org/wiki/Ovis
2http://www.bjornefabrikken.no/side/norwegian-sheep/
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proach recognizes ‘lily’ as a hyponym of ‘flowering
plant’, but WordNet places them in different sub-
trees incorrectly 3. Therefore, our results may help
restructure and even extend WordNet.

Note that these taxonomic relations are not in
our training set. They are also not recognized by
the term embeddings obtained from the Word2Vec
method and Yu et al.’s method. It again shows that
our term embedding learning approach has the capa-
bility to identify taxonomic relations which are not
even defined in dictionary or training data.

4.6 Tuning vector dimensions

We also conduct experiments to learn term embed-
dings from the general domain datasets with differ-
ent dimensions (i.e. 50, 100, 150 and 300) using our
proposed approach. We then use these embeddings
to evaluate the performance of taxonomic relation
identification based on training time and accuracy,
and show the results in Table 6. The experiments
are carried out on a PC with Intel(R) Xeon(R) CPU
at 3.7GHz and 16GB RAM.

Dimension Dataset Training time Accuracy
50 BLESS 1825s 87.7%
100 BLESS 2991s 89.4%
150 BLESS 4025s 89.9%
300 BLESS 7113s 90.0%
50 ENTAIL 1825s 88.5%
100 ENTAIL 2991s 90.6%
150 ENTAIL 4025s 90.9%
300 ENTAIL 7113s 90.9%

Table 6: Performance results based on training time and accu-

racy of the SVM+Our model using different vector dimensions.

In general, when increasing the vector dimension,
the accuracy of our term embedding learning ap-
proach will be increased gradually. More specifi-
cally, the accuracy improves slightly when the di-
mension is increased from 50 to 150. But after that,
increasing the dimension has very little effect on the
accuracy. We observe that the vector dimension for
learning term embeddings can be set between 100 to
150 to achieve the best performance, based on the
trade-off between accuracy and training time.

3https://en.wikipedia.org/wiki/Lilium

5 Conclusion

In this paper, we proposed a novel approach to learn
term embeddings using dynamic weighting neural
network. This model encodes not only the hyper-
nym and hyponym terms, but also the contextual in-
formation between them. Therefore, the extracted
term embeddings have good generalization capabil-
ity to identify unseen taxonomic relations which are
not even defined in dictionary and training data. The
experimental results show that our approach signifi-
cantly outperforms other state-of-the-art methods in
terms of accuracy in identifying taxonomic relation
identification.
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