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Abstract

An important aspect of natural language un-
derstanding involves recognizing and catego-
rizing events and the relations among them.
However, these tasks are quite subtle and an-
notating training data for machine learning
based approaches is an expensive task, re-
sulting in supervised systems that attempt to
learn complex models from small amounts of
data, which they over-fit. This paper addresses
this challenge by developing an event detec-
tion and co-reference system with minimal su-
pervision, in the form of a few event exam-
ples. We view these tasks as semantic similar-
ity problems between event mentions or event
mentions and an ontology of types, thus fa-
cilitating the use of large amounts of out of
domain text data. Notably, our semantic re-
latedness function exploits the structure of the
text by making use of a semantic-role-labeling
based representation of an event.

We show that our approach to event detection
is competitive with the top supervised meth-
ods. More significantly, we outperform state-
of-the-art supervised methods for event co-
reference on benchmark data sets, and support
significantly better transfer across domains.

1 Introduction

Natural language understanding involves, as a key
component, the need to understand events men-
tioned in texts. This entails recognizing elements
such as agents, patients, actions, location and time,
among others. Understanding events also necessi-
tates understanding relations among them and, as

a minimum, determining whether two snippets of
text represent the same event or not – the event co-
reference problem. Events have been studied for
years, but they still remain a key challenge. One
reason is that the frame-based structure of events ne-
cessitates addressing multiple coupled problems that
are not easy to study in isolation. Perhaps an even
more fundamental difficulty is that it is not clear
whether our current set of events’ definitions is ade-
quate (Hovy et al., 2013). Thus, given the complex-
ity and fundamental difficulties, the current evalua-
tion methodology in this area focuses on a limited
domain of events, e.g. 33 types in ACE 2005 (NIST,
2005) and 38 types in TAC KBP (Mitamura et al.,
2015). Consequently, this allows researchers to train
supervised systems that are tailored to these sets of
events and that overfit the small domain covered in
the annotated data, rather than address the realistic
problem of understanding events in text.

In this paper, we pursue an approach to under-
standing events that we believe to be more feasi-
ble and scalable. Fundamentally, event detection
is about identifying whether an event in context is
semantically related to a set of events of a specific
type; and, event co-reference is about whether two
event mentions are semantically similar enough to
indicate that the author intends to refer to the same
thing. Therefore, if we formulate event detection
and co-reference as semantic relatedness problems,
we can scale it to deal with a lot more types and, po-
tentially, generalize across domains. Moreover, by
doing so, we facilitate the use of a lot of data that is
not part of the existing annotated event collections
and not even from the same domain. The key chal-
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Supervised Unsupervised MSEP
Guideline ! ! !

In-domain Data ! ! 7

Data Annotation ! 7 7

Table 1: Comparing requirements of MSEP and
other methods. Supervised methods need all three
resources while MSEP only needs an annotation
guideline (as event examples).

lenges we need to address are those of how to repre-
sent events, and how to model event similarity; both
are difficult partly since events have structure.

We present a general event detection and co-
reference framework, which essentially requires no
labeled data. In practice, in order to map an event
mention to an event ontology, as a way to commu-
nicate with a user, we just need a few event exam-
ples, in plain text, for each type a user wants to ex-
tract. This is a reasonable setting; after all, giving
examples is the easiest way of defining event types,
and is also how information needs are defined to
annotators - by providing examples in the annota-
tion guideline.1 Our approach makes less assump-
tions than standard unsupervised methods, which
typically require a collection of instances and ex-
ploit similarities among them to eventually learn a
model. Here, given event type definitions (in the
form of a few examples), we can classify a sin-
gle event into a provided ontology and determine
whether two events are co-referent. In this sense, our
approach is similar to what has been called dataless
classification (Chang et al., 2008; Song and Roth,
2014). Table 1 summarizes the difference between
our approach, MSEP (Minimally Supervised Event
Pipeline)2, and other methods.

Our approach builds on two key ideas. First,
to represent event structures, we use the general
purpose nominal and verbial semantic role label-
ing (SRL) representation. This allows us to de-
velop a structured representation of an event. Sec-
ond, we embed event components, while maintain-
ing the structure, into multiple semantic spaces, in-

1Event examples also serve for disambiguation purposes.
For example, using “U.S. forces bombed Baghdad.” to exem-
plify an attack type, disambiguates it from a heart attack.

2Available at http://cogcomp.cs.illinois.edu/page/download
view/eventPipeline .

Figure 1: An overview of the end-to-end MSEP sys-
tem. “Event Examples” are the only supervision
here, which produce “Example Vectors”. No train-
ing is needed for MSEP.

duced at a contextual, topical, and syntactic levels.
These semantic representations are induced from
large amounts of text in a way that is completely in-
dependent of the tasks at hand, and are used to repre-
sent both event mentions and event types into which
we classify our events. The combination of these se-
mantic spaces, along with the structured vector rep-
resentation of an event, allow us to directly deter-
mine whether a candidate event mention is a valid
event or not and, if it is, of which type. Moreover,
with the same representation, we can evaluate event
similarities and decide whether two event mentions
are co-referent. Consequently, the proposed MSEP,
can also adapt to new domains without any training.

An overview of the system is shown in Figure 1.
A few event examples are all the supervision MSEP
needs; even the few decision thresholds needed to be
set are determined on these examples, once and for
all, and are used for all test cases we evaluate on.
We use two benchmark datasets to compare MSEP
with baselines and supervised systems. We show
that MSEP performs favorably relative to state-of-
the-art supervised systems; the co-reference mod-
ule, in fact, outperforms supervised approaches on
B3 and CEAF metrics. The superiority of MSEP is
also demonstrated in across domain settings.

2 The MSEP System

2.1 Structured Vector Representation
There is a parallel between event structures and sen-
tence structures. Event triggers are mostly pred-
icates of sentences or clauses. Predicates can be
sense disambiguated, which roughly corresponds to
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Figure 2: Basic event vector representation. Event vector is the concatenation of vectors corresponding to
action, agentsub, agentobj , location, time and sentence/clause.

Figure 3: Augmented event vector representation. Event vector is the concatenation of vectors corre-
sponding to basic event vector representation, agentsub + action, agentobj + action, location + action and
time + action. Here, “+” means that we first put text fragments together and then convert the combined text
fragment into an ESA vector.

event types. Event arguments are largely entity men-
tions or temporal/spatial arguments. They serve as
specific roles in events, similarly to SRL arguments
that are assigned role labels for predicates.

We use the Illinois SRL (Punyakanok et al., 2004)
tool to pre-process the text. We evaluate the SRL
coverage on both event triggers and event argu-
ments, shown in Table 2.3 For event triggers, we
only focus on recall since we expect the event men-
tion detection module to filter out most non-trigger
predicates. Results show a good coverage of SRL
predicates and arguments on event triggers and argu-
ments. Even though we only get approximate event
arguments, it is easier and more reliable to catego-
rize them into five abstract roles, than to determine
the exact role label with respect to event triggers.

We identify the five most important and ab-
stract event semantic components: action, agentsub,
agentobj , location and time. To map SRL argu-
ments to these event arguments, we run through the
following procedures: 1) set predicates as actions,
and preserve SRL negations for actions, 2) set SRL
subject as agentsub, 3) set SRL object and indirect
object as agentobj , 4) set SRL spatial argument as
event location. If there is no such SRL label, we
then scan for any NER location label within the sen-
tence/clause to which the action belongs. We set
the location according to NER information if it ex-

3We place events in two categories, verb or noun, according
to the part-of-speech tag of the trigger. We evaluate verb-SRL
on events with verb triggers, nom-SRL on events with noun trig-
gers, and the overall performance on all events. When evaluat-
ing, we allow partial overlaps.

ACE Precision Recall F1
Predicates Verb-SRL — 93.2 —

over Nom-SRL — 87.5 —
Triggers All — 91.9 —

SRL Args Verb-SRL 90.4 85.7 88.0
over Nom-SRL 92.5 73.5 81.9

Event Args All 90.9 82.3 86.4

TAC KBP Precision Recall F1
Predicates Verb-SRL — 90.6 —

over Nom-SRL — 85.5 —
Triggers All — 88.1 —

SRL Args Verb-SRL 89.8 83.6 86.6
over Nom-SRL 88.2 69.9 78.0

Event Args All 89.5 81.0 85.0

Table 2: Semantic role labeling coverage. We eval-
uate both “Predicates over Triggers” and “SRL Ar-
guments over Event Arguments”. “All” stands for
the combination of Verb-SRL and Nom-SRL. The
evaluation is done on all data.

ists. 5) We set the SRL temporal argument as event
time. If there is no such SRL label, we then use
the Illinois Temporal Expression Extractor (Zhao et
al., 2012) to find the temporal argument within an
event’s sentence/clause. 6) We allow one or more
missing event arguments among agentsub, agentobj ,
location or time, but require actions to always exist.

Given the above structured information, we con-
vert each event component to its corresponding
vector representation, discussed in detail in Sec-
tion 3. We then concatenate the vectors of all com-
ponents together in a specific order: action, agentsub,
agentobj , location, time and sentence/clause. We
treat the whole sentence/clause, to which the “ac-
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tion” belongs, as context, and we append its corre-
sponding vector to the event representation. This ba-
sic event vector representation is illustrated in Fig. 2.
If there are missing event arguments, we set the cor-
responding vector to be “NIL” (we set each posi-
tion as “NaN”). We also augment the event vector
representation by concatenating more text fragments
to enhance the interactions between the action and
other arguments, as shown in Fig. 3. Essentially, we
flatten the event structure to preserve the alignment
of event arguments so that the structured information
can be reflected in our vector space.

2.2 Event Mention Detection

Motivated by the seed-based event trigger labeling
technique employed in Bronstein et al. (2015), we
turn to ACE annotation guidelines for event exam-
ples described under each event type label. For in-
stance, the ACE-2005 guidelines list the example
“Mary Smith joined Foo Corp. in June 1998.” for
label “START-POSITION”. Altogether, we collect
172 event examples from 33 event types (5 each on
average).4 We can then get vector representations
for these example events following the procedures
in Sec. 2.1. We define the event type representa-
tion as the numerical average of all vector represen-
tations corresponding to example events under that
type. We use the similarity between an event candi-
date with the event type representation to determine
whether the candidate belongs to an event type:

S(e1, e2) =
vec(e1) · vec(e2)
‖vec(e1)‖ · ‖vec(e2)‖

=

∑
a vec(a1) · vec(a2)√∑

a ‖vec(a1)‖2 ·
√∑

a ‖vec(a2)‖2
,

(1)

where e1 is the candidate, e2 the type (vec(e2) is
computed as average of event examples), a1, a2 are
components of e1, e2 respectively. We use the no-
tation vec(·) for corresponding vectors. Note that
there may be missing event arguments (NIL). In
such cases, we use the average of all non-NIL sim-
ilarity scores for that particular component as the
contributed score. Formally, we define Spair(a =

4See supplementary materials for the full list of examples.

NIL) and Ssingle(a = NIL) as follows:

Spair(a = NIL) = vec(NIL) · vec(a2)
= vec(a1) · vec(NIL)

=
∑

a1,a2 6=NIL

vec(a1) · vec(a2)
#|a1, a2 6= NIL| ,

Ssingle(a = NIL) =

√∑
a6=NIL ‖vec(a)‖2
#|a 6= NIL| .

Thus, when we encounter missing event arguments,
we use Spair(a = NIL) to replace the correspond-
ing term in the numerator in S(e1, e2) while using
Ssingle(a = NIL) in the denominator. These aver-
age contributed scores are corpus independent, and
can be pre-computed ahead of time. We use a cut-off
threshold to determine that an event does not belong
to any event types, and can thus be eliminated. This
threshold is set by tuning only on the set of event
examples, which is corpus independent.5

2.3 Event Co-reference
Similar to the mention-pair model in entity co-
reference (Ng and Cardie, 2002; Bengtson and Roth,
2008; Stoyanov et al., 2010), we use cosine sim-
ilarities computed from pairs of event mentions:
S(e1, e2) (as in Eq. (1)).

Before applying the co-reference model, we first
use external knowledge bases to identify conflict
events. We use the Illinois Wikification (Cheng
and Roth, 2013) tool to link event arguments to
Wikipedia pages. Using the Wikipedia IDs, we map
event arguments to Freebase entries. We view the
top-level Freebase type as the event argument type.
An event argument can contain multiple wikified en-
tities, leading to multiple Wikipedia pages and thus
a set of Freebase types. We also augment the argu-
ment type set with NER labels: PER (person) and
ORG (organization). We add either of the NER la-
bels if we detect such a named entity.

For each pair of events, we check event arguments
agentsub and agentobj respectively. If none of the
types for the aligned event arguments match, this
pair is determined to be in conflict. If the event ar-
gument is missing, we deem it compatible with any
type. In this procedure, we generate a set of event
pairs Setconflict that will not get co-reference links.

5See Sec. 4.4 for details.
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Given the event mention similarity as well as the
conflicts, we perform event co-reference inference
via a left-linking greedy algorithm, i.e. co-reference
decisions are made on each event from left to right,
one at a time. Without loss of generality, for event
ek+1,∀k ≥ 1, we first choose a linkable event to its
left with the highest event-pair similarity:

ep = arg max
e∈{e1,e2,...,ek}

e6∈Setconflict

S(e, ek+1).

We make co-reference links when S(ep, ek+1) is
higher than a cut-off threshold, which is also tuned
only on event examples ahead of time. Otherwise,
event ek+1 is not similar enough to any of its an-
tecedents, and we make it the start of a new cluster.

3 Vector Representations

We experiment with different methods to con-
vert event components into vector representations.
Specifically, we use Explicit Semantic Analysis
(ESA), Brown Cluster (BC), Word2Vec (W2V) and
Dependency-Based Word Embedding (DEP) respec-
tively to convert text into vectors. We then concate-
nate all components of an event together to form a
structured vector representation.
Explicit Semantic Analysis ESA uses Wikipedia
as an external knowledge base to generate con-
cepts for a given fragment of text (Gabrilovich and
Markovitch, 2009). ESA first represents a given text
fragment as a TF-IDF vector, then uses an inverted
index for each word to search the Wikipedia corpus.
The text fragment representation is thus a weighted
combination of the concept vectors corresponding to
its words. We use the same setting as in Chang et al.
(2008) to filter out pages with fewer than 100 words
and those containing fewer than 5 hyperlinks. To
balance between the effectiveness of ESA represen-
tations and its cost, we use the 200 concepts with the
highest weights. Thus, we convert each text frag-
ment to a very sparse vector of millions of dimen-
sions (but we just store 200 non-zero values).
Brown Cluster BC was proposed by Brown et al.
(1992) as a way to support abstraction in NLP tasks,
measuring words’ distributional similarities. This
method generates a hierarchical tree of word clus-
ters by evaluating the word co-occurrence based on
a n-gram model. Then, paths traced from root to

leaves can be used as word representations. We use
the implementation by Song and Roth (2014), gen-
erated over the latest Wikipedia dump. We set the
maximum tree depth to 20, and use a combination
of path prefixes of length 4,6 and 10 as our BC rep-
resentation. Thus, we convert each word to a vector
of 24 + 26 + 210 = 1104 dimensions.
Word2Vec We use the skip-gram tool by Mikolov et
al. (2013) over the latest Wikipedia dump, resulting
in word vectors of dimensionality 200.
Dependency-Based Embedding DEP is the gener-
alization of the skip-gram model with negative sam-
pling to include arbitrary contexts. In particular, it
deals with dependency-based contexts, and produces
markedly different embeddings. DEP exhibits more
functional similarity than the original skip-gram em-
beddings (Levy and Goldberg, 2014). We directly
use the released 300-dimension word embeddings6.

Note that it is straightforward text-vector conver-
sion for ESA. But for BC, W2V and DEP, we first
remove stop words from the text and then average,
element-wise, all remaining word vectors to produce
the resulting vector representation of the text frag-
ment.

4 Experiments

4.1 Datasets

ACE The ACE-2005 English corpus (NIST, 2005)
contains fine-grained event annotations, including
event trigger, argument, entity, and time-stamp an-
notations. We select 40 documents from newswire
articles for event detection evaluation and the rest
for training (same as Chen et al. (2015)). We do 10-
fold cross-validation for event co-reference.
TAC-KBP The TAC-KBP-2015 corpus is annotated
with event nuggets that fall into 38 types and co-
reference relations between events. 7 We use the
train/test data split provided by the official TAC-

6https://levyomer.wordpress.com/2014/04/25/dependency-
based-word-embeddings

7The event ontology of TAC-KBP (based on ERE annota-
tion) is almost the same to that of ACE. To adapt our sys-
tem to the TAC-KBP corpus, we use all ACE event seeds of
“Contact.Phone-Write” for “Contact.Correspondence” and sep-
arate ACE event seeds of “Movement.Transport” into “Move-
ment.TransportPerson” and “Movement.TransportArtifact” by
manual checking. So, we use exactly the same set of event seeds
for TAC-KBP with only these two changes.
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#Doc #Sent. #Men. #Cluster
ACE(All) 599 15,494 5,268 4,046
ACE(Test) 40 672 289 222
TAC-KBP(All) 360 15,824 12,976 7,415
TAC-KBP(Test) 202 8,851 6,438 3,779

Table 3: Statistics for the ACE and TAC-KBP cor-
pora. #Sent. is the number of sentences, #Men.
is the number of event mentions, and #Cluster is
the number of event clusters (including singletons).
Note that the proposed MSEP does not need any
training data.

2015 Event Nugget Evaluation Task.
Statistics for the ACE and TAC-KBP corpora is

shown in Table 3. Note that the training set and
cross-validation is only for competing supervised
methods. For MSEP, we only need to run on each
corpus once for testing.

4.2 Compared Systems

For event detection, we compare with DM-
CNN (Chen et al., 2015), the state-of-art super-
vised event detection system. We also implement
another supervised model, named supervised struc-
tured event detection SSED system following the
work of Sammons et al. (2015). The system utilizes
rich semantic features and applies a trigger identifi-
cation classifier on every SRL predicate to determine
the event type. For event co-reference, Joint (Chen
et al., 2009) is an early work based on super-
vised learning. We also report HDP-Coref results
as an unsupervised baseline (Bejan and Harabagiu,
2010), which utilizes nonparametric Bayesian mod-
els. Moreover, we create another unsupervised event
co-reference baseline (Type+SharedMen): we treat
events of the same type which share at least one
co-referent entity (inside event arguments) as co-
referred. On TAC-KBP corpus, we report results
from the top ranking system of the TAC-2015 Event
Nugget Evaluation Task as TAC-TOP.

We name our event mention detection module
in MSEP similarity-based event mention detec-
tion MSEP-EMD system. For event co-reference,
the proposed similarity based co-reference detec-
tion MSEP-Coref method has a number of varia-
tions depending on the modular text-vector conver-
sion method (ESA, BC, W2V, DEP), whether we

use augmented ESA vector representation (AUG)8,
and whether we use knowledge during co-reference
inference (KNOW). We also develop a super-
vised event co-reference system following the work
of Sammons et al. (2015), namely SupervisedBase.
We also add additional event vector representa-
tions9 as features to this supervised system and get
SupervisedExtend.

4.3 Evaluation Metrics

For event detection, we use standard precision, re-
call and F1 metrics. For event co-reference, we
compare all systems using standard F1 metrics:
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), Entity-based CEAF (CEAFe) (Luo, 2005)
and BLANC (Recasens and Hovy, 2011). We use
the average scores (AVG) of these four metrics as
the main comparison metric.10

4.4 Results for Event detection

The performance comparison for event detection is
presented in Table 4. On both ACE and TAC-
KBP, parameters of SSED are tuned on a develop-
ment set (20% of randomly sampled training doc-
uments). The cut-off threshold for MSEP-EMD
is tuned on the 172 event examples ahead of time
by optimizing the F1 score on the event seed ex-
amples. Note that different text-vector conversion
methods lead to different cut-off thresholds, but they
remain fixed for all the test corpus. Results show
that SSED achieves state-of-the-art performance.
Though MSEP-EMD’s performance is below the
best supervised system, it is very competitive. Note
that both SSED and MSEP-EMD use SRL predi-
cates as input and thus can further improve with a
better SRL module.

4.5 Results for Event Co-reference

The performance of different systems for event co-
reference based on gold event triggers is shown in
Table 5. The co-reference cut-off threshold is tuned
by optimizing the CoNLL average score on ten se-

8It is only designed for ESA because the ESA vector for
two concatenated text fragments is different from the sum of the
ESA vectors of individual text fragments, unlike other methods.

9We add the best event vector representation empirically.
10We use the latest scorer (v1.7) provided by TAC-2015

Event Nugget Evaluation for all metrics.
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ACE (Test Data) Precision Recall F1

Span
DMCNN 80.4 67.7 73.5

SSED 76.6 71.5 74.0
MSEP-EMD 75.6 69.8 72.6

Span+Type
DMCNN 75.6 63.6 69.1

SSED 71.3 66.5 68.8
MSEP-EMD 70.4 65.0 67.6

TAC-KBP (Test Data) Precision Recall F1

Span
SSED 77.2 55.9 64.8

TAC-TOP — — 65.3
MSEP-EMD 76.5 54.5 63.5

Span+Type
SSED 69.9 48.8 57.5

TAC-TOP — — 58.4
MSEP-EMD 69.2 47.8 56.6

Table 4: Event detection (trigger identification)
results. “Span”/“Type” means span/type match re-
spectively.

lected ACE documents. The threshold is then fixed,
thus we do not change it when evaluating on the
TAC-KBP corpus. As we do cross-validation on
ACE, we exclude these ten documents from test at
all times.11 Results show that the proposed MSEP
event co-reference system significantly outperforms
baselines and achieves the same level of perfor-
mance of supervised methods (82.9 v.s. 83.3 on
ACE and 73.8 v.s. 74.4 on TAC-KBP). MSEP
achieves better results on B3 and CEAFe than su-
pervised methods. Note that supervised methods
usually generate millions of features (2.5M on ACE
and 1.8M on TAC-KBP for SupervisedBase). In con-
trast, MSEP only has several thousands of non-zero
dimensions in event representations. This means
that our structured vector representations, through
derived without explicit annotations, are far more
expressive than traditional features. When we add
the event vector representation (augmented ESA) as
features in SupervisedExtend, we improve the overall
performance by more than 1 point. When tested in-
dividually, DEP performs the best among the four
text-vector conversion methods while BC performs
the worst. A likely reason is that BC has too few di-

11We regard this tuning procedure as “independent” and
“ahead of time” because of the following reasons: 1) We could
have used as threshold-tuning co-reference examples a few
news documents from other sources; we just use ACE doc-
uments as a data source for simplicity. 2) We believe that
the threshold only depends on event representation (the model)
rather than data. 3) Tuning a single decision threshold is much
cheaper than tuning a whole set of model parameters.

mensions while DEP constructs the longest vector.
However, the results show that our augmented ESA
representation (Fig. 2) achieves even better results.

When we use knowledge to detect conflicting
events during inference, the system further im-
proves. Note that event arguments for the proposed
MSEP are predicted by SRL. We show that replac-
ing them with gold event arguments, only slightly
improves the overall performance, indicating that
SRL arguments are robust enough for the event co-
reference task.

4.6 End-to-End Event Co-reference Results

Table 6 shows the performance comparison for end-
to-end event co-reference. We use both SSED and
MSEP-EMD as event detection modules and we
evaluate on standard co-reference metrics. Results
on TAC-KBP show that “SSED+SupervisedExtend”
achieves similar performance to the TAC top ranking
system while the proposed MSEP event co-reference
module helps to outperform supervised methods on
B3 and CEAFe metrics.

4.7 Domain Transfer Evaluation

To demonstrate the superiority of the adaptation ca-
pabilities of the proposed MSEP system, we test its
performance on new domains and compare with the
supervised system. TAC-KBP corpus contains two
genres: newswire (NW) and discussion forum (DF),
and they have roughly equal number of documents.
When trained on NW and tested on DF, supervised
methods encounter out-of-domain situations. How-
ever, the MSEP system can adapt well.12 Table 7
shows that MSEP outperforms supervised methods
in out-of-domain situations for both tasks. The dif-
ferences are statistically significant with p < 0.05.

5 Related Work

Event detection has been studied mainly in the
newswire domain as the task of detecting event trig-
gers and determining event types and arguments.
Most earlier work has taken a pipeline approach
where local classifiers identify triggers first, and
then arguments (Ji and Grishman, 2008; Liao and

12Note that the supervised method needs to be re-trained and
its parameters re-tuned while MSEP does not need training and
its cut-off threshold is fixed ahead of time using event examples.
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ACE (Cross-Validation) MUC B3 CEAFe BLANC AVG

Supervised

Graph — — 84.5 — —
Joint 74.8 92.2 87.0 — —
SupervisedBase 73.6 91.6 85.9 82.2 83.3
SupervisedExtend 74.9 92.8 87.1 83.8 84.7

Unsupervised
Type+SharedMen 59.1 83.2 76.0 72.9 72.8
HDP-Coref — 83.8 76.7 — —

MSEP

MSEP-CorefESA 65.9 91.5 85.3 81.8 81.1
MSEP-CorefBC 65.0 89.8 83.7 80.9 79.9
MSEP-CorefW2V 65.1 90.1 83.6 81.5 80.1
MSEP-CorefDEP 65.9 92.3 85.6 81.5 81.3
MSEP-CorefESA+AUG 67.4 92.6 86.0 82.6 82.2
MSEP-CorefESA+AUG+KNOW 68.0 92.9 87.4 83.2 82.9
MSEP-CorefESA+AUG+KNOW (GA) 68.8 92.5 87.7 83.4 83.1

TAC-KBP (Test Data) MUC B3 CEAFe BLANC AVG

Supervised
TAC-TOP — — — — 75.7
SupervisedBase 63.8 83.8 75.8 74.0 74.4
SupervisedExtend 65.3 84.7 76.8 75.1 75.5

Unsupervised Type+SharedMen 56.4 77.5 69.6 68.7 68.1

MSEP

MSEP-CorefESA 57.7 83.9 76.9 72.9 72.9
MSEP-CorefBC 56.9 81.8 76.2 71.7 71.7
MSEP-CorefW2V 57.2 82.1 75.9 72.3 71.9
MSEP-CorefDEP 58.2 83.3 76.7 72.8 72.8
MSEP-CorefESA+AUG 59.0 84.5 77.3 72.5 73.3
MSEP-CorefESA+AUG+KNOW 59.9 84.9 77.3 73.1 73.8
MSEP-CorefESA+AUG+KNOW (GA) 60.5 84.0 77.7 73.5 73.9

Table 5: Event Co-reference Results on Gold Event Triggers. “MSEP-CorefESA,BC,W2V,DEP” are varia-
tions of the proposed MSEP event co-reference system using ESA, Brown Cluster, Word2Vec and Depen-
dency Embedding representations respectively. “MSEP-CorefESA+AUG” uses augmented ESA event vec-
tor representation and “MSEP-CorefESA+AUG+KNOW” applies knowledge to detect conflicting events. (GA)
means that we use gold event arguments instead of approximated ones from SRL.

Grishman, 2010; Hong et al., 2011; Huang and
Riloff, 2012a; Huang and Riloff, 2012b). Li et
al. (2013) presented a structured perceptron model
to detect triggers and arguments jointly. Attempts
have also been made to use a Distributional Seman-
tic Model (DSM) to represent events (Goyal et al.,
2013). A shortcoming of DSMs is that they ignore
the structure within the context, thus reducing the
distribution to a bag of words. In our work, we pre-
serve event structure via structured vector represen-
tations constructed from event components.

Event co-reference is much less studied in com-
parison to the large body of work on entity co-
reference. Our work follows the event co-reference
definition in Hovy et al. (2013). All previous work
on event co-reference except Cybulska and Vossen
(2012) deals only with full co-reference. Early
works (Humphreys et al., 1997; Bagga and Baldwin,
1999) performed event co-reference on scenario spe-

cific events. Both Naughton (2009) and Elkhlifi and
Faiz (2009) worked on sentence-level co-reference,
which is closer to the definition of Danlos and Gaiffe
(2003). Pradhan et al. (2007) dealt with both entity
and event coreference by taking a three-layer ap-
proach. Chen and Ji (2009) proposed a clustering
algorithm using a maximum entropy model with a
range of features. Bejan and Harabagiu (2010) built
a class of nonparametric Bayesian models using a
(potentially infinite) number of features to resolve
both within and cross document event co-reference.
Lee et al. (2012) formed a system with determinis-
tic layers to make co-reference decisions iteratively
while jointly resolving entity and event co-reference.
More recently, Hovy et al. (2013) presented an un-
supervised model to capture semantic relations and
co-reference resolution, but they did not show quan-
titatively how well their system performed in each of
these two cases. Huang et al. (2016) also considered
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ACE (Cross-Validation) MUC B3 CEAFe BLANC AVG
SSED + SupervisedExtend 47.1 59.9 58.7 44.4 52.5
SSED + MSEP-CorefESA+AUG+KNOW 42.1 60.3 59.0 44.1 51.4
MSEP-EMD + MSEP-CorefESA+AUG+KNOW 40.2 58.6 57.4 43.8 50.0

TAC-KBP (Test Data) MUC B3 CEAFe BLANC AVG
TAC-TOP — — — — 39.1
SSED + SupervisedExtend 34.9 44.2 39.6 37.1 39.0
SSED + MSEP-CorefESA+AUG+KNOW 33.1 44.6 39.7 36.8 38.5
MSEP-EMD + MSEP-CorefESA+AUG+KNOW 30.2 43.9 38.7 35.7 37.1

Table 6: Event Co-reference End-To-End Results.

Train Test MSEP Supervised
Event Detection Span+Type F1
In Domain NW NW 58.5 63.7
Out of Domain DF NW 55.1 54.8
In Domain DF DF 57.9 62.6
Out of Domain NW DF 52.8 52.3
Event Co-reference AVG F1
In Domain NW NW 73.2 73.6
Out of Domain DF NW 71.0 70.1
In Domain DF DF 68.6 68.9
Out of Domain NW DF 67.9 67.0

Table 7: Domain Transfer Results. We con-
duct the evaluation on TAC-KBP corpus with the
split of newswire (NW) and discussion form (DF)
documents. Here, we choose MSEP-EMD and
MSEP-CorefESA+AUG+KNOW as the MSEP approach
for event detection and co-reference respectively.
We use SSED and SupervisedBase as the supervised
modules for comparison. For event detection, we
compare F1 scores of span plus type match while we
report the average F1 scores for event co-reference.

the problem of event clustering. They represented
event structures based on AMR (Abstract Meaning
Representation) and distributional semantics, and
further generated event schemas composing event
triggers and argument roles. Recently, TAC has or-
ganized Event Nugget Detection and Co-reference
Evaluations, resulting in interesting works, some of
which contributed to our comparisons (Liu et al.,
2015; Mitamura et al., 2015; Hsi et al., 2015; Sam-
mons et al., 2015).

6 Conclusion

This paper proposes a novel event detection and
co-reference approach with minimal supervision,
addressing some of the key issues slowing down
progress in research on events, including the dif-

ficulty to annotate events and their relations. At
the heart of our approach is the design of struc-
tured vector representations for events which, as we
show, supports a good level of generalization within
and across domains. The resulting approach outper-
forms state-of-art supervised methods on some of
the key metrics, and adapts significantly better to
a new domain. One of the key research directions
is to extend this unsupervised approach to a range
of other relations among events, including temporal
and causality relations, as is (Do et al., 2011; Do et
al., 2012).
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