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Abstract

We introduce a simple semi-supervised ap-
proach to improve implicit discourse relation
identification. This approach harnesses large
amounts of automatically extracted discourse
connectives along with their arguments to con-
struct new distributional word representations.
Specifically, we represent words in the space
of discourse connectives as a way to directly
encode their rhetorical function. Experiments
on the Penn Discourse Treebank demonstrate
the effectiveness of these task-tailored repre-
sentations in predicting implicit discourse re-
lations. Our results indeed show that, despite
their simplicity, these connective-based rep-
resentations outperform various off-the-shelf
word embeddings, and achieve state-of-the-art
performance on this problem.

1 Introduction

A natural distinction is often made between ex-
plicit and implicit discourse relations depending on
whether they are lexicalized by a connective or not,
respectively. To illustrate, the Contrast relation in
example (1a) is triggered by the connective but,
while it is not overtly marked in example (1b).1

Given the lack of strong explicit cues, the identi-
fication of implicit relations is a much more chal-
lenging and still open problem. The typically low
performance scores for this task also hinder the de-
velopment of text-level discourse parsers (Lin et al.,
2010; Xue et al., 2015): implicit discourse relations

1These examples are taken from documents wsj 0008 and
wsj 0037, respectively, of the PDTB.

account for around half of the data for different gen-
res and languages (Prasad et al., 2008; Sporleder and
Lascarides, 2008; Taboada, 2006; Subba and Di Eu-
genio, 2009; Soria and Ferrari, 1998; Versley and
Gastel, 2013).

(1) a. The house has voted to raise the ceiling to
$3.1 trillion, but the Senate isn’t expected
to act until next week at the earliest.

b. That’s not to say that the nutty plot of “A
Wild Sheep Chase” is rooted in reality. It’s
imaginative and often funny.

The difficulty of this task lies in its dependence on
a wide variety of linguistic factors, ranging from
syntax, lexical semantics and also world knowl-
edge (Asher and Lascarides, 2003). In order to deal
with this issue, a common approach is to exploit
hand-crafted resources to design features captur-
ing lexical, temporal, modal, or syntactic informa-
tion (Pitler et al., 2009; Park and Cardie, 2012). By
contrast, more recent work show that using simple
low-dimensional word-based representations, either
cluster-based or distributed (aka word embeddings),
yield comparable or better performance (Rutherford
and Xue, 2014; Braud and Denis, 2015), while dis-
pensing with feature engineering.

While standard low-dimensional word represen-
tations appear to encode relevant linguistic infor-
mation, they have not been built with the specific
rhetorical task in mind. A natural question is there-
fore whether one could improve implicit discourse
relation identification by using word representations
that are more directly related to the task. The
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problem of learning good representation for dis-
course has been recently tackled by Ji and Eisen-
stein (2014) on the problem of text-level discourse
parsing. Their approach uses two recursive neural
networks to jointly learn the task and a transforma-
tion of the discourse segments to be attached. While
this type of joint learning yields encouraging results,
it is also computationally intensive, requiring long
training times, and could be limited by the relatively
small amount of manually annotated data available.

In this paper, we explore the possibility of learn-
ing a distributional word representation adapted to
the task by selecting relevant rhetorical contexts,
in this case discourse connectives, extracted from
large amounts of automatically detected connectives
along with their arguments. Informally, the as-
sumption is that the estimated word-connective co-
occurrence statistics will in effect give us an im-
portant insight to the rhetorical function of different
words. The learning phase in this case is extremely
simple, as it amounts to merely estimating co-
occurrence frequencies, potentially combined with a
reweighting scheme, between each word appearing
in a discourse segment and its co-occurring connec-
tive. To assess the usefulness of these connective-
based representations,2 we compare them with pre-
trained word representations, like Brown clusters
and other word embeddings, on the task of implicit
discourse relation identification. Our experiments
on the Penn Discourse Treebank (PDTB) (Prasad et
al., 2008) show that these new representations de-
liver improvements over systems using these generic
representations and yield state-of-the-art results, and
this without the use of other hand-crafted features,
thus also alleviating the need for external linguis-
tic resources (like lexical databases). Thus, our ap-
proach could be easily extended to resource-poor
languages as long as connectives can be reliably
identified on raw texts.

Section 2 summarizes related work. In Section 3,
we detail our connective-based distributional word
representation approach. Section 4 presents the au-
tomatic annotation of the explicit examples used to
build the word representation. In Section 5, we de-
scribe our comparative experiments on the PDTB.

2Available at https://bitbucket.org/chloebt/
discourse-data.

2 Related Work

Implicit discourse relation identification has at-
tracted growing attention since the release of the
PDTB, the first discourse corpus to make the distinc-
tion between explicit and implicit examples. Within
the large body of research on this problem, we iden-
tify two main strands directly relevant to our work.

2.1 Finding the Right Input Representation

The first work on this task (Marcu and Echihabi,
2002), which pre-dates the release of the PDTB, pro-
posed a simple word-based representation: they use
the Cartesian product of words appearing in the two
segments. Given the knowledge-rich nature of the
task, following studies attempted to exploit various
hand-crafted resources and pre-processing systems
to enrich their model with information on modality,
polarity, tense, lexical semantics, and syntax, possi-
bly combined with feature selection methods (Pitler
et al., 2009; Lin et al., 2009; Park and Cardie,
2012; Biran and McKeown, 2013; Li and Nenkova,
2014). Interestingly, Park and Cardie (2012) con-
cluded on the worthlessness of word-based features,
as long as hand-crafted linguistic features were used.
More recent studies however reversed this conclu-
sion (Rutherford and Xue, 2014; Braud and Denis,
2015), demonstrating that word-based features can
be effective provided they were not encoded using
the sparse one-hot representation, but instead with a
denser one (cluster based or distributed). This paper
takes one step further by testing whether learning a
simple task-specific, distributional word representa-
tion could lead to further improvements.

As noted, some previous work have also at-
tempted to learn discourse-specific representation
for the related problem of discourse parsing. Thus,
Ji and Eisenstein (2014) reports improvements on
the RST Discourse Treebank (Carlson et al., 2001),
by jointly learning a combination of the discourse
units, represented by bag-of-words in a one-hot en-
coding, along with the sequence of actions of their
shift-reduce parser. Our approach is attractively sim-
pler, since training reduces to collecting frequency
counts, and it can easily generate representations for
unseen words without having to retrain the whole
system.
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2.2 Leveraging Explicit Discourse Data

Another line of work, also initiated in (Marcu and
Echihabi, 2002), propose to deal with the sparseness
of the word pair representation by using additional
data automatically annotated using discourse con-
nectives. An appeal of this strategy is that one can
easily identify explicit relations in raw data, as per-
formance are high on this task (Pitler et al., 2009)
and it is even possible to rely on simple heuris-
tics (Marcu and Echihabi, 2002; Sporleder and Las-
carides, 2005; Lan et al., 2013). It has been shown,
however, that using explicit examples as additional
data for training an implicit relation classifier de-
grades performance, due to important distribution
differences (Sporleder and Lascarides, 2008).

Recent attempts to overcome this issue involve
domain adaptation strategies (Braud and Denis,
2014; Ji et al., 2015), sample selection (Rutherford
and Xue, 2015; Wang et al., 2012), or multi-task al-
gorithms (Lan et al., 2013). However, it generally
involves longer training time since models are built
on a massive amount of data, the strategy requir-
ing a large corpus of explicit examples to overcome
the noise induced by the automatic annotation strat-
egy. In this paper, we circumvent this problem by
using explicit data only for learning our word repre-
sentations and not for estimating the parameters of
our implicit classification model. Some aspects of
the present work are similar to Biran and McKeown
(2013) in that they also exploit explicit data to com-
pute co-occurrence statistics between word pairs and
connectives. But the perspective is reversed, as they
represent connectives in the contexts of co-occurring
word pairs, with the aim of deriving similarity fea-
tures between each implicit example and each con-
nective. Furthermore, their approach did not outper-
form state-of-the-art systems.

3 The Connective Vector Space Model

Our discourse-based word representation model is a
simple variant of the standard vector space model
(Turney and Pantel, 2010): that is, it represents in-
dividual words in specific co-occurring contexts (in
this case, discourse connectives) that define the di-
mensions of the underlying vector space. Our spe-
cific choice of contexts was guided by two main con-
siderations. On the one hand, we aim at learning

word representations that live in a relatively low-
dimensional space, so as to make learning a classifi-
cation function over that space feasible. The number
of parameters of that function grows proportionally
with that of the input size. Although there is often
a lack of consensus among linguists as to the exact
definition of discourse connectives, they neverthe-
less form a closed class. For English, the PDTB rec-
ognizes 100 distinct connectives. On the other hand,
we want to learn a vectorial representation that cap-
tures relevant aspects of the problem, in this case
the rhetorical contribution of words. Adapting Har-
ris (1954)’s famous quote, we make the assumption
that words occurring in similar rhetorical contexts
tend to have similar rhetorical meanings. Discourse
connectives are by definition strong rhetorical cues.
As an illustration, Pitler et al. (2009) found that con-
nectives alone unambiguously predict a single rela-
tion in 94% of the PDTB level 1 data. By using con-
nectives as contexts, we are thus linking each word
to a relation (or a small set of relations), namely
those that can be triggered by this connective. Note
that for level 2 relations in the PDTB, the connec-
tives are much more ambiguous (86.77% reported
in (Lin et al., 2010)), and it could be also the case
if we expand the list of forms considered as connec-
tives for English, or if we try to deal with other lan-
guages and domains. We however believe that the
set of relations that can be triggered by a connective
is limited (not all relations can be expressed by the
same connective), and that one attractive feature of
our strategy is precisely to keep this ambiguity.

Before turning to the details of how we construct
our distributional connective-based model, note that
we decided to learn a unique representation for any
individual word, irrespective of its position (with)in
a particular segment. That is, we represent both ar-
guments of a connective as a single bag of words.
Other designs are of course possible: we could di-
rectly learn distinct word representation for left and
right segment words, or even the pair of words (Con-
rath et al., 2014), to take into account the fact that
some relations are oriented (e.g. Reason contains the
cause in the first argument and Result in the second
one). An obvious drawback of these more expres-
sive representations is that they would need much
more data to compute a robust estimate of the fre-
quency counts.
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but while before

Word Freq. TF-IDF PPMI-IDF Freq. TF-IDF PPMI-IDF Freq. TF-IDF PPMI-IDF

reality 12 0.0 0.0 13 0.0 0.0 10 0.0 0.0
not 142 0.37 0.36 201 0.18 0.06 0 0.0 0.0
week 0 0.0 0.0 110 0.10 0.04 90 0.12 0.12

Table 1: Illustrative example of association measures between connectives and words.

3.1 Building the Distributional Representation
Our discourse-based representations of words are
obtained by computing a matrix of co-occurrence
between the words and the chosen contexts. The
frequency counts are then weighted in order to high-
light relevant associations. More formally, we note
V the set of the n words appearing in the arguments,
and C the set of the m connective contexts. We build
the matrix F, of size n ×m, by computing the fre-
quency of each element of V with each element of
C. We note fi,j the frequency of the word wi ∈ V
appearing in one argument of the connective cj ∈ C.
We use two standard weighting functions on these
raw frequencies: the normalized Term Frequency
(TF), eq. (1), and the Positive Pointwise Mutual In-
formation (PPMI), eq. (2), which is a version of the
PMI where negative values are ignored (with pi,j
the joint probability that the word wi appears with
connective cj , and pi,∗ and p∗,j , relative frequency
of resp. wi and cj). These two measures are then
normalized by multiplying the value by the Inverse
Document Frequency (IDF) for a word wi, eq. (3),
as in (Biran and McKeown, 2013). In the final ma-
trices, the ith row corresponds to the m-dimensional
vector for the ith word of V . The jth column is a
vector corresponding to the jth connective.

TFi,j =
fi,j∑n

k=1 fk,j
(1)

PPMIi,j = max(0, log
(

pi,j
pi,∗ p∗,j

)
) (2)

IDFi = log
(

m∑m
k=1 fi,k

)
(3)

Table 1 illustrates the weighting of the words using
the TF and the PPMI normalized with IDF. For in-
stance, the presence of the negation “not” is pos-
itively linked to Contrast through but and while
whereas it receives a null or a very small weight
with the temporal connective before. The final vec-

tor for this word, < 0.37, 0.18, 0.0 > with TF-IDF
or < 0.36, 0.06, 0.0 > with PPMI-IDF, is intended
to guide the implicit model toward a contrastive re-
lation, thus potentially helping in identifying the re-
lation in example (1b). In contrast, the word “week”
is more likely to be found in the arguments of tem-
poral relations that can be triggered by before but
also while, an ambiguity kept in our representation
whereas approaches based on using explicit exam-
ples as new training data generally choose to anno-
tate them using the most frequent sense associated
with the connective, often limiting themselves to the
less ambiguous ones (Marcu and Echihabi, 2002;
Sporleder and Lascarides, 2008; Lan et al., 2013;
Braud and Denis, 2014; Rutherford and Xue, 2015).
Finally, a word occuring with all connectives, not
discriminant, such as “reality” is associated with a
null weight for all dimensions: it thus has no impact
on the model.

Since we have 100 connectives for the PDTB, the
representation is already of quite low dimensional-
ity. However, it has been shown (Turney and Pan-
tel, 2010) that using a dimensionality reduction al-
gorithm could help capturing the latent dimensions
between the words and their contexts and reducing
the noise. We thus also test versions with a reduction
Components Analysis (PCA) (Jolliffe, 2002).

3.2 Using the Word-based Representation

So far, our distributional framework associates a
word with a d-dimensional vector (where d ≤ m).
We now need to represent a pair of arguments
(i.e., the spans of text linked by a relation), mod-
eled here as a pair of bags of words. Following
(Braud and Denis, 2015), we first sum all word vec-
tors contained in each segment, thus obtaining a d-
dimensional vector for each segment. We then com-
bine the two segment vectors to build a compos-
ite vector representing the pair of arguments, by ei-
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ther concatenating the two segment vectors (lead-
ing to a 2d-dimensional vector) or by computing
the Kronecker product between them (leading to
a d2-dimensional vector). Finally, these segment-
pair representations will be normalized using the L2

norm to avoid segment size effects. These will then
be used as the input of a classification model, as
described in Section 5. Given these combination
schemes, it should be clear that despite the fact that
each individual word receives a unique vectorial rep-
resentation irrespective of its position, the param-
eters of the classification model associated with a
given word are likely to be different depending of
whether it appears in the left or right segment.

4 Automatic Annotation of Explicit
Examples

In order to collect reliable word-connective co-
occurrence frequencies, we need a large corpus
where the connectives and their arguments have
been identified. We therefore rely on automatic
annotation of raw data, instead of using the rela-
tively small amount of explicit examples manually
annotated in the PDTB (roughly 18, 000 examples).
Specifically, we used the Bllip corpus3 composed
of news articles from the LA Times, the Washington
Post, the New York Times and Reuters and containing
310 millions of words automatically POS-tagged.

Identifying the Connectives and their Arguments
We have two tasks to perform: identifying the con-
nectives and extracting their arguments.4 Rather
than relying on manually defined patterns to anno-
tate explicit examples (Marcu and Echihabi, 2002;
Sporleder and Lascarides, 2008; Rutherford and
Xue, 2015), we use two binary classification models
inspired by previous works on the PDTB (Pitler and
Nenkova, 2009; Lin et al., 2010): the first one iden-
tifies the connectives and the second one localizes
the arguments between inter- and intra-sentential,
an heuristic being then used to decide on the exact
boundaries of the arguments.

Discourse connectives are words (e.g., but, since)

3https://catalog.ldc.upenn.edu/
LDC2008T13

4Note that contrary to studies using automatically annotated
explicit examples as new training data, we do not need to anno-
tate the relation triggered by the connective.

or grammaticalized multi-word expressions (e.g., as
soon as, on the other hand) that may trigger a dis-
course relation. However, these forms can also ap-
pear without any discourse reading, such as because
in: He can’t sleep because of the deadline. We thus
need to disambiguate these forms between discourse
and non discourse readings, a task that has proven
to be quite easy on the PDTB (Pitler and Nenkova,
2009). This is the task performed by our first binary
classifier: a pattern-matching is used to identify all
potential connectives, and the model predicts if they
have discourse reading in context.

We then need to extract the arguments of the iden-
tified connectives, that is the two spans of text linked
by the connective. This latter task has proven to be
extremely hard on the PDTB (Lin et al., 2010; Xue
et al., 2015) because of some annotation principles
that make the possible types of argument very di-
verse. As first proposed in (Lin et al., 2010), we thus
split this task into two subtasks: identifying the rel-
ative positions of the arguments and delimiting their
exact boundaries.

For an explicit example in the PDTB, one argu-
ment, called Arg2, is linked to the connective, and
thus considered as easy to extract (Lin et al., 2010).
The other argument, called Arg1, may be located at
different places relative to Arg2 (Prasad et al., 2008):
we call intra-sentential the examples where Arg1 is
a clause within the same sentence as Arg2 (60.9%
of the explicit examples in the PDTB), and inter-
sentential the other examples, that is Arg1 is found
in the previous sentence, in a non-adjacent previ-
ous sentence (9%) or in a following sentence (less
than 0.1%). In this work, we build a localization
model by only considering these two coarse cases –
the example is either intra- or inter-sentential. Note
that this distinction is similar to what has been done
in (Lin et al., 2010): more precisely, these authors
distinguish between “same-sentence” and “previous
sentence” and ignore the cases where the Arg1 is in
a following sentence. We rather choose to include
them as being also inter-sentential. When the posi-
tion of Arg1 has been predicted, an heuristic is in
charge of finding the exact boundaries of the argu-
ments.

Here, the problem is that in addition to the vari-
ety of locations, the annotators were almost free to
choose any boundary for an argument in the PDTB:
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an argument can cover only a part of a sentence, an
entire sentence or several sentences. Statistical ap-
proaches intended to solve this task lead for now
to low performance even when complex sequential
models are used, and they often rely on the syntactic
configurations (Lin et al., 2010; Xue et al., 2015).
We thus decided to define an heuristic to perform
this task, following the simplifying assumptions also
used in previous work since (Marcu and Echihabi,
2002). We assume that: (1) Arg1 is either in the
same sentence as Arg2 or in the previous one, (2)
an argument covers at most one sentence and (3)
a sentence contains at most two arguments. As it
can be deduced from (1), our final model ignores the
finer distinctions one can make for the position of
inter-sentential examples (i.e. we never extract Arg1
from a non-adjacent previous sentence or a follow-
ing one).

According to these assumptions, once a connec-
tive is identified, knowing its localization is almost
enough to identify the boundaries of its arguments.
More precisely, if a connective is predicted as inter-
sentential, then our heuristic picks the entire pre-
ceding sentence as Arg1, Arg2 being the sentence
containing the connective, according to assumptions
(1) and (2). If a connective is predicted as intra-
sentential, then the sentence containing the connec-
tive is split into two segments – according to (3) –,
more precisely, the sentence is split around the con-
nective using the punctuation and making it neces-
sary to have a verb in each argument.

Settings We thus built two models using the
PDTB: one to identify the discourse markers (con-
nective vs not connective), and one to identify the
position of the arguments with respect to the con-
nective (inter- vs intra-sentential). The PDTB con-
tains 18, 459 explicit examples for 100 connectives.
For both models, we use the same split of the data
as in (Lin et al., 2014). The test set contains 923
positive instances of connectives and 2, 075 nega-
tive instances, and 546 inter-sentential and 377 intra-
sentential examples. Both models are built using a
logistic regression model optimized on the develop-
ment set (see Section 5), and the same simple feature
set (Lin et al., 2014; Johannsen and Sgaard, 2013)
without syntactic information. With C the connec-
tive, F the following word and P the previous one,

our features are: C, P+C, C+F, C-POS5, P-POS, F-
POS, P-POS+C-POS and C-POS+F-POS.

Results Our model identifies discourse connective
with a micro-accuracy of 92.9% (macro-F1 91.5%).
These scores are slightly lower than the state-of-the-
art in micro-accuracy, but high enough to rely on
this annotation. When applying our model to the
Bllip data, we found 4 connectives that correspond
to no examples. We thus have examples for only 96
connectives. For distinguishing between inter- and
intra-sentential examples, we get a micro-accuracy
of 96.1% (macro-F1 96.0), with an F1 of 96.7 for the
intra- and 95.3 for the inter-sentential class, again
close enough to the state-of-the-art (Lin et al., 2014).

Coverage Using these models on Bllip, we are
able to extract around 3 million connectives, along
with their arguments. Our word representation has
a large vocabulary (see Table 2) compared to exist-
ing off-the-shelf word vectors, with only 2, 902 out
of vocabulary (OOV) tokens in set of implicit rela-
tions.6

# words # OOV

HLBL 246, 122 5, 439
CnW 268, 810 5, 638
Brown 247, 339 5, 413
H-PCA 178, 080 7, 042
Bllip 422,199 2,902

Table 2: Lexicon coverage for Brown clusters (Brown et al.,

1992), Collobert and Weston (CnW ) (Collobert and Weston,

2008) and hierarchical log-bilinear embeddings (HLBL) (Mnih

and Hinton, 2007) using the implementation in (Turian et al.,

2010), Hellinger PCA (H-PCA) (Lebret and Collobert, 2014)

and our connective-based representation (Bllip).

5 Experiments

Our experiments investigate the relevance of our
connective-based representations for implicit dis-
course relation identification, recast here as multi-
class classification problem. That is, we aim at eval-
uating the usefulness of having a word representa-
tion linked to the task, compared to using generic

5The connective POS is either the node covering the con-
nective, or the POS of its first word if no such node exists.

6Training and development sets, only.
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Relation Train Dev Test

Temporal 665 93 68
Contingency 3, 281 628 276
Comparison 1, 894 401 146
Expansion 6, 792 1, 253 556

Total 12, 632 2, 375 1, 046

Table 3: Number of examples in train, dev, test.

word representations (either one-hot, cluster-based
or distributed), and whether they encode all the in-
formation relevant to the task, thus comparing sys-
tems with or without additional hand-crafted fea-
tures.

5.1 Data

The PDTB (Prasad et al., 2008) is the largest corpus
annotated for discourse relations, formed by news-
paper articles from the Wall Street Journal. It con-
tains 16, 053 pairs of spans of text annotated with
one or more implicit relations. The relation set is
organized in a three-level hierarchy. We focus on
the level 1 coarse-grained relations and keep only
the first relation annotated. We use the most spread
split of the data, used in (Rutherford and Xue, 2014;
Rutherford and Xue, 2015; Braud and Denis, 2015)
among others, that is sections 2-20 for training and
21-22 for testing. The other sections are used for de-
velopment. The number of examples per relation is
reported in Table 3. It can be seen that the dataset is
highly imbalanced, with the relation Expansion ac-
counting for more than 50% of the examples.

5.2 Settings

Feature Set Our main features are based on the
words occurring in the arguments. We test simple
baselines using raw tokens. The first one uses the
Cartesian product of the tokens, a feature template,
generally called ”Word pairs”, used in most of the
previous study for this task as in (Marcu and Echi-
habi, 2002; Pitler et al., 2009; Lin et al., 2011; Braud
and Denis, 2015; Ji et al., 2015). It is the sparsest
representation one can build from words, and it cor-
responds to using the combination scheme based on
the Kronecker product to combine the one-hot vec-
tors representing each word. We also report results
with a less sparse version where the vectors are com-

bined using concatenation.
We also compare our systems to previous ap-

proaches that make use of word based representa-
tions but not linked to the task. We implement the
systems proposed in (Braud and Denis, 2015) in
multiclass, that is using the Brown clusters (Brown
et al., 1992), the Collobert and Weston (Collobert
and Weston, 2008) and the hierarchical log-bilinear
embeddings (Mnih and Hinton, 2007) using the
implementation in (Turian et al., 2010)7, and the
HPCA (Lebret and Collobert, 2014)8. We use
the combination schemes described in Section 3 to
build vector representations for pairs of segments.
For these systems and ours, using the connective-
based representations, the dimensionality of the final
model depends on the number of dimensions d of the
representation used and on the combination scheme
– the concatenation leading to 2d dimensions and the
Kronecker product to d2.

All the word representations used – the off-the-
shelf representations as well as our connective-based
representation (see Section 4) – are solely or mainly
trained on newswire data, thus on the same domain
as our evaluation data. The CnW embeddings we
use in this paper, with the implementation in (Turian
et al., 2010), as well as the HLBL embeddings have
been obtained using the RCV1 corpus, that is one
year of Reuters English newswire. The H-PCA have
been built on the Wikipedia, the Reuters corpus and
the Wall street Journal. We thus do not expect any
out-of-domain issue when using these representa-
tions.

Finally, we experiment with additional features
proposed in previous studies and well described
in (Pitler et al., 2009; Park and Cardie, 2012): pro-
duction rules9, information on verbs (average verb
phrases length and Levin classes), polarity (Wilson
et al., 2005), General Inquirer tags (Stone and Kirsh,
1966), information about the presence of numbers
and modals, and first, last and first three words. We
concatenate these features to the ones built using
word representations.

7http://metaoptimize.com/projects/
wordreprs/

8http://lebret.ch/words/
9We use the gold standard parses provided in the Penn Tree-

bank (Marcus et al., 1993).
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Model We train a multinomial multiclass logistic
regression model.10 In order to deal with the class
imbalance issue, we use a sample weighting scheme
where each instance has a weight inversely propor-
tional to the frequency of the class it belongs to.

Parameters We optimize the hyper-parameters of
the algorithm, that is the regularization norm (L1
or L2), and the strength of the regularization C ∈
{0.001, 0.005, 0.01, 0.1, 0.5, 1, 5, 10, 100}. When
using additional features or one-hot sparse encod-
ings over the pairs of raw tokens, we also optimize
a filter on the features by defining a frequency cut-
off t ∈ {1, 2, 5, 10, 15, 20}. We evaluate the un-
supervised representations with different number of
dimensions. We test versions of the Brown clus-
ters with 100, 320, 1, 000 and 3, 200 clusters, of
the Collobert and Weston embeddings with 25, 50,
100 and 200 dimensions, of the hierarchical log-
bilinear embeddings with 50 and 100 dimensions,
and of the Hellinger PCA with 50, 100 and 200 di-
mensions. Finally, the distributional representations
of words based on the connective are built using ei-
ther no PCA – thus corresponding to 96 dimensions–
, or a PCA11 keeping the first k dimensions with
k ∈ {2, 5, 10, 50}.12 We optimize both the hyper-
parameters of the algorithm and the number of di-
mensions of the unsupervised representation on the
development set based on the macro-F1 score, the
most relevant measure to track when dealing with
imbalanced data.

5.3 Results

Our results are summarized in Table 4. Using our
connective-based word representation allows im-
provements of above 2% in macro-F1 over the base-
line systems based on raw tokens (One-hot), the
competitive systems using pre-trained representa-
tions (Brown and Embed.) and the state-of-the-art
results in terms of macro-F1 (R&X 15). These im-
provements demonstrate the efficiency of the repre-
sentation for this task.

We found that using an unsupervised word repre-
sentation generally leads to improvements over the

10http://scikit-learn.org/dev/index.html.
11Implemented in scikit-learn, applied with default settings.
12Keeping resp. 11.3%, 36.6%, 56.2% or 95.3% of the vari-

ance of the data.

Representation Macro-F1 Acc.

One-hot ⊗ 39.0 48.6
One-hot ⊕ 40.2 50.2

Best Brown ⊗ 37.5 50.6
Best Brown ⊕ 40.6 51.2
Best Embed. ⊗ 41.0 51.7
Best Embed. ⊕ 41.6 50.1
Best dense + add feat. 40.8 51.2

Bllip TF-IDF ⊗ 41.4 51.0
Bllip TF-IDF ⊕ 40.1 50.0
Bllip PPMI-IDF ⊗ 38.9 48.2
Bllip PPMI-IDF ⊕ 42.2∗ 52.5
Best Bllip + add feat. 42.8∗ 51.7

R&X 15 40.5 57.1

Table 4: Results for multiclass experiments. R&X 15 are the

scores reported in (Rutherford and Xue, 2015) ; One-hot: one-

hot encoding of raw tokens ; Brown and Embed.: pre-trained

representations ; Bllip: connective based representation. ∗ p ≤
0.1 compared to One-hot ⊗ with t-test and Wilcoxon.

use of raw tokens (One-hot), a conclusion in line
with the results reported in (Braud and Denis, 2015)
for binary systems. However, contrary to their find-
ings, in multiclass, the best results are not obtained
using the Brown clusters, but rather the dense, real
valued representations (Embed. and Bllip). Further-
more, concerning the combination schemes, the con-
catenation (⊕) generally outperforms the Kronecker
product (⊗), in effect favoring lower dimensional
models.

More importantly, the distributional representa-
tions based on connectives (Bllip) allows perfor-
mance at least similar or even better than those ob-
tained with the other dense representations uncon-
nected to the task (Embed.). While simply based on
weighted co-occurrence counts, thus really easy and
fast to build, these representations generally outper-
form the ones learned using neural networks (see
CnW and HLBL in Figure 1). Besides, our sec-
ond best representation is also distributional, namely
HPCA (see Figure 1). These result are thus in line
with the conclusions in (Lebret and Collobert, 2014)
for other NLP tasks: distributional representations,
while simpler to obtain, may allow similar results
than distributed ones.
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Figure 1: F1 scores on dev against the number of dimensions.

Our best results with Bllip are obtained without
the use of a dimensionality reduction method, thus
keeping the 96 dimensions corresponding to the con-
nectives identified in the raw data. Our new word
representation like the other low-dimensional ones
yield higher scores as one increases the number of
dimensions (see Figure 1). This could be a limita-
tion of our strategy, since the number of connectives
in the PDTB is fixed. However, one could easily
expand our model to include additional lexical ele-
ments that might have a rhetorical function such as
modals or specific expressions such as one reason is.

We also tested the addition of hand-crafted fea-
tures traditionally used for the task. We found that,
either using a pre-trained word representation or our
representation based on connectives, adding these
features leads to small or even no improvements and
suggest that these representations already encode the
information provided by these features. This con-
clusion has however to be nuanced: when looking at
the scores per relation reported in Table 5, the use
of the connective based word representation alone
allows the best performance for Temporal and Con-
tingency, but the addition of new features dramat-
ically increase the scores for Comparison showing
that some information are missing for this relation.
Moreover, this relation is the one taking the most
advantage of the addition of explicit data in (Ruther-
ford and Xue, 2015), demonstrating that these data
could probably provide even more information than
the ones we leverage through our representations.

Finally, our results are similar or even better than
those reported in (Rutherford and Xue, 2015) in
terms of macro-F1. Our systems correspond how-
ever to a lower micro-accuracy. Looking at the
scores per relation in Table 5, we found that we ob-
tain better results for all the relations except Expan-
sion, the most represented, which could explain the
loss in accuracy. It is noteworthy that we generally
obtain better results even without the additional fea-
tures used in this work. Moreover, our systems re-
quires lower training time (since we only train on
implicit examples) and alleviate the need for the
sample selection strategy used to deal with the dis-
tribution differences between the two types of data.

Bllip PPMI-IDF ⊕ Bllip + add feat R&X 15
Rel Prec F1 Prec F1 Prec F1

Temp 23.0 29.9 23.7 27.9 38.5 14.7
Cont 49.6 47.1 46.7 46.3 49.3 43.9
Comp 35.9 27.7 35.0 34.3 44.9 34.2
Exp 62.8 64.0 63.7 62.6 61.4 69.1

Table 5: Scores per relation for multiclass experiments, ”R&X

15” are the scores reported in (Rutherford and Xue, 2015).

6 Conclusion

We presented a new approach to leverage infor-
mation from explicit examples for implicit relation
identification. We showed that building distribu-
tional representations linked to the task through con-
nectives allows state-of-the-art performance and al-
leviates the need for additional features. Future
work includes extending the representations to new
contexts – such as the Alternative Lexicalization an-
notated in the PDTB, the modals or some adverbs
– using more sophisticated weighting schemes (Le-
bret and Collobert, 2014) and testing this strategy
for other languages and domains.
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