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Abstract

In this work, we show the possibility of infer-
ring the answer type before solving a factoid
question and leveraging the type information
to improve semantic parsing. By replacing the
topic entity in a question with its type, we are
able to generate an abstract form of the ques-
tion, whose answer corresponds to the answer
type of the original question. A bidirectional
LSTM model is built to train over the abstract
form of questions and infer their answer types.
It is also observed that if we convert a ques-
tion into a statement form, our LSTM model
achieves better accuracy. Using the predicted
type information to rerank the logical forms
returned by AgendaIL, one of the leading se-
mantic parsers, we are able to improve the
F1-score from 49.7% to 52.6% on the WE-
BQUESTIONS data.

1 Introduction

Large scale knowledge bases (KB) like Freebase
(Bollacker et al., 2008), DBpedia (Auer et al., 2007),
and YAGO (Suchanek et al., 2007) that store the
world’s factual information in a structured fash-
ion have become substantial resources for people to
solve questions. KB-based factoid question answer-
ing (KB-QA) that attempts to find exact answers to
natural language questions has gained much atten-
tion recently. KB-QA is a challenging task due to
the representation variety between natural language
and structural knowledge in KBs.

As one of the promising KB-QA techniques, se-
mantic parsing maps a natural language question
into its semantic representation (e.g., logical forms).

Ranking F1 # Improved Qs

AgendaIL 49.7 -
w/ Oracle Types@10 57.3 +234
w/ Oracle Types@20 58.7 +282
w/ Oracle Types@50 60.1 +331
w/ Oracle Types@All 60.5 +345

Table 1: What if the correct answer type is enforced? On We-

bQuestions, we remove those with incorrect answer types in the

top-k logical forms returned by AgendaIL (Berant and Liang,

2015), a leading semantic parsing system, and report the new

average F1 score as well as the number of questions with an

improved F1 score.

It uses a logical language with predicates closely re-
lated to KB schema, and constructs a dictionary that
maps relations to KB predicates. The problem then
reduces to generating candidate logical forms, rank-
ing them, and selecting one to derive the final an-
swer.

In this work, we propose an answer type pre-
diction model that can improve the ranking of
the candidate logical forms generated by seman-
tic parsing. The type of an entity, e.g., person,
organization, location, carries very useful
information for various down-stream natural lan-
guage processing tasks such as co-reference resolu-
tion (Recasens et al., 2013), knowledge base popu-
lation (Carlson et al., 2010), relation extraction (Yao
et al., 2012), and question answering (Lin et al.,
2012). Although the potential clues for answer type
from the question has been employed in the recent
work AgendaIL (Berant and Liang, 2015) at the lex-
ical level, Table 1 suggests that there is yet a large
room for further improvement by explicitly enforc-
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ing answer type. Inspired by this observation, we
aim to directly predict the KB type of the answer
from the question. In contrast to a small set of pre-
defined types as used in previous answer type pre-
diction methods (e.g., (Li and Roth, 2002)), KBs
could have thousands of fine-grained types. Take
“When did Shaq come into the NBA?” as a running
example. We aim to predict the KB type of its an-
swer as SportsLeagueDraft.1

The value of typing answers in a fine granularity
can be appreciated from two perspectives: (1) Since
each entity in a KB like Freebase has a few types,
answer type could help prune answer candidates, (2)
since each predicate in the KB has a unique type
schema, answer type can help rank logical forms.

The key challenge of using answer types to re-
rank logic forms and hence their corresponding an-
swers, is that it shall be done before the answer is
found. Otherwise, there is no need to further infer
its type. Inspired by the observation that the an-
swer type of a question is invariant as long as the
type of the topic entity (Shaq) remains the same
(DraftedAthlete), we define abstract ques-
tion as the question where the topic entity mention
is replaced by its corresponding KB type. For the
aforementioned example, the best candidate abstract
question is “When did DraftedAthlete come
into the NBA?” and the answer to this question is
SportsLeagueDraft. Hence, we can reduce the
answer type prediction task to abstract question an-
swering.

The first step in our method is question ab-
straction, in which we generate candidate abstract
questions based on the context of question and its
candidate topic entities. We build a bidirectional
LSTM network over the question that recursively
computes vector representations for the past and
future contexts of an entity mention. Based on
these context representations, we predict the right
type of the entity mention. Next, in order to bet-
ter utilize the syntactic features of the question,
we convert the question form into a normal state-
ment form by using dependency tree of the ques-
tion. For the running example, after perform-
ing the conversion, the abstract question becomes
“DraftedAthlete come when into the NBA?”

1KB type of answer (“1992 NBA Draft”) in the context.

We then construct a bidirectional LSTM neural net-
work over this final representation of the question
and predict the type of the answer. Using the in-
ferred answer type, we are able to improve the result
of AgendaIL (Berant and Liang, 2015) on WebQues-
tions (Berant et al., 2013) from 49.7% to 52.6%.

2 Background

The knowledge base we work with consists of
triples in subject-predicate-object form. It can be
represented as K = {(e1, p, e2) : e1, e2 ∈
E , p ∈ P}, where E denotes the set of entities (e.g.,
ShaquilleOneal), and P denotes the set of bi-
nary predicates (e.g., Drafted). A knowledge base
in this format can be visualized as a graph where en-
tities are nodes, and predicates are directed edges
between entities. Freebase is used in this work as
the knowledge base. It has more than 41M entities,
596M facts, and 24K types.

Types are an integral part of the Freebase
schema. Each entity e in Freebase has a set
of categories (types) it belongs to, and this
information can be obtained by checking the
out-going predicates (Type.Object.Type)
from e. For example, ShaquilleOneal
has 20 Freebase types including Person,
BasketballPlayer, DraftedAthlete,
Celebrity, and FilmActor. For a specific
question involving ShaquilleOneal, among
these types, only a few will be relevant.

Each predicate in Freebase is from a subject en-
tity to an object entity, and has a type signature. It
has a unique expected types for its subject and ob-
ject, independent of the individual subject and ob-
ject entities themselves. For example, the predicate
People.Person.Profession expects its sub-
ject to be of Person type and its object to be of
Profession type.

3 Question Abstraction

The type of the topic entity rather than the entity it-
self is essential for inferring the answer type, which
is invariant as the topic entity changes within the
same class. For example, independent of which
NBA player (with DraftedAthlete type) is the
topic entity of this question “When did Shaq come
into the NBA”, the type of the answer is always go-
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Figure 1: Bi-directional LSTM model for question abstraction.

Green circles represent the forward sequence’s hidden vectors,

while the red circles denote the backward sequence’s. shaq

(the topic entity mention) is the single output node of the net-

work.

ing to be SportsLeagueDraft in Freebase. Pre-
dicting this distinct type among the large number of
candidate types in Freebase is a challenging task.
We propose a two-step solution for this problem.
In the first step, we compute a confidence score for
each possible KB type for a given topic entity us-
ing a bidirectional LSTM network. The second step
prunes candidate types using the entity type infor-
mation in Freebase.

3.1 Formulation

Given a natural language question and its topic en-
tity mention, question abstraction is to predict types
of the mention in the question context. Formally, let
q = (x1, x2, . . . , xL) denote the question, m be the
topic entity mention in q, and T = {t1, t2, . . . , tK}
the set of all types in KB. Given q and m, we com-
pute a probability distribution o ∈ RK×1 over T ,
where ok denotes the likelihood of tk being the cor-
rect type of m in q.

3.2 Scoring Topic Entity Types with LSTM

Model. We formulate question abstraction as a clas-
sification problem. A bidirectional LSTM network

is built over q whose output is computed from the
nodes that correspond to the words of m. Fig. 1 il-
lustrates the model for the question “When did Shaq
come into the NBA?”

Let u(x) ∈ RD×1 denote the vector space em-
bedding of word x. Forward and backward outputs−→
h l,
←−
h l ∈ RDh×1 of bidirectional LSTM are recur-

sively computed by

−→
h l,
−→c l = LSTM(u(xl),

−→
h l−1,

−→c l−1) (1)
←−
h l,
←−c l = LSTM(u(xl),

←−
h l+1,

←−c l+1) (2)

as described in Graves (2012), where −→cl ,←−cl ∈
RDh×1 stand for LSTM cell states.

To encode the context of m to the final output, we
apply an AVERAGE pooling layer when computing
the output. For each output node r ∈ [i, j] (i and j
correspond to the starting and ending indices ofm in
q), we compute final forward and backward outputs
by

−→vr = AV G(
−→
h1, . . . ,

−→
hr) (3)

←−vr = AV G(
←−
hr, . . . ,

←−
hn), (4)

where AV G stands for average pooling.
We take the average of outputs at each output

node

−→v = AV G(−→vi , . . . ,−→vj ) (5)
←−v = AV G(←−vi , . . . ,←−vj ) (6)

as the forward and backward outputs of the whole
network. The final representation v of the network
is obtained by concatenating −→v and←−v .

For question q, the probability distribution o over
types is computed by

s(q) =Whyv (7)

o(q) = softmax(s(q)), (8)

where Why ∈ RK×(2Dh) since v is the concatena-
tion of two vectors of dimension Dh, where Dh is
the hidden vector dimension.

Objective Function and Learning. Given an
input question q with a topic entity mention m,
LSTM network computes the probability distribu-
tion o(q) ∈ RK×1 as in (8). Let y(q) ∈ RK×1 de-
note the true target distribution over T for q, where

151



yk(q) = 1/n if tk is a correct type, yk(q) = 0 oth-
erwise, and n is the number of correct types. We
use the cross-entropy loss function between y(q) and
o(q), and define the objective function over all train-
ing data as

J(θ) = −
∑

q

K∑

k=1

yk(q) log ok(q) +
λ

2
‖θ‖2 ,

where λ denotes the regularization parameter, and
θ represents the set of all model parameters to be
learned. We use stochastic gradient descent with
RMSProp (Tieleman and Hinton, 2012) for mini-
mizing the objective function.

3.3 Pruning
Let Te represent the set of KB types for entity e. We
define the set of candidate types for entity mention
m as

Cm =
⋃

e

Te,

where e is a possible match of m in KB. We only
need to score the types in Cm. Once the hidden rep-
resentation v is computed by LSTM, we use subma-
trix Why[Cm] that consists of rows of Why corre-
sponding to the types in Cm as the scoring matrix in
(7). This returns the final scores for candidate types
in Cm.

4 Conversion to Statement Form

The objective of the conversion is to canonicalize
question form into declarative statement (subject-
relation-object) form. We use a simple pattern-based
method that relies on dependency tree2 (Manning et
al., 2014). It decides whether the sub-trees of the
root need reordering based on their dependency re-
lations3.

Before obtaining the dependency tree, we retrieve
named entity (NER) tags of the question tokens. We
replace a group of question tokens corresponding a
named entity with a special token, ENTITY, to sim-
plify the parse tree. In Figure 2, the question is first
transformed to “what boarding school did ENTITY
go to?” Each question is represented by the root’s

2We use Stanford CoreNLP dependency parser
3http://universaldependencies.org

Figure 2: Conversion: red relations form the input pattern

Pattern Conversion
(cop, nsubj) (nsubj, root, cop)
who was anakin skywalker? anakin skywalker was who
(dobj, aux, nsubj) (nsubj, root, dobj)
what language does australians speak? australians speak what language
(dobj, aux, nsubj, nmod) (nsubj, root, dobj, nmod)
what did edward jenner do for a living? edward jenner do what for a living
(nsubj, dobj) (nsubj, root, dobj)
who played bilbo baggins? who played bilbo baggins
(advmod, aux, nsubj) (nsubj, root, advmod)
where did benjamin franklin died? benjamin franklin died where

Table 2: Top-5 most common patterns with mappings.

dependency relations to its sub-trees in the original
order, e.g., (dep, aux, nsubj, nmod). We clus-
ter all these sequences and detect the patterns that
appear at least 5 times in the training data. These
patterns are then manually mapped to their corre-
sponding conversion (pattern vs. mapping in Figure
2).

Once the recomposition order of the sub-trees is
determined by the conversion mapping, we finalize
the reordering of the question tokens by keeping the
order of words within the sub-trees same as the orig-
inal order in the question. The example in Figure
2 becomes “ENTITY go to what boarding school”
with its corresponding sub-tree conversion mapping
(nsubj, root, nmod, dep). If no mapping is cre-
ated for a pattern, we keep the order of the words
exactly as they occur in the original question form.

The motivation behind conversion is to overcome
the potential semantic confusion stemming from
varities in syntactic structures. To exemplify, con-
sider two hypothetical questions “who plays X in
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Figure 3: Bi-directional LSTM model over the final representa-

tion of the question. Green and red circles are corresponding to

forward and backward hidden vectors, respectively. The output

node is when.

Y?” and “who does Z play in Y?”, where X is
a FilmCharacter, Y is a Film, and Z is a
FilmActor, with answer types FilmActor and
FilmCharacter, respectively. With conversion,
we aim to transform second question into “Z play
who in Y”, while leaving the first one as it is. Not-
ing that the order of words affects the output of our
answer type inference network, our intuition is to let
the model distinguish better between such questions
using their syntactic structure in this way.

5 Answer Type Prediction

Given a reordered question with topic entity mention
m, and a topic entity type te ∈ T , our task is to
predict a probability distribution o ∈ RK×1 over the
answer types.

A topic entity type te ∈ T is described as a set
of words, {xi}. Let u(xi) ∈ RD×1 represent the
vector space embedding of xi, the representation of
te is computed by the average encoding,

u(te) =
1

|{xi}|
∑

xi

u(xi). (9)

As the first step, we replace the words of entity
mention m with topic entity type te, and obtain a
new input word sequence r. te is treated as one
word and encoded by Eq. 9. We construct a bidi-
rectional LSTM network over this input sequence

r, whose output node corresponds to the question
word. The output of the network is a probability dis-
tribution over types denoting the likelihood of being
the answer type. Figure 3 shows how the network
is constructed for the running example. The same
average pooling described in Section 3.2 is applied
to obtain the final forward and backward output vec-
tors −→v and←−v from the output node (this time, sin-
gle output node) of network. The final output vec-
tor v for prediction is obtained by concatenating −→v ,
and ←−v . The distribution o is computed by a stan-
dard softmax layer. The learning is performed by
the same cross-entropy loss and objective function
described in Section 3.2.

6 Reranking by Answer Type

In this section, we describe how to rerank logical
forms based on our answer type prediction model.

Reranking Model. Let l1, l2, . . . , lN be the log-
ical forms generated for question q by a semantic
parser, e.g., AgendaIL. Each logical form has a score
from the semantic parser. Meanwhile, our answer
type prediction model generates a score for the an-
swer type of each logical form. Therefore, we can
represent each logical form li using a pair of scores:
the score from semantic parser and the score from
our type prediction model. Suppose we know which
logical forms are “correct”, using the two scores
as input, we train a logistic regression model with
cross-entropy loss to learn a binary classifier for pre-
dicting the correct logical forms. We rerank the top-
k logical forms using their probability computed by
the trained logistic regression model, and select the
one with the highest probability. Finally, we run the
selected logical form against KB to retrieve the an-
swer. We select the optimal value of k from [1, N ]
using the training data. For AgendaIL on WebQues-
tions, we find that k = 80 gives the best result.

Training Data Selection. We now discuss which
logical forms are “correct”, i.e., how to select the
positive examples to train the logistic regression
model. Because a question can have more than one
answer, we use the F1 score, the harmonic mean of
precision and recall, to evaluate logical forms. We
select all the logical forms with F1 > 0 as the set
of positive examples. However, taking all the log-
ical forms with F1 = 0 as negative examples will
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not work well. Even though the F1 score of a log-
ical form is 0, its answer type could still be correct.
Therefore, we use the following trick: If there is a
positive example with answer type t, we do not treat
any other logical form with answer type t as neg-
ative example. The logical forms having F1 = 0,
with the aforementioned exception, are then selected
as the final set of negative examples. Our empirical
study shows this trick works well.

7 Experiments

In this section, we describe the datasets, model train-
ing, and experimental results.

7.1 Dataset and Evaluation Metrics

Datasets. To evaluate our method, we use the We-
bQuestions dataset (Berant et al., 2013), which con-
tains 5,810 questions crawled via Google Suggest
API. The answers to these questions are annotated
from Freebase using Amazon Mechanical Turk. The
data is split into training and test sets of size 3,778
and 2,032 questions, respectively. This dataset has
been popularly used in question answering and se-
mantic parsing.

The SimpleQuestions (Bordes et al., 2015) con-
tains 108,442 questions written in natural language
by English-speaking human annotators. This dataset
is a collection of question/Freebase-fact pairs rather
than question/answer pairs. The data4 is split and
provided as training(75,910), test(21,687), and val-
idation(10,845) sets. Each question is mapped to
the subject, relation, and object of the corresponding
Freebase fact. This dataset is only used for training
the question abstraction model.

Training Data Preparation. Since WebQues-
tions only provides question-answer pairs along with
annotated topic entities, we need to figure out the
type information, which can be used as training data.
We obtain simulated types as follows: We retrieve 1-
hop and 2-hop predicates r from/to annotated topic
entity e in Freebase. For each relation r, we query
(e, r, ?) and (?, r, e) against Freebase and retrieve
the candidate answers ra. The F1 value of each
candidate answer ra is computed with respect to the
annotated answer. The subject and object types of
the relation r with the highest F1 value is selected

4http://fb.ai/babi.

as the simulated type for the topic entity and the an-
swer. When there are multiple such relations, we
obtain multiple simulated types for topic entity and
answer, one from each relation. We treat each of
them as correct with equal probability.

Candidate Logical Forms for Evaluation. To
obtain candidate logical forms, we train AgendaIL
(Berant and Liang, 2015) on WebQuestions with
beam size 200 using the publicly available code5 by
the authors.

Evaluation Metric. We report average F1 score
of the reranked logical forms using the predicted an-
swer types as the main evaluation metric. It is a com-
mon performance measure in question answering as
questions might have multiple answers.

7.2 Experimental Setup

We use 50 dimensional word embeddings, which are
initialized by the 50 dimensional pre-trained word
vectors6 from GloVe (Pennington et al., 2014), and
updated in the training process. Hyperparameters
are tuned on the development set. The size of the
LSTM hidden layer is set at 50. We use RMSProp
(Tieleman and Hinton, 2012) with a learning rate of
0.005 and mini-batch size of 32 for the optimization.
We use a dropout layer with probability 0.5 for reg-
ularization. We implemented the LSTM networks
using Theano (Theano Development Team, 2016).

Identifying Topic Entity. We use Stanford NER
tagger (Manning et al., 2014) to identify topic en-
tity span for both training and test data. For en-
tity linking, annotated mention span is mapped to a
ranked list of candidate Freebase entities using Free-
base Search API for the test data. For the training
data, we use the gold Freebase topic entity linkings
of each question provided by WebQuestions, com-
ing from its question generation process.

Question Abstraction. We first pre-train the
LSTM model described in Section 3.2 on the Sim-
pleQuestions dataset. Then, we update the pre-
trained model on the training portion of WebQues-
tions data where the simulated topic entity types are
used as true labels. We use the detected topic en-
tity mentions to obtain candidate matching entities
in the KB using Freebase Search API. We use top-

5https://github.com/percyliang/sempre
6http://nlp.stanford.edu/projects/glove/
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Model F1
(Berant et al., 2013) 35.7
(Yao and Van Durme, 2014) 33.0
(Berant and Liang, 2014) 39.9
(Bao et al., 2014) 37.5
(Bordes et al., 2014) 39.2
(Yang et al., 2014) 41.3
(Dong et al., 2015b) 40.8
(Yao, 2015) 44.3
(Berant and Liang, 2015) 49.7
(Yih et al., 2015) 52.5
(Reddy et al., 2016) 50.3
(Xu et al., 2016) 53.3
(Yih et al., 2015) (w/ Freebase API) 48.4
(Yih et al., 2015) (w/o ClueWeb) 50.9
(Xu et al., 2016) (w/o Wikipedia) 47.1
Our Approach (w/o SimpleQuestions) 51.6
Our Approach 52.6

Table 3: Comparison of our reranking-by-type system with sev-

eral existing works on WebQuestions.

3 entities returned for the pruning step of Question
Abstraction on the test examples.

Answer Type Prediction. We train Answer Type
Prediction model using the simulated topic entity
and answer types for each question. We perform the
answer type prediction on test data using the pre-
dicted topic entity type.

7.3 Results

Our main result is presented in Table 3. Our system
adds 2.9% absolute improvement over AgendaIL,
and achieves 52.6% in F1 measure. Yih et al. (2015)
achieve 52.5% by leveraging ClueWeb and S-MART
(Yang and Chang, 2015), an advanced entity linking
system. Xu et al. (2016) achieve 53.3% by lever-
aging Wikipedia and S-MART. If tested without
Clueweb/Wikipedia/S-MART, their F1 scores are
48.4% and 47.1%, respectively. When our method is
tested without using SimpleQuestions data for pre-
training question abstraction module, it attains F1
score of 51.6%.

In Table 4, we present some question ex-
amples where our method can select a bet-
ter logical form. Take the question “who
did [australia] fight in the first world war?”
as an example. Our topic entity type pre-
diction module returns MilitaryCombatant,

Method F1 Gain Loss
Base 50.3 69 47
Base + Conv 50.5 96 56
Base + Abs 52.2 184 87
Base + Abs + Conv 52.6 203 93
AgendaIL 49.7 - -

Table 6: Ablation analysis of modules of our method.

Gain/Loss columns denote the number of questions where the

F1 score of our selected logical form is greater/less than that of

the top ranked logical forms from AgendaIL.

StatisticalRegion, and Kingdom as the top-
3 results for the type of “australia” in this ques-
tion, which indicates that it exploits the context
of this short question successfully. The abstract
question is “[military combatant] fight who in the
first world war?” for which our system returns
MilitaryCombatant, MilitaryConflict,
and MilitaryCommander as answer types with
probabilities 0.73, 0.25, and 0.005, respectively,
MilitaryCombatant is indeed the right answer
type. This example shows the effect of abstraction in
channeling the context in the most relevant direction
to find the right answer type. In Table 5, we provide
a comparison of the selected logical forms based on
AgendaIL rankings and our rankings.

7.4 Ablation Analysis

In this section, we evaluate the effect of individual
components of our model. Note that the answer type
prediction model described in Section 5 can work
independently from question abstraction and form
conversion. We develop the following variants i)
Base, ii) Base + Conversion, iii) Base + Abstrac-
tion, iv) Base + Abstraction + Conversion, where
Base corresponds to a model that infers answer types
without employing abstraction or form conversion.
We train/test each variant separately. Table 6 shows
each component contributes and question abstrac-
tion does help boost the performance.

Suppose we perform answer type prediction with-
out question abstraction, and feed “[australia] fight
who in the first world war?” into the answer
type prediction model (Base + Conversion). The
predicted answer type is Location. Unfortu-
nately, there is neither a 1-hop or 2-hop correct re-
lation from/to Australia with the expected type
Location nor a correct (with positive F1) candi-
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Question Topic Entity Type Prediction Answer Type Prediction AgendaIL Answer Type F1 Gain
who inspired obama? InfluenceNode InfluenceNode UsVicePresident 1.0
what are some books that mark twain wrote? Author WrittenWork InfluenceNode 0.3
who won the league cup in 2002? SportsAwardType SportsAwardWinner SportsLeagueSeason 1.0
what type of government does france use? Country FormOfGovernment Government 1.0
where are the new orleans hornets moving to? SportsTeam SportsFacility Location 1.0
who did australia fight in the first world war? MilitaryCombatant MilitaryCombatant MilitaryCommander 0.4
what guitar does corey taylor play? Musician MusicalInstrument Organization 0.33
what region is turkey considered? Location AdministrativeDivision Beer 0.93
what country does rafael nadal play for? Athlete Country OlympicDiscipline 1.0

Table 4: Example questions where our type prediction helps select a better logical form. The F1 gain shows the difference between

the F1 score of the logical form we select and the top ranked logical form from AgendaIL.

Questions and Selected Logical Forms
1. what are some books that mark twain wrote?
AgendaIL: (MarkTwain - Influence.InfluenceNode.InfluencedBy - ?)
Ours: (MarkTwain - Book.Author.WorksWritten - ?)
2. what guitar does corey taylor play?
AgendaIL: (? - Organization.Organization.Founders - CoreyTaylor)
Ours: (CoreyTaylor - Music.GroupMember.InstrumentsPlayed - ?)
3. what type of government does france use?
AgendaIL: (France - Government.GovernmentalJurisdiction.Government - ?)
Ours: (France - Location.Country.FormOfGovernment - ?)

Table 5: Comparison of selected logical forms for some examples. Logical forms are simplified and canonicalized into (subject -

predicate - object) format for better readability, where ? corresponds to answer nodes.

date logical form with the answer type Location.
This shows that through question abstraction, a bet-
ter logical form is selected for this question.

To exemplify another benefit of question ab-
straction, consider the question “where does
[marta] play soccer?” The top 3 entity link-
ings via Freebase Search API for “marta” are
MetropolitanAtlantaRapidTransit-
Authority, Marta, and SantaMarta, where
the correct entity is the second one. Our question
abstraction system returns FootballPlayer as
the top topic entity type prediction that is indeed
corresponding to the correct entity. Utilizing the
context via question abstraction we are able to
recover useful information when the entity linking
is uncertain.

Table 6 also shows that the conversion to state-
ment form also helps, especially together with Ab-
straction. In the above example, the model without
Conversion (Base + Abs) predicts the answer type
for ”where does [football player] play soccer” as
SportsFacility, whereas the full model, con-
sidering Conversion as well, finds the answer
type for ”[football player] play soccer where” as
SportsTeam which is the better type in this case.

7.5 Error Analysis

We present a further analysis of our approach by
classifying the type inference errors made on ran-
domly sampled 100 questions. 9% of the er-
rors are due to inference at incorrect granular-
ity (e.g., City instead of Location). 12% of
the errors are the result of incorrect answer labels
(hence incorrect answer types) or question ambigu-
ity (e.g., “where is dwight howard now?”). 11% of
them are incorrect, but acceptable inferences, e.g.,
BookWrittenWork instead of BookEdition
for question “what dawkins book to read first?”
39% of the errors are due to the sparsity problem:
They are made on questions whose answer type ap-
pears less than 5 times in the training data (e.g.,
DayOfYear). The remaining 29% of them are due
to incorrect question abstraction. In most of the
question abstraction errors, the predicted topic en-
tity type is semantically close to the correct type. In
other cases such as “what did joey jordison play in
slipknot?” where we predict FilmActor as the
topic entity type while Musician is the correct
one. In these cases, the answer type inference is not
able to correct the abstraction error. These 29% of
errors also contain the entity linking errors.
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8 Related Work

Freebase QA has been studied from two differ-
ent perspectives: grounded QA systems that work
directly on KBs and general purpose ungrounded
QA systems. Kwiatkowski et al. (2013) generates
KB agnostic intermediary CCG parses of questions
which are grounded afterwards given a KB. Bor-
des et al. (2014) uses a vector space embedding ap-
proach to measure the semantic similarity between
question and answers. Yao and Van Durme (2014),
Bast and Haussmann (2015) and Yih et al. (2015)
exploit a graph centric approach where a grounded
subgraph query is generated from question and then
executed against a KB. In this work, we propose a
neural answer type inference method that can be in-
corporated in existing grounded semantic parsers as
a complementary feature to improve ranking of the
candidate logical forms.

Berant and Liang (2015) uses lambda DCS logi-
cal language with predicates from Freebase. In their
approach, types are included as a part of unary lexi-
con for building the logical forms from natural lan-
guage questions. However, no explicit type infer-
ence is exploited. We show that such information
could indeed be useful for selecting logical forms.

There have been a series of studies investigating
the expected answer type of a question in different
contexts such as Li and Roth (2002), Lally et al.
(2012), and Balog and Neumayer (2012). Most of
these approaches classify the questions into a small
set of types. Even when the set of classes is more
fine-grained, e.g., 50 classes in Li and Roth (2002),
they cannot be used for our purpose as it would re-
quire nontrivial mapping between these categories
and a much larger number of KB types. Further-
more, these methods often rely on a rich set of hand
crafted features and external resources.

Sun et al. (2015) uses Freebase types to learn the
relevance of candidate answers to a given question
via an association model. Their model directly ranks
the answer candidates by utilizing types, whereas
ours ranks the logical forms via predicting answer
type. In this sense, we are able to take advantage
of both logical form and type inference. Su et al.
(2015) exploits answer typing to facilitate knowl-
edge graph search, but their input is graph query in-
stead of natural language question. They predict an-

swer types using additional relevance feedback for
graph queries, while our algorithm directly infers
answer types from input questions. On the question
abstraction side, our work is related to a recent study
(Dong et al., 2015a) which classifies entity mentions
into 22 types derived from DBpedia. They use a
multilayer perceptron over a fixed size window and
a recurrent neural network for the representations of
context and entity mention, respectively. Instead, we
use a bidirectional LSTM network to exploit the full
context more flexibly.

9 Conclusion

In this paper, we present a question answer type in-
ference framework and leverage it to improve se-
mantic parsing. We define the notion of abstract
question as the class of questions that can be an-
swered by type instead of entity. Question an-
swer type inference is then reduced to “question ab-
straction” and “abstract question answering”, both
of which are formulated as classification problems.
Question abstraction is performed by exploiting the
topic entity and its context in question via an LSTM
network . A separate neural network is trained to
exploit the abstraction to make the final question an-
swer type inference. Our method improves the rank-
ing of logical forms returned by AgendaIL on the
WEBQUESTIONS dataset. In the future, we would
like to investigate how the abstraction and explicit
type inference can be incorporated in the early stage
of semantic parsing for generating better candidate
logical forms.
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