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Abstract 

In a typical social media content analysis 
task, the user is interested in analyzing 
posts of a particular topic. Identifying 
such posts is often formulated as a classi-
fication problem. However, this problem 
is challenging. One key issue is covariate 
shift. That is, the training data is not fully 
representative of the test data. We ob-
served that the covariate shift mainly oc-
curs in the negative data because topics 
discussed in social media are highly di-
verse and numerous, but the user-labeled 
negative training data may cover only a 
small number of topics. This paper pro-
poses a novel technique to solve the 
problem. The key novelty of the tech-
nique is the transformation of document 
representation from the traditional n-
gram feature space to a center-based 
similarity (CBS) space. In the CBS 
space, the covariate shift problem is sig-
nificantly mitigated, which enables us to 
build much better classifiers. Experiment 
results show that the proposed approach 
markedly improves classification. 

1 Introduction 

Applications using social media data, such as 
reviews, discussion posts, and (micro) blogs are 
becoming increasingly popular. We observed 
from our collaborations with social science and 
health science researchers that in a typical appli-
cation, the researcher first need to obtain a set of 
posts of a particular topic that he/she wants to 
study, e.g., a political issue. Keyword search is 
often used as the first step. However, that is not 
sufficient due to low precision and low recall. A 
post containing the keyword “politics” may not 
be a political post while a post that does not con-
tain the keyword may be a political post. Thus, 

text classification is needed to make more so-
phisticated decisions to improve accuracy.  

For classification, the user first manually la-
bels a set of relevant posts (positive data) about 
the political issue and irrelevant posts (negative 
data) not about the political issue and then builds 
a classifier by running a learning algorithm, e.g. 
SVM or naïve Bayes. However, the resulting 
classifier may not be satisfactory. There may be 
many reasons. One key reason we observed is 
that the labeled negative training data is not fully 
representative of the negative test data.  

Let the user-interested topic be P (positive), 
and the set of all other irrelevant topics discussed 
in a social media source be T = {T1, T2, …, Tn}, 
which forms the negative data. n is usually large. 
However, due to the labor-intensive effort of 
manual labeling, the user can label only a certain 
number of training posts. Then the labeled nega-
tive training posts may cover only a small num-
ber of irrelevant topics S of T (S ⊆ T) as nega-
tive. Further, due to the highly dynamic nature of 
social media, it is probably impossible to label 
all possible negative topics. In testing, when 
posts of other negative topics in T−S show up, 
their classification can be unpredictable. For ex-
ample, in an application, the training data has no 
negative examples about sports. However, in 
testing, some sports posts show up. These unex-
pected sports posts may be classified arbitrarily, 
which results in low classification accuracy. In 
this paper, we aim to solve this problem. 

In machine learning, this problem is called 
covariate shift, a type of sample selection bias. 
In classic machine learning, it is assumed that the 
training and testing data are drawn from the same 
distribution. However, this assumption may not 
hold in practice such as in our case above, i.e., 
the training and the test distributions are different 
(Heckman 1979; Shimodaira 2000; Zadrozny 
2004; Huang et al. 2007; Sugiyama et al. 2008; 
Bickel et al. 2009). In general, the sample selec-
tion bias problem is not solvable because the two 
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distributions can be arbitrarily far apart from 
each other. Various assumptions were made to 
solve special cases of the problem. One main 
assumption was that the conditional distribution 
of the class given a data instance is the same in 
the training and test data sets (Shimodaira 2000; 
Huang et al. 2007; Bickel et al. 2009). This gives 
the covariate shift problem.  

In this paper, we focus on a special case of the 
covariate shift problem. We assume that the co-
variate shift problem occurs mainly in the nega-
tive training and test data, and no or minimum 
covariate shift exists in the positive training and 
test data. This assumption is reasonable because 
the user knows the type of posts/documents that 
s/he is looking for and can label many of them.  

Following the notations in (Bickel et al. 
2009), our special case of the covariate shift 
problem can be stated formally as follows: let the 
set of training examples be {(x1, y1), (x2, y2), …, 
(xk, yk)}, where xi is the data/feature vector and yi 
is the class label of xi. Let the set of test cases be 
{xk+1, xk+2, …, xn}, which have no class labels. 
Since we are interested in binary classification, yi 
is either 1 (positive class) or -1 (negative class). 
The labeled training data and the unseen test data 
have the same target conditional distribution 
p(y|x) and the marginal distributions of the posi-
tive data in both the training and testing are also 
the same. But the marginal distributions of the 
negative data in the training and testing are dif-
ferent, i.e., 𝑝!(𝐱!) ≠ 𝑝!(𝐱!), where L, T, and – 
represent the labeled training data, test data, and 
the negative class respectively.  

Existing methods for addressing the covariate 
shift problem basically work as follows (see the 
Related Work section). First, they estimate the 
bias of the training data based on the given test 
data using some statistical techniques. Then, a 
classifier is trained on a weighted version of the 
original training set based on the estimated bias. 
Requiring the test data to be available in training 
is, however, a major weakness. In the social me-
dia post classification setting, the system needs 
to constantly classify the incoming data. It is in-
feasible to perform training constantly.  

In this paper, we propose a novel learning 
technique that does not need the test data to be 
available during training due to the specific na-
ture of our problem, i.e., the positive training 
data does not have the covariate shift issue.  

One obvious solution to this problem is one-
class classification (Schölkopf et al. 1999; Tax 
and Duin, 1999a), i.e., one-class SVM. We simp-
ly discard the negative training posts/documents 

completely because they have the covariate shift 
problem. Although this is a valid solution, as we 
will see in the evaluation section, the models 
built based on one-class SVM perform poorly. 
Although it is conceivable to use an unsuper-
vised method such clustering, SVD (Alter et al., 
2000) or LDA (Blei et al., 2003), supervised 
learning usually give much higher accuracy.  

In our proposed method, instead of perform-
ing supervised learning in the original document 
space based on n-grams, we perform learning in 
a similarity space. Thus, the key novelty of the 
method is the transformation from the original 
document space (DS) to a center-based similarity 
space (CBS). In the new space, the covariate 
shift problem is significantly mitigated, which 
enables us to build more accurate classifiers. The 
reason for this is that in CBS based learning the 
vectors in the similarity space enable SVM 
(which is the learning algorithm that we use) to 
find a good boundary of the positive class data 
based on similarity and to separate it from all 
possible negative class data, including those neg-
ative data that is not represented in training. We 
will explain this in greater detail in Section 3.5 
after we present the proposed algorithm, which 
we call CBS-L (for CBS Learning).   

This paper makes three contributions: First, it 
formulates a special case of the covariate shift 
problem. This case occurs frequently in social 
media data classification as we discussed above. 
Second, it proposes a novel CBS space based 
learning method, CBS-L, which avoids the co-
variate shift problem to a large extent because it 
is able to find a good similarity boundary of the 
positive data. Third, it experimentally demon-
strates the effectiveness of the proposed method.  

2 Related Work 

Traditional supervised learning assumes that the 
training and test examples are drawn from the 
same distribution. However, this assumption can 
be violated in many applications. This is espe-
cially the case for social media data because of 
the high topic diversity and constant changes of 
topics. This problem is known as covariate shift, 
which is a form of sample selection bias.  

Sample selection bias was first introduced in 
econometrics by Heckman (1979). It came into 
the field of machine learning through the work of 
Zadrozny (2004). The main approach in machine 
learning is to first estimate the distribution bias 
of the training data based on the test data, and 
then learn using weighted training examples to 
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compensate for the bias (Bickel et al. 2009).  
For example, Shimodaira (2000) and Sugiya-

ma and Muller (2005) proposed to estimate the 
training and test data distributions using kernel 
density estimation. The estimated density ratio is 
then used to generate weighted training exam-
ples. Dudik et al. (2005) and Bickel and Scheffer 
(2007) used maximum entropy density estima-
tion, while Huang et al. (2007) proposed kernel 
mean matching. Sugiyama et al. (2008) and Tsu-
boi et al. (2008) estimated the weights for the 
training instances by minimizing the Kullback-
Leibler divergence between the test and the 
weighted training distributions. Bickel et al. 
(2009) proposed an integrated model. As we dis-
cussed in the introduction, the need for the test 
data at the training time is a major weakness for 
social media data classification. The proposed 
technique CBS-L doesn’t have this restriction.  

As mentioned in the introduction, one-class 
classification is a suitable approach to solve the 
problem. Tax and Duin (1999a and 1999b) pro-
posed a model for one-class classification called 
Support Vector Data Description (SVDD) to 
seek a hyper-sphere around the positive data that 
encompasses points in the data with the mini-
mum radius. In order to balance between model 
over-fitting and under-fitting, Tax and Duin 
(2001) proposed a method that tries to use artifi-
cially generated outliers to optimize the model 
parameters. However, their experiments suggest 
that the procedure to generate artificial outliers in 
a hyper-sphere is only feasible for up to 30 di-
mensions. Also, as pointed out by (Khan and 
Madden, 2010; 2014), one drawback of their 
methods is that they often require a large dataset 
and the methods become very inefficient in high 
dimensional feature spaces. Since text documents 
are usually represented in a much higher dimen-
sional space, these methods are less suitable for 
text applications. Manevitz and Yousef (2001) 
performed one-class text classification using 
one-class SVM as proposed by Schölkopf et al. 
(1999). The method is based on identifying outli-
er data that are representative of the second class. 
Instead of assuming the origin is the only mem-
ber of the outlier class, it assumes those data 
points with few non-zero entries are also outliers. 
However, as reported in the paper, their methods 
produce quite weak results (Schölkopf et al., 
1999; 2000). Li et al. (2003) presented an im-
proved version of one-class SVM for detecting 
anomalies. Their idea is to consider all data 
points that are close to the origin as outliers. 
Both (Yang and Madden, 2007) and (Tian and 

Gu, 2010) tried to refine Schölkopf’s models by 
searching optimal parameters. Luo et al., (2007) 
proposed a cost-sensitive one-class SVM algo-
rithm for intrusion detection. We will see in the 
experiment section that one-class classification is 
far inferior to our proposed CBS-L method.  

In this work, we propose to represent docu-
ments in the similarity space and thus it is related 
to works on document representation. Alternative 
document representations have been proposed in 
the past and have been shown to perform well in 
many applications (Radev et al., 2000; He et al., 
2004; Lebanon 2006; Ranzato and Szummer, 
2008, Wang and Domeniconi, 2008). In (Radev 
et al., 2000), although the centroid sen-
tence/document vector was computed, it was not 
transformed to a similarity space vector represen-
tation. Wang and Domeniconi (2008) proposed 
to use external knowledge to build semantic ker-
nels for documents in order to improve text clas-
sification. In our problem, the main difficulty is 
that testing negative documents cannot be well 
covered in training. It is not clear how the en-
riched document representations could help solve 
our problem. 

Our work is also related to learning from posi-
tive and unlabeled examples, also known as PU 
learning (Denis, 1998; Yu et al. 2002; Liu et al. 
2003; Lee and Liu, 2003; Elkan and Noto, 2008; 
Li et al. 2010). In this learning model, there is a 
set of labeled positive training data and a set of 
unlabeled data, but there is no labeled negative 
training data. Clearly, their setting is different 
from ours too. There is also no guarantee that the 
unlabeled data has the same distribution as the 
future test data. 

Our problem is also very different from do-
main adaption as we work in the same domain. 
Due to the use of document similarity, our meth-
od has some resemblance to learning to rank (Li, 
2011; Liu, 2011). However, CBS-L is very dif-
ferent because we perform supervised classifica-
tion. Our similarity is also center-based rather 
than pair-wise document similarity, which is also 
used in (Qian and Liu 2013) for spam detection.  

3 The Proposed CBS Learning 

We now formulate the proposed supervised 
learning in the CBS space, called CSB-L. The 
key difference between CBS learning and the 
classic document space (DS) learning is in the 
document representation, which applies to both 
training and testing documents or posts. In the 
next subsection, we first give the intuitive idea 
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and a simple example. The detailed algorithm 
follows. In Section 3.5, we explain why CBS-L 
is better than DS-based learning when unex-
pected negative data appear in the test set.  

3.1 Basic Idea  

In the proposed CBS-L formulation, each docu-
ment d is still represented as a feature vector, but 
the vector no longer represents the document d 
itself based on n-grams. Instead, it represents a 
set of similarity values between document d and 
the center of the positive documents. Specifically, 
the learning consists of the following steps:  

1. Each document d (in the positive or negative 
class) is first represented with a set of docu-
ment representations, i.e., document space 
vectors (ds-vectors) based on the document it-
self as in traditional text classification. Each 
vector denotes one representation of the doc-
ument. For example, one representation may 
be based on only unigrams, and another rep-
resentation may be based on only bigrams. 
For simplicity, we use only one representa-
tion/vector x (e.g., unigrams) here to represent 
d. Note that we use bold lower case letters to 
represent vectors. Each feature in a ds-vector 
is called a ds-feature. 

2. A center vector c is then computed for each 
document representation for the positive class 
documents using the ds-vectors of all positive 
and negative documents of that representation. 
c is thus also a ds-vector.  

3. Each document d in the positive and negative 
class is then transformed to a center-based 
similarity space vector sd (called a cbs-vector). 
sd consists of a set of similarity values be-
tween document d’s set of ds-vectors, i.e., {x} 
in our case here (since we use only one repre-
sentation), and the set of corresponding posi-
tive class center vectors, i.e., {c} in our case: 

sd =Sim({x}, {c}), 

where Sim is a similarity function consisting 
of a set of similarity measures. Each feature in 
sd is called an cbs-feature. sd still has the same 
original class label as d. Let us see an actual 
example. We assume that our single center 
vector for the positive class has been comput-
ed (see Section 3.2) based on the unigram rep-
resentation of documents:  
 c: 1:1 2:1 6:2 
where y:z represents a ds-feature y (e.g., a 
word) and its feature value (e.g., term fre-
quency, tf). We want to transform the follow-

ing positive document d1 and negative docu-
ment d2 (ds-vectors) to their cbs-vectors (the 
first number is the class):  

 d1:  1 1:2 2:1 3:1  d2:  -1 2:2 3:1 5:2   
If we use cosine as the first similarity measure 
in Sim, we can generate a cbs-feature 1:0.50 
for d1 (as cosine(c, d1) = 0.50) and a cbs-
feature 1:0.27 for d2 (as cosine(c, d2) = 0.27). 
If we have more similarity measures, more 
cbs-features will be produced. The resulting 
cbs-vectors for d1 and d2 with their class la-
bels, 1 and -1, are:  

 d1: 1 1:0.50 … d2:  -1  1:0.27 … 
4. We now have a binary classification problem 

in the CBS space. This step simply runs a 
classification algorithm, e.g., SVM, to build a 
classifier. We use SVM in our work.  

3.2 CBS Based Learning  

We are given a binary text classification problem. 
Let D = {(d1, y1), (d2, y2), …, (dn, yn)} be the set 
of training examples, where di is a document and 
yi  ∈ {1, -1} is its class label. Traditional classi-
fication directly uses D to build a binary classifi-
er. However, in the CBS space, we learn a classi-
fier that returns 1 for documents that are “close 
enough” to the center of the training positive 
documents and -1 for documents elsewhere.  

We now detail the proposed technique. As we 
mentioned above, instead of using one single ds-
vector to represent a document di ∈D, we use a 
set Rd of p ds-vectors Rd = {𝐱!! , 𝐱!! , …, 𝐱!!}. 
Each vector 𝐱!! denotes one document space rep-
resentation of the document, e.g., unigram repre-
sentation. We then compute the center of positive 
training documents, which is represented as a set 
of 𝑝 centroids C = {c1, c2, …, cp}, each of which 
corresponds to one document space representa-
tion in Rd. The way to compute each center ci is 
similar to that in the Rocchio relevance feedback 
method in information retrieval (Rocchio, 1971; 
Manning et al. 2008), which uses the correspond-
ing ds-vectors of all training positive and nega-
tive documents. The detail will be given below. 
Based on Rd for document d and the center C, we 
can transform a document d from its document 
space representations Rd to one center-based sim-
ilarity vector cbs-v by applying a similarity func-
tion 𝑆𝑖𝑚 on each element 𝐱!! of Rd and its corre-
sponding center ci. We now detail document 
transformation. 

Training document transformation: The train-
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ing data transformation from ds-vectors to cbs-
vectors performs the following two steps: 

Step 1: Compute the set C of centroids for the 
positive class. Each centroid vector ci∈C is 
for one document representation 𝐱!!. And it is 
computed by applying the Rocchio method to 
the corresponding ds-vectors of all documents 
in both positive and negative training data.  

𝐜! =
𝛼
𝐷!

𝐱!!

𝐱!!𝐝𝐬!
!∈!!

                         

          −
𝛽

|𝐷 − 𝐷!|
𝐱!!

𝐱!!𝐱!
!∈!!!!

 

where 𝐷! is the set of documents in the posi-
tive class and |.| is the size function. 𝛼 and 𝛽 
are parameters, which are usually set empiri-
cally. It is reported that using tf-idf representa-
tion, 𝛼 = 16  and 𝛽 = 4  usually work quite 
well (Buckley et al. 1994). The subtraction is 
used to reduce the influence of those terms 
that are not discriminative (i.e., terms appear-
ing in both positive and negative documents). 

Step 2: Compute the similarity vector cbs-vd 
(center-based similarity space vector) for each 
document d ∈D based on its set of document 
space vectors Rd and the corresponding cen-
troids C of the positive documents.  

cbs-vd = Sim(Rd, C) 

Sim has a set of similarity measures, and each 
measure mj is applied to p document represen-
tations 𝐱!! in Rd and their corresponding cen-
ters 𝐜! in C to generate p similarity features 
(cbs-features) in cbs-vd. We discuss the ds-
features and similarity measures for compu-
ting cbs-features in the next two subsections.    

Complexity: The data transformation step is 
clearly linear in the number of examples, i.e., n. 
Test document transformation: For each test 
document d, we can use step 2 above to produce 
a cbs-vector for d.  

3.3 DS-Features  

In order to compute cbs-features (center-based 
similarity space features) for each document, we 
need to have the ds-features of a document and 
the center of the positive class. We discuss ds-
features first, which are extracted from each doc-
ument itself.  

Since our task is document classification, we 
use the popular unigram, bigram and trigram 

with tf-idf weighting as the ds-features for a doc-
ument. These three types of ds-features also give 
us three different document representations.  

3.4 CBS-Features  

Ds-vectors are transformed into cbs-vectors by 
applying a set of similarity measures on each 
document space vector and the corresponding 
center vector. In this work, we employed five 
similarity measures from (Cha, 2007) to gauge 
the similarity of two vectors. Based on these 
measures, we produce 15 CBS features using the 
unigram, bigram, and trigrams representations of 
each document. The similarity measures we used 
are listed in Table 1, where P and Q are two vec-
tors and d represents the dimension of P and Q.  

𝑠!"# =
𝑃!𝑄!!

!!!

𝑃!!!
!!! 𝑄!!!

!!!

 

𝑠!"# = 1 −
1
𝑑

𝑃!

𝑃!!!
!!!

−
𝑄!

𝑄!!!
!!!

!

!!!
 

𝑠!"# = 1 − 𝑙𝑛 1 + 𝑃! − 𝑄!
!

!!!
 

𝑠!"#$ =
2 𝑃!𝑄!!

!!!

𝑃!!!
!!! + 𝑄!!!

!!!
 

𝑠!"# =
𝑃!𝑄!!

!!!

𝑃!!!
!!! + 𝑄!!!

!!! − 𝑃!𝑄!!
!!!

 

Table 1: similarity measures for CBS-Features 

3.5 Why Does CBS Space Learning Work? 

We now try to explain why CBS learning (CBS-
L) can deal with the covariate shift problem, and 
thus can perform better than document space 
learning. The reason is that due to the use of sim-
ilarity features, CBS-L is essentially trying to 
generate a boundary for the positive training data 
because similarity is not directional and thus co-
vers all directions in a spherical shape in the 
space. In classification, the negative data from 
anywhere or direction outside the spherical shape 
can be detected. The covariate shift problem will 
not affect the classification much. Many types of 
documents that are not represented in the nega-
tive training data will still be detected due to 
their low similarity. For example, in Figure 1, we 
want to build a SVM classifier to separate posi-
tive data represented as black squares and nega-
tive data represented as empty circles. The con-
structed CBS-L classifier would look like a circle 
(in dashed line) in the original document space 
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covering the positive data. The size of this 
(boundary) circle depends on the separation mar-
gin between the two classes. Although data 
points represented by empty triangles are not 
represented in the negative training data (which 
has only empty circles) in building the classifier, 
our classifier is able to identify them as not posi-
tive at the test time because they are outside the 
boundary circle.  

 
Figure 1: CBS learning vs. DS learning. 

If we had used the document space (DS) features 
to build a SVM classifier, the classifier would be 
a line (see Figure 1) between the positive data 
(black squares) and the negative data (empty cir-
cles). This line unfortunately will not be able to 
identify data points represented as empty trian-
gles as not positive because the triangles actually 
lie on the positive side and would be classified as 
positive, which is clearly wrong. 

4 Experiments 

In this section, we evaluate the proposed learning 
in the center-based similarity space (CBS-L) and 
compare it with baselines.  

4.1 Experimental Dataset 

As stated at the beginning of the paper, this work 
was motivated by the real-life problem of identi-
fying the right social media posts or documents 
for specific applications. For an effective evalua-
tion, we need a large number of classes in the 
data to reflect the topic richness and diversity of 
the social media. The whole data also has to be 
labeled for evaluation. Using online reviews of a 
large number of products is a natural choice be-
cause there are many types of products and ser-
vices and there is no need to do manual labeling, 
which is very labor intensive, time consuming, 
and error prone. We obtained the Amazon review 
database from the authors of (Jindal and Liu 
2008), and constructed a dataset with reviews of 
50 types of products, which we also call 50 top-
ics. Each topic (a type of products) have 1000 
reviews. For each topic, we randomly sampled 
700 reviews/documents for training and the re-
maining 300 reviews for testing. Note that alt-
hough we use this product review collection, we 

do not perform sentiment classification. Instead, 
we still perform the traditional topic based classi-
fication. That is, given a review, the system de-
cides what type of product the review is about. In 
our experiments, we use every topic as the posi-
tive class. This gives us 50 classification results.  

4.2 Baselines 

We use three baselines in our evaluation.  
Document space one-class SVM (ds-osvm): As 
we discussed earlier, due to the covariate shift 
problem in the negative training data, one solu-
tion is to drop the negative training data com-
pletely to build a one-class classifier. One-class 
SVM is the state-of-the-art one-class classifica-
tion algorithm. We apply one-class SVM to the 
documents in the document space as one of the 
baselines. One-class SVM was first introduced 
by Schölkopf et al. (1999; 2000), which is based 
on the assumption that the origin is the only 
member of the second class. The data is first 
mapped into a transformed feature space via a 
kernel and then standard two-class SVM is em-
ployed to construct a hyper-plane that separates 
the data and the original with maximum margin. 
As mentioned earlier, there is also the support 
vector data description (SVDD) formulation for 
one-class classification proposed by Tax and 
Duin (1999a; 1999b). SVDD seeks to distinguish 
the positive class from all other possible data in 
space. It basically finds a hyper-sphere around 
the positive class data that contains almost all 
points in the data set with the minimum radius. It 
has been shown that the use of Gaussian kernel 
makes SVDD and One-class SVM equivalent, 
and the results reported in (Khan and Madden, 
2014) demonstrate that SVDD and One-class 
SVM are comparable when the Gaussian kernel 
is applied. Thus in this paper, we just use one-
class SVM, which is one of the SVM-based clas-
sification tools in the LIBSVM1 library (version 
3.20) (Chang and Lin, 2011). 

Center-based similarity space one-class SVM 
(cbs-osvm): Instead of applying one-class SVM 
to documents in the original document space, this 
baseline applies it to the CBS space after the 
documents are transformed to CBS vectors.  

SVM: This baseline is the SVM applied in the 
original document space. Although in this case, 
there is covariate shift problem, we want to see 
how serious the problem might be, and how the 
proposed CBS-L technique can deal with the 
                                                
1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/ 
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problem. We use the SVM tool in LIBSVM.  

4.3 Kernels and Parameters 

As Khan and Madden (2014) pointed out that 
one-class SVM performs the best when Gaussian 
kernel is used, we use Gaussian kernel as well. 
Manevitz and Yousef (2001) applied one-class 
SVM to text classification, and the authors re-
ported that one-class SVM works the best with 
binary feature weighting scheme compared to tf 
or tf-idf weighting schemes. Also, they reported 
that a small number of features (10) with highest 
document frequency performed the best with 
Gaussian kernel. We also use binary representa-
tion, but found that 10 features are already too 
many in our case. In fact, 5 features give the best 
results. Using a small number of features is intui-
tive because to find the boundary of a very high 
dimensional space is very difficult. We also tried 
more features but they were poorer.  

For SVM classification in the document space, 
we use the linear kernel as it has been shown by 
many researchers that the linear kernel performs 
the best (e.g., Joachims, 1998; Colas and Brazdil, 
2006). We experimented with RBF kernels ex-
tensively, but they did not perform well with the 
traditional document representation. The term 
weighting scheme is tf-idf (Colas and Brazdil, 
2006) with no feature selection.  

For our proposed method CBS-L, we use tf-idf 

values of unigram, bigram and trigram to repre-
sent a document in three ways in the document 
space. As mentioned earlier, five document simi-
larity functions are used to transform document 
space vectors to CBS space vectors. And in order 
to filter out less useful features for the center 
vector of the positive class, we performed feature 
selection in the document space using the classic 
information gain method (Yang and Pedersen, 
1997) to empirically choose the most effective 
100 features for the positive class.  

For all the kernels, we use the default parame-
ter settings in the LIBSVM systems. We tried to 
tune the parameters, but did not get better results.  

4.4 Results 

We now present the experiment results. As men-
tioned above, we treat each topic as the positive 
class. This gives 50 tests. To test the effect of 
covariate shift, we also vary the number of topics 
in the negative class. We used 10, 20, 30, and 40 
topics in the training negative class. The test set 
always has 49 topics of negative data.  

For each setting, we give three sets of results 
for the positive class, which is the target topic 
data that we are interested in obtaining through 
classification. Each set of results includes the 
standard measures of precision, recall, and F1-
score for the positive class. The three sets are: 
1. In-training: In this case, the test negative data 

 In-training Out-of-training Combined 
 precision recall F1-score precision recall F1-score precision recall F1-score 
 10 topics are used in the training negative class 

ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.664 0.453 0.514 0.357 0.442 0.339 0.343 0.452 0.330 

SVM 0.678 0.811 0.736 0.176 0.803 0.282 0.160 0.819 0.262 
CBS-L 0.796 0.766 0.776 0.384 0.768 0.491 0.368 0.754 0.481 

 20 topics are used in the training negative class 
ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.561 0.477 0.466 0.430 0.445 0.390 0.364 0.457 0.344 

SVM 0.566 0.753 0.643 0.304 0.753 0.422 0.254 0.758 0.371 
CBS-L 0.761 0.700 0.723 0.557 0.702 0.608 0.485 0.693 0.558 

 30 topics are used in the training negative class 
ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.451 0.491 0.393 0.488 0.524 0.407 0.378 0.487 0.355 

SVM 0.508 0.721 0.591 0.450 0.722 0.547 0.323 0.726 0.439 
CBS-L 0.723 0.650 0.678 0.721 0.644 0.667 0.569 0.649 0.598 

 40 topics are used in the training negative class 
ds-osvm   0.154 0.498 0.205 
cbs-osvm 0.423 0.482 0.379 0.590 0.511 0.444 0.372 0.486 0.347 

SVM 0.456 0.689 0.544 0.641 0.685 0.658 0.374 0.695 0.481 
CBS-L 0.697 0.613 0.644 0.848 0.616 0.699 0.639 0.613 0.619 

Table 2: Summary results of the 50 topics 
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contains only data from those topics used in 
training. This is the classical supervised learn-
ing setting where the training and test data are 
randomly drawn from the same distribution.   

2. Not-in-training: In this case, the test negative 
set contains only data from the other topics 
not used in training. The classical setting of 
supervised learning does not deal with this 
problem. This represents covariate shift.  

3. Combined: In this case, the test data contains 
both in-training and not-in-training negative 
topics. Due to the use of not-in-training test 
data, this is also not the classical setting.  

Due to a large number of experiment results, we 
cannot report all the details. Table 2 summarizes 
the results. Notice that for ds-osvm, it does not 
make sense to have in-training and not-in-
training results because it does not use any train-
ing negative data. Thus, there is only one set of 
results for “Combined,” which is duplicated in 
the table for easy comparison. However, note 
that cbs-osvm uses negative data for training in 
order to compute the center for the positive class.  

From the table, we can make the following 
observations (since there are many numbers, we 
only focus on F1-scores).  
1. The proposed CBS-L method performs mark-

edly better than all baselines. For the results 
of in-training, not-in-training, and combined, 
CBS-L is consistently better in all cases than 
all baselines. Even for in-training, CBS-L per-
form better than SVM. This clearly shows the 
superiority of the proposed CBS-L method. 

2. ds-osvm performs poorly. cbs-osvm is much 
better because it uses the negative data in fea-
ture selection and center computation.  

3. SVM in the document space performed poorly 
(Combined) when only a small number of 
negative topics are used in training. It gets 
better than both one-class SVM baselines 
when more negative topics are used in train-
ing (see the reason in the next point).  

4. Finally, we can also see that with the number 
of training negative topics increases, the re-
sults of the combined case of both SVM and 
CBS-L improve. This is expected because 
with the increased number of negative topics 
for training, the number of not-in-training 
negative topics for testing decreases and the 
covariate shift problem gets smaller. We can 
also see that cbs-osvm, SVM and CBS-L’s 
F1-scores for not-in-training improve with the 
increased training negative topics due to the 
same reason. However, their F1-scores drop 
for in-training because with more negative 

topic ds-osvm cbs-osvm SVM CBS-L 

Amplifier 0.125 0.360 0.406 0.597 
Automotive 0.041 0.031 0.240 0.383 

Battery 0.266 0.425 0.433 0.656 
Beauty 0.079 0.401 0.470 0.618 
Cable 0.131 0.028 0.231 0.500 

Camera 0.376 0.361 0.433 0.523 
CD Player 0.154 0.274 0.344 0.585 
Clothing 0.046 0.234 0.292 0.486 

Computer 0.117 0.225 0.328 0.455 
Conditioner 0.075 0.195 0.381 0.519 

Fan 0.408 0.581 0.581 0.724 
Flashlight 0.273 0.487 0.528 0.744 

Graphics Card 0.419 0.473 0.552 0.631 
Headphone 0.298 0.338 0.432 0.533 

Home  
Improvement 0.039 0.032 0.178 0.233 

Jewelry 0.362 0.579 0.632 0.800 
Kindle 0.107 0.387 0.416 0.685 
Kitchen 0.042 0.118 0.197 0.261 
Lamp 0.091 0.249 0.374 0.487 

Luggage 0.105 0.482 0.506 0.482 
Magazine  

Subscriptions 0.406 0.597 0.796 0.858 

Mattress 0.435 0.562 0.603 0.702 
Memory Card 0.134 0.256 0.367 0.508 
Microphone 0.103 0.223 0.25 0.417 
Microwave 0.378 0.577 0.637 0.735 

Monitor 0.136 0.345 0.312 0.513 
Mouse 0.493 0.580 0.552 0.779 

Movies TV 0.146 0.507 0.641 0.682 
Musical  

Instruments 0.073 0.241 0.446 0.575 

Network  
Adapter 0.164 0.483 0.481 0.596 

Office Products 0.040 0.193 0.327 0.346 
Patio Lawn  

Garden 0.043 0.226 0.295 0.483 

Pet Supplies 0.098 0.447 0.524 0.584 
Pillow 0.491 0.640 0.781 0.888 
Printer 0.549 0.557 0.624 0.859 

Projector 0.230 0.459 0.482 0.805 
Rice Cooker 0.571 0.616 0.692 0.942 

Shoes 0.224 0.524 0.585 0.793 
Speaker 0.241 0.251 0.253 0.410 

Subwoofer 0.147 0.268 0.346 0.401 
Table Chair 0.141 0.496 0.571 0.703 

Tablet 0.069 0.234 0.142 0.424 
Telephone 0.099 0.034 0.144 0.167 

Tent 0.289 0.465 0.428 0.764 
Toys 0.088 0.029 0.331 0.449 

Video Games 0.424 0.387 0.508 0.705 
Vitamin  

Supplement 0.052 0.026 0.341 0.527 

Wall Clock 0.401 0.582 0.607 0.777 
Watch 0.362 0.553 0.543 0.775 

Webcam 0.155 0.304 0.372 0.645 

Average 0.205 0.355 0.439 0.598 

Table 3: F1-score for each positive topic or class 
in the combined case 
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topics, the data becomes more skewed, which 
hurts in-training classification.   

To give a flavor of the detailed results for each 
topic (product), we give the full results for one 
setting with 30 randomly selected topics as the 
training negative data (Table 3). The results in 
the table are F1-scores of the combined case.   

5 Conclusion 

The ability to get relevant posts accurately about 
a topic from social media is a challenging prob-
lem. This paper attempted to solve this problem 
by identifying and dealing with the technical is-
sue of covariate shift. The key idea of our tech-
nique is to transform document representation 
from the traditional n-gram feature space to a 
similarity based space. Our experimental results 
show that the proposed method CBS-L outper-
formed strong baselines by large margins. 
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