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Abstract

Recursive neural models, which use syn-
tactic parse trees to recursively generate
representations bottom-up, are a popular
architecture. However there have not been
rigorous evaluations showing for exactly
which tasks this syntax-based method is
appropriate. In this paper, we benchmark
recursive neural models against sequential
recurrent neural models, enforcing apples-
to-apples comparison as much as possible.
We investigate 4 tasks: (1) sentiment clas-
sification at the sentence level and phrase
level; (2) matching questions to answer-
phrases; (3) discourse parsing; (4) seman-
tic relation extraction.

Our goal is to understand better when,
and why, recursive models can outperform
simpler models. We find that recursive
models help mainly on tasks (like seman-
tic relation extraction) that require long-
distance connection modeling, particularly
on very long sequences. We then intro-
duce a method for allowing recurrent mod-
els to achieve similar performance: break-
ing long sentences into clause-like units
at punctuation and processing them sepa-
rately before combining. Our results thus
help understand the limitations of both
classes of models, and suggest directions
for improving recurrent models.

1 Introduction

Deep learning based methods learn low-
dimensional, real-valued vectors for word
tokens, mostly from large-scale data corpus (e.g.,
(Mikolov et al., 2013; Le and Mikolov, 2014;
Collobert et al., 2011)), successfully capturing
syntactic and semantic aspects of text.

For tasks where the inputs are larger text units
(e.g., phrases, sentences or documents), a compo-
sitional model is first needed to aggregate tokens
into a vector with fixed dimensionality that can be
used as a feature for other NLP tasks. Models for
achieving this usually fall into two categories: re-
current models and recursive models:

Recurrent models (also referred to as sequence
models) deal successfully with time-series data
(Pearlmutter, 1989; Dorffner, 1996) like speech
(Robinson et al., 1996; Lippmann, 1989; Graves et
al., 2013) or handwriting recognition (Graves and
Schmidhuber, 2009; Graves, 2012). They were ap-
plied early on to NLP (Elman, 1990), by modeling
a sentence as tokens processed sequentially and at
each step combining the current token with pre-
viously built embeddings. Recurrent models can
be extended to bidirectional ones from both left-
to-right and right-to-left. These models generally
consider no linguistic structure aside from word
order.

Recursive neural models (also referred to as tree
models), by contrast, are structured by syntactic
parse trees. Instead of considering tokens sequen-
tially, recursive models combine neighbors based
on the recursive structure of parse trees, starting
from the leaves and proceeding recursively in a
bottom-up fashion until the root of the parse tree
is reached. For example, for the phrase the food
is delicious, following the operation sequence (
(the food) (is delicious) ) rather than the sequen-
tial order (((the food) is) delicious). Many recur-
sive models have been proposed (e.g., (Paulus et
al., 2014; Irsoy and Cardie, 2014)), and applied to
various NLP tasks, among them entailment (Bow-
man, 2013; Bowman et al., 2014), sentiment anal-
ysis (Socher et al., 2013; Irsoy and Cardie, 2013;
Dong et al., 2014), question-answering (Iyyer et
al., 2014), relation classification (Socher et al.,
2012; Hashimoto et al., 2013), and discourse (Li
and Hovy, 2014).

2304



One possible advantage of recursive models is
their potential for capturing long-distance depen-
dencies: two tokens may be structurally close to
each other, even though they are far away in word
sequence. For example, a verb and its correspond-
ing direct object can be far away in terms of to-
kens if many adjectives lies in between, but they
are adjacent in the parse tree (Irsoy and Cardie,
2013). However we do not know if this advan-
tage is truly important, and if so for which tasks,
or whether other issues are at play. Indeed, the
reliance of recursive models on parsing is also a
potential disadvantage, given that parsing is rela-
tively slow, domain-dependent, and can be error-
ful.

On the other hand, recent progress in multi-
ple subfields of neural NLP has suggested that re-
current nets may be sufficient to deal with many
of the tasks for which recursive models have
been proposed. Recurrent models without parse
structures have shown good results in sequence-
to-sequence generation (Sutskever et al., 2014)
for machine translation (e.g., (Kalchbrenner and
Blunsom, 2013; 3; Luong et al., 2014)), pars-
ing (Vinyals et al., 2014), and sentiment, where
for example recurrent-based paragraph vectors (Le
and Mikolov, 2014) outperform recursive models
(Socher et al., 2013) on the Stanford sentiment-
bank dataset.

Our goal in this paper is thus to investigate a
number of tasks with the goal of understanding
for which kinds of problems recurrent models may
be sufficient, and for which kinds recursive mod-
els offer specific advantages. We investigate four
tasks with different properties.

• Binary sentiment classification at the sen-
tence level (Pang et al., 2002) and phrase
level (Socher et al., 2013) that focus on
understanding the role of recursive models
in dealing with semantic compositionally in
various scenarios such as different lengths of
inputs and whether or not supervision is com-
prehensive.

• Phrase Matching on the UMD-QA dataset
(Iyyer et al., 2014) can help see the difference
between outputs from intermediate compo-
nents from different models, i.e., representa-
tions for intermediate parse tree nodes and
outputs from recurrent models at different
time steps. It also helps see whether pars-

ing is useful for finding similarities between
question sentences and target phrases.

• Semantic Relation Classification on the
SemEval-2010 (Hendrickx et al., 2009) data
can help understand whether parsing is help-
ful in dealing with long-term dependencies,
such as relations between two words that are
far apart in the sequence.

• Discourse parsing (RST dataset) is useful
for measuring the extent to which parsing im-
proves discourse tasks that need to combine
meanings of larger text units. Discourse pars-
ing treats elementary discourse units (EDUs)
as basic units to operate on, which are usually
short clauses. The task also sheds light on
the extent to which syntactic structures help
acquire shot text representations.

The principal motivation for this paper is to un-
derstand better when, and why, recursive models
are needed to outperform simpler models by en-
forcing apples-to-apples comparison as much as
possible. This paper applies existing models to
existing tasks, barely offering novel algorithms or
tasks. Our goal is rather an analytic one, to inves-
tigate different versions of recursive and recurrent
models. This work helps understand the limita-
tions of both classes of models, and suggest direc-
tions for improving recurrent models.

The rest of this paper organized as follows: We
detail versions of recursive/recurrent models in
Section 2, present the tasks and results in Section
3, and conclude with discussions in Section 4.

2 Recursive and Recurrent Models

2.1 Notations
We assume that the text unit S, which could
be a phrase, a sentence or a document, is com-
prised of a sequence of tokens/words: S =
{w1, w2, ..., wNS

}, where Ns denotes the num-
ber of tokens in S. Each word w is associated
with a K-dimensional vector embedding ew =
{e1w, e2w, ..., eKw }. The goal of recursive and re-
current models is to map the sequence to a K-
dimensional eS , based on its tokens and their cor-
respondent embeddings.

Standard Recurrent/Sequence Models suc-
cessively take word wt at step t, combines its vec-
tor representation et with the previously built hid-
den vector ht−1 from time t− 1, calculates the re-
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sulting current embedding ht, and passes it to the
next step. The embedding ht for the current time t
is thus:

ht = f(W · ht−1 + V · et) (1)

whereW and V denote compositional matrices. If
Ns denotes the length of the sequence, hNs repre-
sents the whole sequence S.

Standard recursive/Tree models work in a
similar way, but processing neighboring words by
parse tree order rather than sequence order. It
computes a representation for each parent node
based on its immediate children recursively in a
bottom-up fashion until reaching the root of the
tree. For a given node η in the tree and its left child
ηleft (with representation eleft) and right child ηright
(with representation eright), the standard recursive
network calculates eη as follows:

eη = f(W · eηleft + V · eηright) (2)

Bidirectional Models (Schuster and Paliwal,
1997) add bidirectionality to the recurrent frame-
work where embeddings for each time are calcu-
lated both forwardly and backwardly:

h→t = f(W→ · h→t−1 + V→ · et)
h←t = f(W← · h←t+1 + V← · et)

(3)

Normally, final representations for sentences can
be achieved either by concatenating vectors calcu-
lated from both directions [e←1 , e→NS

] or using fur-
ther compositional operation to preserve vector di-
mensionality

ht = f(WL · [h←t , h→t ]) (4)

where WL denotes a K×2K dimensional matrix.

Long Short Term Memory (LSTM) LSTM
models (Hochreiter and Schmidhuber, 1997) are
defined as follows: given a sequence of inputs
X = {x1, x2, ..., xnX}, an LSTM associates each
timestep with an input, memory and output gate,
respectively denoted as it, ft and ot. We notation-
ally disambiguate e and h: et denotes the vector
for individual text units (e.g., word or sentence) at
time step t, while ht denotes the vector computed
by the LSTM model at time t by combining et and
ht−1. σ denotes the sigmoid function. The vector
representation ht for each time-step t is given by:


it
ft
ot
lt

 =


σ
σ
σ

tanh

W · [ ht−1

et

]
(5)

ct = ft · ct−1 + it · lt (6)

hst = ot · ct (7)

where W ∈ R4K×2K . Labels at the
phrase/sentence level are predicted representations
outputted from the last time step.

Tree LSTMs Recent research has extended the
LSTM idea to tree-based structures (Zhu et al.,
2015; Tai et al., 2015) that associate memory and
forget gates to nodes of the parse trees.

Bi-directional LSTMs These combine bi-
directional models and LSTMs.

3 Experiments

In this section, we detail our experimental settings
and results. We consider the following tasks, each
representative of a different class of NLP tasks.

• Binary sentiment classification on the Pang
et al. (2002) dataset. This addresses the is-
sues where supervision only appears globally
after a long sequence of operations.

• Sentiment Classification on the Stanford
Sentiment Treebank (Socher et al., 2013):
comprehensive labels are found for words
and phrases where local compositionally
(such as from negation, mood, or others cued
by phrase-structure) is to be learned.

• Sentence-Target Matching on the UMD-
QA dataset (Iyyer et al., 2014): Learns
matches between target and components in
the source sentences, which are parse tree
nodes for recursive models and different
time-steps for recurrent models.

• Semantic Relation Classification on the
SemEval-2010 task (Hendrickx et al., 2009).
Learns long-distance relationships between
two words that may be far apart sequentially.

• Discourse Parsing (Li et al., 2014; Hernault
et al., 2010): Learns sentence-to-sentence re-
lations based on calculated representations.
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In each case we followed the protocols de-
scribed in the original papers. We first group the
algorithm variants into two groups as follows:

• Standard tree models vs standard sequence
models vs standard bi-directional sequence
models

• LSTM tree models, LSTM sequence models
vs LSTM bi-directional sequence models.

We employed standard training frameworks for
neural models: for each task, we used stochas-
tic gradient decent using AdaGrad (Duchi et al.,
2011) with minibatches (Cotter et al., 2011). Pa-
rameters are tuned using the development dataset
if available in the original datasets or from cross-
validation if not. Derivatives are calculated from
standard back-propagation (Goller and Kuchler,
1996). Parameters to tune include size of mini
batches, learning rate, and parameters for L2 pe-
nalizations. The number of running iterations
is treated as a parameter to tune and the model
achieving best performance on the development
set is used as the final model to be evaluated.

For settings where no repeated experiments are
performed, the bootstrap test is adopted for sta-
tistical significance testing (Efron and Tibshirani,
1994). Test scores that achieve significance level
of 0.05 are marked by an asterisk (*).

3.1 Stanford Sentiment TreeBank
Task Description We start with the Stanford
Sentiment TreeBank (Socher et al., 2013). This
dataset contains gold-standard labels for every
parse tree constituent, from the sentence to phrases
to individual words.

Of course, any conclusions drawn from imple-
menting sequence models on a dataset that was
based on parse trees may have to be weakened,
since sequence models may still benefit from the
way that the dataset was collected. Nevertheless
we add an evaluation on this dataset because it has
been a widely used benchmark dataset for neural
model evaluations.

For recursive models, we followed the proto-
cols in Socher et al. (2013) where node embed-
dings in the parse trees are obtained from recur-
sive models and then fed to a softmax classifier.
We transformed the dataset for recurrent model
use as illustrated in Figure 1. Each phrase is recon-
structed from parse tree nodes and treated as a sep-
arate data point. As the treebank contains 11,855

sentences with 215,154 phrases, the reconstructed
dataset for recurrent models comprises 215,154
examples. Models are evaluated at both the phrase
level (82,600 instances) and the sentence root level
(2,210 instances).

Fine-Grained Binary
Tree 0.433 0.815
Sequence 0.420 (-0.013) 0.807 (-0.007)
P-value 0.042* 0.098
Bi-Sequence 0.435 (+0.08) 0.816 (+0.002)
P-value 0.078 0.210

Table 1: Test set accuracies on the Stanford Senti-
ment Treebank at root level.

Fine-Grained Binary
Tree 0.820 0.860
Sequence 0.818 (-0.002) 0.864 (+0.004)
P-value 0.486 0.305
Bi-Sequence 0.826 (+0.06) 0.862 (+0.002)
P-value 0.148 0.450

Table 2: Test set accuracies on the Stanford Senti-
ment Treebank at phrase level.

Results are shown in Table 1 and 21. When
comparing the standard version of tree models
to sequence models, we find it helps a bit at
root level identification (for sequences but not bi-
sequences), but yields no significant improvement
at the phrase level.

LSTM Tai et al. (2015) discovered that LSTM
tree models generate better performances in terms
of sentence root level evaluation than sequence
models. We explore this task a bit more by training
deeper and more sophisticated models. We exam-
ine the following three models:

1. Tree-structured LSTM models (Tai et al.,
2015)2.

2. Deep Bi-LSTM sequence models (denoted as
Sequence) that treat the whole sentence as
just one sequence.

3. Deep Bi-LSTM hierarchical sequence mod-
els (denoted as Hierarchical Sequence) that
first slice the sentence into a sequence of sub-
sentences by using a look-up table of punc-
tuations (i.e., comma, period, question mark

1The performance of our implementations of recursive
models is not exactly identical to that reported in Socher et
al. (2013), but the relative difference is around 1% to 2%.

2Tai et al.. achieved 0.510 accuracy in terms of fine-
grained evaluation at the root level as reported in (Tai et al.,
2015), similar to results from our implementations (0.504).

2307



Figure 1: Transforming Stanford Sentiment Treebank to Sequences for Sequence Models.

Figure 2: Illustration of two sequence models. A,
B, C, D denote clauses or sub sentences separated
by punctuation.

and exclamation mark). The representation
for each sub-sentence is first computed sep-
arately, and another level of sequence LSTM
(one-directional) is then used to join the sub-
sentences. Illustrations are shown in Figure2.

We consider the third model because the dataset
used in Tai et al. (2015) contains long sentences
and the evaluation is performed only at the sen-
tence root level. Since a parsing algorithm will
naturally break long sentences into sub-sentences,
we would like to know whether any performance
boost is introduced by the intra-clause parse tree
structure or just by this broader segmentation of a
sentence into clause-like units; this latter advan-
tage could be approximated by using punctuation-
based approximations to clause boundaries.

We run 15 iterations for each algorithm. Pa-
rameters are harvested at the end of each itera-
tion; those performing best on the development
set are used on the test set. The whole process
takes roughly 15-20 minutes on a single GPU ma-
chine3. For a more convincing comparison, we
did not use the bootstrap test where parallel ex-
amples are generated from one same dataset. In-
stead, we repeated the aforementioned procedure
for each algorithm 20 times and report accuracies

3Tesla K40m, 2880 Cuda cores.

with standard deviation in Table 3.

Model all-fine root-fine root-coarse
Tree LSTM 83.4 (0.3) 50.4 (0.9) 86.7 (0.5)
Bi-Sequence 83.3 (0.4) 49.8 (0.9) 86.7 (0.5)

Hier-Sequence 82.9 (0.3) 50.7 (0.8) 86.9 (0.6)

Table 3: Test set accuracies on the Stanford Sen-
timent Treebank with deviations. For our exper-
iments, we report accuracies over 20 runs with
standard deviation.

Tree LSTMs are equivalent or marginally bet-
ter than standard bi-directional sequence model
(two-tailed p-value equals 0.041*, and only at the
root level, with p-value for the phrase level at
0.376). The hierarchical sequence model achieves
the same performance with a p-value of 0.198.

Discussion The results above suggest that
clausal segmentation of long sentences offers a
slight performance boost, a result also supported
by the fact that very little difference exists between
the three models for phrase-level sentiment eval-
uation. Clausal segmentation of long sentences
thus provides a simple approximation to parse-tree
based models.

We suggest a few reasons for this slightly better
performances introduced by clausal segmentation:

1. Treating clauses as basic units (to the extent
that punctuation approximates clauses) pre-
serves the semantic structure of text.

2. Semantic compositions such as negations or
conjunctions usually appear at the clause
level. Working on clauses individually
and then combining them model inter-clause
compositions.

3. Errors are back-propagated to individual to-
kens using fewer steps in hierarchical models
than in standard models. Consider a movie
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Figure 3: Sentiment prediction using a one-
directional (left to right) LSTM. Decisions at each
time step are made by feeding embeddings calcu-
lated from the LSTM into a softmax classifier.

review “simple as the plot was , i still like it a
lot”. With standard recurrent models it takes
12 steps before the prediction error gets back
to the first token “simple”:

error→lot→a→it→like→still→i→,→was
→plot→ the→as→simple

In a hierarchical model, the second clause is
compacted into one component, and the error
propagation is thus given by:

error→ second-clause → first-clause →
was→plot→the→as→simple.

Propagation with clause segmentation con-
sists of only 8 operations. Such a procedure
thus tends to attenuate the gradient vanish-
ing problem, potentially yielding better per-
formance.

3.2 Binary Sentiment Classification (Pang)
Task Description: The sentiment dataset
of Pang et al. (2002) consists of sentences
with a sentiment label for each sentence.
We divide the original dataset into train-
ing(8101)/dev(500)/testing(2000). No pre-
training procedure as described in Socher et al.
(2011b) is employed. Word embeddings are
initialized using skip-grams and kept fixed in
the learning procedure. We trained skip-gram
embeddings on the Wikipedia+Gigaword dataset
using the word2vec package4. Sentence level
embeddings are fed into a sigmoid classifier.
Performances for 50 dimensional vectors are
given in the table below:

Discussion Why don’t parse trees help on this
task? One possible explanation is the distance

4https://code.google.com/p/word2vec/

Standard LSTM
Tree 0.745 0.774
Sequence 0.733 (-0.012) 0.783 (+0.008)
P-value 0.060 0.136
Bi-Sequence 0.754 (+0.09) 0.790 (+0.016)
P-value 0.058 0.024*

Table 4: Test set accuracies on the Pang’s senti-
ment dataset using Standard model settings.

of the supervision signal from the local composi-
tional structure. The Pang et al. dataset has an av-
erage sentence length of 22.5 words, which means
it takes multiple steps before sentiment related ev-
idence comes up to the surface. It is therefore un-
clear whether local compositional operators (such
as negation) can be learned; there is only a small
amount of training data (around 8,000 examples)
and the sentiment supervision only at the level of
the sentence may not be easy to propagate down to
deeply buried local phrases.

3.3 Question-Answer Matching
Task Description: In the question-answering
dataset QANTA5, each answer is a token or short
phrase. The task is different from standard gener-
ation focused QA task but formalized as a multi-
class classification task that matches a source
question with a candidates phrase from a prede-
fined pool of candidate phrases We give an illus-
trative example here:

Question: He left unfinished a novel whose title
character forges his father’s signature to get out
of school and avoids the draft by feigning desire
to join. Name this German author of The Magic
Mountain and Death in Venice.

Answer: Thomas Mann from the pool of
phrases. Other candidates might include George
Washington, Charlie Chaplin, etc.

The model of Iyyer et al. (2014) minimizes the
distances between answer embeddings and node
embeddings along the parse tree of the question.
Concretely, let c denote the correct answer to ques-
tion S, with embedding ~c, and z denoting any ran-
dom wrong answer. The objective function sums
over the dot product between representation for
every node η along the question parse trees and
the answer representations:

L =
∑

η∈[parse tree]

∑
z

max(0, 1−~c ·eη+~z ·eη) (8)

5http://cs.umd.edu/˜miyyer/qblearn/. Be-
cause the publicly released dataset is smaller than the version
used in (Iyyer et al., 2014) due to privacy issues, our numbers
are not comparable to those in (Iyyer et al., 2014).
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where eη denotes the embedding for parse tree
node calculated from the recursive neural model.
Here the parse trees are dependency parses follow-
ing (Iyyer et al., 2014).

By adjusting the framework to recurrent mod-
els, we minimize the distance between the answer
embedding and the embeddings calculated from
each timestep t of the sequence:

L =
∑

t∈[1,Ns]

∑
z

max(0, 1− ~c · et + ~z · et) (9)

At test time, the model chooses the answer (from
the set of candidates) that gives the lowest loss
score. As can be seen from results presented in
Table 5, the difference is only significant for the
LSTM setting between the tree model and the
sequence model; no significant difference is ob-
served for other settings.

Standard LSTM
Tree 0.523 0.558
Sequence 0.525 (+0.002) 0.546 (-0.012)
P-value 0.490 0.046*
Bi-Sequence 0.530 (+0.007) 0.564 (+0.006)
P-value 0.075 0.120

Table 5: Test set accuracies for UMD-QA dataset.

Discussion The UMD-QA task represents a
group of situations where because we have in-
sufficient supervision about matching (it’s hard
to know which node in the parse tree or which
timestep provides the most direct evidence for the
answer), decisions have to be made by looking at
and iterating over all subunits (all nodes in parse
trees or timesteps). Similar ideas can be found in
pooling structures (e.g. Socher et al. (2011a)).

The results above illustrate that for tasks where
we try to align the target with different source
components (i.e., parse tree nodes for tree mod-
els and different time steps for sequence models),
components from sequence models are able to em-
bed important information, despite the fact that se-
quence model components are just sentence frag-
ments and hence usually not linguistically mean-
ingful components in the way that parse tree con-
stituents are.

3.4 Semantic Relationship Classification
Task Description: SemEval-2010 Task 8 (Hen-
drickx et al., 2009) is to find semantic rela-
tionships between pairs of nominals, e.g., in
“My [apartment]e1 has a pretty large [kitchen]e2”

classifying the relation between [apartment] and
[kitchen] as component-whole. The dataset con-
tains 9 ordered relationships, so the task is formal-
ized as a 19-class classification problem, with di-
rected relations treated as separate labels; see Hen-
drickx et al. (2009; Socher et al. (2012) for details.

For the recursive implementations, we follow
the neural framework defined in Socher et al.
(2012). The path in the parse tree between the two
nominals is retrieved, and the embedding is calcu-
lated based on recursive models and fed to a soft-
max classifier6. Retrieved paths are transformed
for the recurrent models as shown in Figure 5.

Figure 4: Illustration of Models for Semantic Re-
lationship Classification.

Discussion Unlike for earlier tasks, here recur-
sive models yield much better performance than
the corresponding recurrent versions for all ver-
sions (e.g., standard tree vs. standard sequence,
p = 0.004). These results suggest that it is the
need to integrate structures far apart in the sen-
tence that characterizes the tasks where recursive
models surpass recurrent models. In parse-based
models, the two target words are drawn together
much earlier in the decision process than in recur-
rent models, which must remember one target un-
til the other one appears.

3.5 Discourse Parsing

Task Description: Our final task, discourse
parsing based on the RST-DT corpus (Carlson et

6(Socher et al., 2012) achieve state-of-art performance
by combining a sophisticated model, MV-RNN, in which
each word is presented with both a matrix and a vector with
human-feature engineering. Again, because MV-RNN is dif-
ficult to adapt to a recurrent version, we do not employ this
state-of-the-art model, adhering only to the general versions
of recursive models described in Section 2, since our main
goal is to compare equivalent recursive and recurrent models
rather than implement the state of the art.
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Standard LSTM
Tree 0.748 0.767
Sequence 0.712 (-0.036) 0.740 (-0.027)
P-value 0.004* 0.020*
Bi-Sequence 0.730 (-0.018) 0.752 (-0.014)
P-value 0.017* 0.041*

Table 6: Test set accuracies on the SemEval-2010
Semantic Relationship Classification task.

Figure 5: An illustration of discourse parsing.
[e1, e2, ...] denote EDUs (elementary discourse
units), each consisting of a sequence of tokens.
[r12, r34, r56] denote relationships to be classified.
A binary classification model is first used to decide
whether two EDUs should be merged and a multi-
class classifier is then used to decide the relation
type.

al., 2003), is to build a discourse tree for a doc-
ument, based on assigning Rhetorical Structure
Theory (RST) relations between elementary dis-
course units (EDUs). Because discourse relations
express the coherence structure of discourse, they
presumably express different aspects of compo-
sitional meaning than sentiment or nominal rela-
tions. See Hernault et al. (2010) for more details
on discourse parsing and the RST-DT corpus.

Representations for adjacent EDUs are fed into
binary classification (whether two EDUs are re-
lated) and multi-class relation classification mod-
els, as defined in Li et al. (2014). Related EDUs
are then merged into a new EDU, the representa-
tion of which is obtained through an operation of
neural composition based on the previous two re-
lated EDUs. This step is repeated until all units
are merged.

Discourse parsing takes EDUs as the basic units
to operate on; EDUs are short clauses, not full sen-
tences, with an average length of 7.2 words. Re-
cursive and recurrent models are applied on EDUs
to create embeddings to be used as inputs for dis-
course parsing. We use this task for two rea-
sons: (1) to illustrate whether syntactic parse trees
are useful for acquiring representations for short
clauses. (2) to measure the extent to which pars-

ing improves discourse tasks that need to combine
the meanings of larger text units.

Models are traditionally evaluated in terms of
three metrics, i.e., spans7, nuclearity8, and identi-
fying the rhetorical relation between two clauses.
Due to space limits, we only focus the last one,
rhetorical relation identification, because (1) rela-
tion labels are treated as correct only if spans and
nuclearity are correctly labeled (2) relation identi-
fication between clauses offer more insights about
model’s abilities to represent sentence semantics.
In order to perform a plain comparison, no addi-
tional human-developed features are added.

Standard LSTM
Tree 0.568 0.564
Sequence 0.572 (+0.004) 0.563 (-0.002)
P-value 0.160 0.422
Bi-Sequence 0.578 (+0.01) 0.575 (+0.012)
P-value 0.054 0.040*

Table 7: Test set accuracies for relation identifica-
tion on RST discourse parsing data set.

Discussion We see no large differences between
equivalent recurrent and recursive models. We
suggest two possible explanations. (1) EDUs tend
to be short; thus for some clauses, parsing might
not change the order of operations on words. Even
for those whose orders are changed by parse trees,
the influence of short phrases on the final represen-
tation may not be great enough. (2) Unlike earlier
tasks, where text representations are immediately
used as inputs into classifiers, the algorithm pre-
sented here adopts additional levels of neural com-
position during the process of EDU merging. We
suspect that neural layers may act as information
filters, separating the informational chaff from the
wheat, which in turn makes the model a bit more
immune to the initial inputs.

4 Discussions and Conclusions

We compared recursive and recurrent neural mod-
els for representation learning on 5 distinct NLP
tasks in 4 areas for which recursive neural models
are known to achieve good performance (Socher
et al., 2012; Socher et al., 2013; Li et al., 2014;
Iyyer et al., 2014).

As with any comparison between models, our
results come with some caveats: First, we ex-
plore the most general or basic forms of recur-

7on blank tree structures.
8on tree structures with nuclearity indication.
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sive/recurrent models rather than various sophis-
ticated algorithm variants. This is because fair
comparison becomes more and more difficult as
models get complex (e.g., the number of lay-
ers, number of hidden units within each layer,
etc.). Thus most neural models employed in this
work are comprised of only one layer of neural
compositions—despite the fact that deep neural
models with multiple layers give better results.
Our conclusions might thus be limited to the al-
gorithms employed in this paper, and it is unclear
whether they can be extended to other variants or
to the latest state-of-the-art. Second, in order to
compare models “fairly”, we force every model to
be trained exactly in the same way: AdaGrad with
minibatches, same set of initializations, etc. How-
ever, this may not necessarily be the optimal way
to train every model; different training strategies
tailored for specific models may improve their per-
formances. In that sense, our attempts to be “fair”
in this paper may nevertheless be unfair.

Pace these caveats, our conclusions can be sum-
marized as follows:

• In tasks like semantic relation extraction, in
which single headwords need to be associ-
ated across a long distance, recursive models
shine. This suggests that for the many other
kinds of tasks in which long-distance seman-
tic dependencies play a role (e.g., translation
between languages with significant reorder-
ing like Chinese-English translation), syntac-
tic structures from recursive models may of-
fer useful power.

• Tree models tend to help more on long se-
quences than shorter ones with sufficient su-
pervision: tree models slightly help root
level identification on the Stanford Sentiment
Treebank, but do not help much at the phrase
level. Adopting bi-directional versions of re-
current models seem to largely bridge this
gap, producing equivalent or sometimes bet-
ter results.

• On long sequences where supervision is not
sufficient, e.g., in Pang at al.,’s dataset (super-
vision only exists on top of long sequences),
no significant difference is observed between
tree based and sequence based models.

• In cases where tree-based models do well, a
simple approximation to tree-based models

seems to improve recurrent models to equiv-
alent or almost equivalent performance: (1)
break long sentences (on punctuation) into a
series of clause-like units, (2) work on these
clauses separately, and (3) join them together.
This model sometimes works as well as tree
models for the sentiment task, suggesting
that one of the reasons tree models help is
by breaking down long sentences into more
manageable units.

• Despite that the fact that components (out-
puts from different time steps) in recur-
rent models are not linguistically meaningful,
they may do as well as linguistically mean-
ingful phrases (represented by parse tree
nodes) in embedding informative evidence,
as demonstrated in UMD-QA task. Indeed,
recent work in parallel with ours (Bowman
et al., 2015) has shown that recurrent models
like LSTMs can discover implicit recursive
compositional structure.
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