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Abstract

Implicit discourse relation recognition re-
mains a serious challenge due to the ab-
sence of discourse connectives. In this pa-
per, we propose a Shallow Convolutional
Neural Network (SCNN) for implicit dis-
course relation recognition, which con-
tains only one hidden layer but is effec-
tive in relation recognition. The shallow
structure alleviates the overfitting prob-
lem, while the convolution and nonlinear
operations help preserve the recognition
and generalization ability of our model.
Experiments on the benchmark data set
show that our model achieves comparable
and even better performance when com-
paring against current state-of-the-art sys-
tems.

1 Introduction

As a crucial task for discourse analysis, discourse
relation recognition (DRR) aims to automatically
identify the internal structure and logical relation-
ship of coherent text (e.g., TEMPORAL, CONTIN-
GENCY, EXPANSION, etc). It provides important
information to many other natural language pro-
cessing systems, such as question answering (Ver-
berne et al., 2007), information extraction (Cimi-
ano et al., 2005), machine translation (Guzmán et
al., 2014) and so on. Despite great progress in ex-
plicit DRR where the discourse connectives (e.g.,
“because”, “but” et al.) explicitly exist in the text
(Miltsakaki et al., 2005; Pitler et al., 2008), im-
plicit DRR remains a serious challenge because of
the absence of discourse connectives (Prasad et al.,
2008).

Conventional methods for implicit DRR di-
rectly rely on feature engineering, wherein re-
searchers generally exploit various hand-crafted
features, such as words, part-of-speech tags and
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production rules (Pitler et al., 2009; Lin et al.,
2009; Louis et al., 2010; Wang et al., 2012; Park
and Cardie, 2012; McKeown and Biran, 2013;
Lan et al., 2013; Versley, 2013; Braud and De-
nis, 2014; Rutherford and Xue, 2014). Although
these methods have proven successful, these man-
ual features are labor-intensive and weak to cap-
ture intentional, semantic and syntactic aspects
that govern discourse coherence (Li et al., 2014),
thus limiting the effectiveness of these methods.

Recently, deep learning models have achieved
remarkable results in natural language processing
(Bengio et al., 2003; Bengio et al., 2006; Socher
et al., 2011b; Socher et al., 2011a; Socher et al.,
2013; Li et al., 2013; Kim, 2014). However, to the
best of our knowledge, there is little deep learning
work specifically for implicit DRR. The neglect of
this important domain may be due to the follow-
ing two reasons: (1) discourse relation distribution
is rather unbalanced, where the generalization of
deep models is relatively insufficient despite their
powerful studying ability; (2) training dataset in
implicit DRR is relatively small, where overfitting
problems become more prominent.

In this paper, we propose a Shallow Convolu-
tional Neural Network (SCNN) for implicit DRR,
with only one simple convolution layer on the
top of word vectors. On one hand, the network
structure is simple, thereby overfitting issue can
be alleviated; on the other hand, the convolution
operation and nonlinear transformation help pre-
serve the recognition ability of SCNN. This makes
our model able to generalize better on the test
dataset. We performed evaluation for English im-
plicit DRR on the PDTB-style corpus. Experi-
mental results show that the proposed method can
obtain comparable even better performance when
compares against several baselines.

2 Model

In Penn Discourse Treebank (PDTB) (Prasad et
al., 2008), implicit discourse relations are anno-
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Arg1: our competitors say we overbid them Arg2: who cares
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Figure 1: SCNN model architecture visualized with an instance.

tated with connective expressions that best convey
implicit relations between two neighboring argu-
ments, e.g.

Arg1: (But) our competitions say we overbid
them
Arg2: who cares

the connective “But”, which is annotated manu-
ally, is used to express the inferred COMPARISON

relation.
We learn a classifier for implicit DRR based on

convonlutional neural network. The overall model
architecture is illustrated in Figure 1.1 In our
model, each word in vocabulary V corresponds to
a d-dimensional dense, real-valued vector, and all
words are stacked into a word embedding matrix
L ∈ Rd×|V |, where |V | is the vocabulary size.

Given an ordered list of nwords in an argument,
we retrieve the i-th word representation xvi ∈ Rd

from L with its corresponding vocabulary index
vi. All word vectors in the argument produce the
following output matrix:

X = (xv1 , xv2 , . . . , xvn) (1)

Following previous work (Collobert et al., 2011;
Socher et al., 2011a), for each row r in X, we
explore three convolutional operations to obtain
three convolution features average, min and max
as follows:

cavg
r =

1
n

n∑
i

Xr,i (2)

cmin
r = min (Xr,1, Xr,2, . . . , Xr,n) (3)

1For better illustration, we assume that the dimension of
word vectors is 4 throughout this paper.

cmax
r = max (Xr,1, Xr,2, . . . , Xr,n) (4)

In this way, SCNN is able to capture almost all im-
portant information inside X (one with the highest,
lowest and average values). Besides, each convo-
lution operation naturally deals with variable argu-
ment lengths (Note that c ∈ Rd). Back to Figure
1, we present cavg, cmin and cmax with red, purple
and green color respectively.

After obtaining the features of both arguments,
we concatenate all of them into one vector, and
then apply tanh transformation and length nor-
malization successively to generate the hidden lay-
ers:

a =
[
cavg
Arg1; c

min
Arg1; c

max
Arg1; c

avg
Arg2; c

min
Arg2; c

max
Arg2

]
(5)

h =
tanh (a)
‖tanh (a)‖ (6)

where h ∈ R6d is the hidden layer representa-
tion. The normalization operation scales the com-
ponents of a feature vector to unit length. This, to
some extent, eliminates the manifold differences
among different features.

Upon the hidden layer, we stack a Softmax layer
for relation recognition,

y = f(Wh+ b) (7)

where f is the softmax function,W ∈ Rl×6d is the
parameter matrix, b ∈ Rl is the bias term, and l is
the relation number.

To assess how well the predicted relation y rep-
resents the real relation, we supervise it with the
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gold relation g in the annotated training corpus us-
ing the traditional cross-entropy error,

E(y, g) = −
l∑
j

gj × log (yj) (8)

Combined with the regularization error, the joint
training objective function is

J(θ) =
1
m

m∑
t=1

E(yt, gt) +
λ

2
‖θ‖2 (9)

where m is the number of training instances, yt is
the t-th predicted distribution, λ is the regulariza-
tion coefficient and θ is parameters, including L,
W and b.2

To train SCNN, we first employ the toolkit
Word2Vec3 (Mikolov et al., 2013) to initialize the
word embedding matrix L using a large-scale un-
labeled data. Then, L-BFGS algorithm is applied
to fine-tune the parameters θ.

3 Experiments

We conducted a series of experiments on English
implicit DRR task. After a brief description of
the experimental setup and the baseline systems,
we further investigated the effectiveness of our
method with deep analysis.

3.1 Setup
For comparison with other systems, we formu-
lated the task as four separate one-against-all bi-
nary classification problems: one for each top
level sense of implicit discourse relations (Pitler
et al., 2009).

We used the PDTB 2.0 corpus4 (Prasad et al.,
2008) for evaluation. The PDTB corpus contains
discourse annotations over 2,312 Wall Street Jour-
nal articles, and is organized in different sections.
Following Pitler et al. (2009), we used sections 2-
20 as training set, sections 21-22 as test set, and
sections 0-1 as development set for parameter op-
timization. For each relation, we randomly ex-
tracted the same number of positive and negative
instances as training data, while all instances in
sections 21 and 22 are used as our test set. The
statistics of various data sets is listed in Table 1.

We tokenized PDTB corpus using Stanford NLP
Tool5. For all experiments, we empirically set

2The bias terms b is not regularized. We preserve it in the
equation just for clarity.

3https://code.google.com/p/word2vec/
4http://www.seas.upenn.edu/ pdtb/
5http://nlp.stanford.edu/software/corenlp.shtml

Relation Positive/Negative Sentences
Train Dev Test

COMP. 1942/1942 197/986 152/894
CONT. 3342/3342 295/888 279/767
EXP. 7004/7004 671/512 574/472

TEMP. 760/760 64/1119 85/96l

Table 1: Statistics of positive and negative in-
stances in training (Train), development (Dev)
and test (Test) sets. COMP.=COMPARISON,
CONT.=CONTINGENCY, EXP.=EXPANSION and
TEMP.=TEMPORAL

d=128 and λ=1e−4. Besides, the unlabeled data
for word embedding initialization contains 1.02M
sentences with 33.5M words.

3.2 Baselines

We compared our model against the following
baseline methods:

• SVM: This method learns a support vector
machine (SVM) classifier with the labeled
data.
• TSVM: This method learns a transductive

SVM (TSVM) classifiers given the labeled
data and unlabeled data. We extracted unla-
beled data from above-mentioned 1.02M sen-
tences. After filtering the noise ones, we
finally obtained 0.11M unlabeled instances,
each of which contains only two clauses.
• RAE: This method learns a recursive autoen-

coder (RAE) classifier with the labeled data.
We first utilized standard RAEs to represent
arguments, and then stacked a Softmax layer
upon them. The hyperparameters were set as
follows: word dimension 64, balance factor
for reconstruction error 0.10282 and regular-
ization factor 1e−5. Word embeddings are
initialized via Word2Vec.

Rutherford and Xue (2014) show that Brown
cluster pair feature is very impactful in implicit
DRR (Rutherford and Xue, 2014). This feature
is superior to one-hot representation for the in-
teractions between two arguments, such as cross-
argument word pair features in our baseline meth-
ods. We therefore conducted two additional exper-
iments for comparison:

• Add-Bro: This method learns an SVM clas-
sifier using baseline system features along
with the Brown cluster pair feature.
• No-Cro: This method learns an SVM clas-

sifier on Add-Bro’s features without cross-
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Relation Model Precision Recall Accuracy MacroF1

COMP. vs Other
SVM 22.22 60.53 63.48 32.51

TSVM 20.53 66.45 57.74 31.37
Add-Bro 22.79 64.47 63.10 33.68
No-Cro 22.89 67.76 62.14 34.22

RAE 18.38 62.50 54.21 28.40
SCNN-No-Norm 21.07 54.61 63.67 30.40

SCNN 22.00 67.76 60.42 33.22

CONT. vs Other
SVM 39.70 67.03 64.05 49.87

TSVM 38.72 67.03 62.91 49.08
Add-Bro 39.14 72.40 62.62 50.82
No-Cro 39.50 74.19 62.81 51.56

RAE 37.55 68.10 61.28 48.41
SCNN-No-Norm 39.02 71.33 62.62 50.44

SCNN 39.80 75.29 63.00 52.04

EXP. vs Other
SVM 66.35 60.10 61.38 63.07

TSVM 66.48 61.15 61.76 63.70
Add-Bro 65.89 58.89 60.71 62.19
No-Cro 66.73 61.15 61.95 63.82

RAE 58.24 70.29 56.02 63.67
SCNN-No-Norm 59.39 74.39 58.03 66.05

SCNN 56.29 91.11 56.30 69.59

TEMP. vs Other
SVM 15.76 68.24 67.78 25.61

TSVM 16.26 77.65 65.68 26.88
Add-Bro 15.10 68.24 66.25 24.73
No-Cro 13.89 64.71 64.53 22.87

RAE 10.02 60.00 52.96 17.17
SCNN-No-Norm 18.26 67.06 72.94 28.71

SCNN 20.22 62.35 76.95 30.54

Table 2: Performance comparison of different systems on the test set.

argument word pair features.

In addition, to further verify the effectiveness of
normalization, we also compared against SCNN
model without normalization (SCNN-No-Norm).

Throughout our experiments, we used the
toolkit SVM-light6 (Joachims, 1999) in all the
SVM-related experiments. Following previous
work (Pitler et al., 2009; Lin et al., 2009), we
adopted the following features for baseline meth-
ods:
Bag of Words: Three binary features that check
whether a word occurs in Arg1, Arg2 and both ar-
guments.
Cross-Argument Word Pairs: We group all
words from Arg1 and Arg2 into two sets W1,W2

respectively, then extract any possible word pair
(wi, wj)(wi ∈W1, wj ∈W2) as features.
Polarity: The count of positive, negated positive,
negative and neutral words in Arg1 and Arg2 ac-
cording to the MPQA corpus (English). Their
cross products are used as features.
First-Last, First3: The first and last words of
each argument, the pair of the first words in two
arguments, the pair of the last words in two argu-
ments, and the first three words of each argument

6http://svmlight.joachims.org/

are used as features.
Production Rules: We extract all production
rules from syntactic trees of arguments. We de-
fined three binary features for each rule to check
whether this rule appear in Arg1, Arg2 and both
arguments.
Dependency Rules: We also extracted all de-
pendency rules from dependency trees of argu-
ments. Similarly, we defined three binary features
for each rule to check whether this rule appear in
Arg1, Arg2 and both arguments.

In order to collect bag of words, production
rules, dependency rules, and cross-argument word
pairs, we used a frequency cutoff of 5 to remove
rare features, following Lin et al. (2009).

3.3 Results and Analysis
All models are evaluated by assessing the accuracy
and F1 scores on account of the imbalance in test
set. Besides, for better analysis, we also provided
the precision and recall results.

Table 2 summarizes the performance of dif-
ferent models. On the whole, the F1 scores
for implicit DRR are relatively low on average:
COMP., CONT., EXP. and TEMP. about 32%,
50%, 65% and 28% respectively. This illustrates
the difficulty in implicit DRR. Although we ex-
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pected unlabeled data could obtain improvement,
we observed negative results appeared in TSVM:
COMP. and CONT. dropped 1.14% and 0.79% re-
spectively7. The F1 scores of TEMP. and EXP. are
improved (1.27% and 0.63% respectively). The
main reason may be that our unlabeled data is not
strictly from the discourse corpus.

Incorporating Brown cluster pair features en-
hances the recognition of COMP. and CONT.. Par-
ticllarly, No-Cro achieves the best result in COMP.
34.22%. But we found no consistent improve-
ment in EXP. and TEMP.: No-Cro loses 2.74% in
TEMP.; Add-Bro loses 0.88% and 2.12% in EXP.
and TEMP. respectively. This result is inconsistent
with the finding of Rutherford and Xue (2014).
The reason may lie in the training strategy, where
we used sampling to solve the problem of unbal-
anced dataset while they reweighted training sam-
ples.

Compared with SVM-based models, RAE per-
forms poorly in three relations, except EXP. which
has the largest training dataset. Maybe RAE
needs more labeled training data for better re-
sults. However, SCNN models perform remark-
ably well, producing comparable and even bet-
ter results. Without normalization, SCNN-No-
Norm gains 0.57%, 2.98% and 3.1% F1 scores for
CONT., EXP. and TEMP. respectively, but loses
2.11% for COMP.. We obtain further improvement
using SCNN with normalization: 0.71%, 2.17%,
6.52% and 4.93% for COMP., CONT., EXP. and
TEMP. respectively. This suggests that normaliza-
tion is useful for generalization of shallow models.

From Table 2, we found that our models do not
achieve consistent improvements in precision, but
benefit greatly from the gains of recall. Besides,
our model works quite well for small dataset (Both
accuracy and F1 score are improved in TEMP.).
All of these demonstrate that our model is suitable
for implicit DRR.

4 Conclusion and Future Work

In this paper, we have presented a convolutional
neural network based approach to learn better
DRR classifiers. The method is simple but effec-
tive for relation recognition. Experiment results
show that our approach achieves satisfactory per-
formance against the baseline models.

In the future, we will verify our model on other

7Without special illustration, all improvements and de-
clines are against SVM.

languages, for example, Chinese and Arabic. Be-
sides, since our model is general to classification
problems, we would like to investigate its effec-
tiveness on other similar tasks, such as sentiment
classification and movie review classification, etc.
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