
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1919–1924,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

GhostWriter: Using an LSTM for Automatic Rap Lyric Generation

Peter Potash, Alexey Romanov, Anna Rumshisky
Dept. of Computer Science

University of Massachusetts Lowell
Lowell, MA 01854

{ppotash,aromanov,arum}@cs.uml.edu

Abstract

This paper demonstrates the effectiveness
of a Long Short-Term Memory language
model in our initial efforts to generate un-
constrained rap lyrics. The goal of this
model is to generate lyrics that are simi-
lar in style to that of a given rapper, but
not identical to existing lyrics: this is
the task of ghostwriting. Unlike previ-
ous work, which defines explicit templates
for lyric generation, our model defines its
own rhyme scheme, line length, and verse
length. Our experiments show that a Long
Short-Term Memory language model pro-
duces better “ghostwritten” lyrics than a
baseline model.

1 Introduction

Ghostwriting defines a distinction between the
performer/presenter of text, lyrics, etc, and the cre-
ator of text/lyrics. The goal is to present some-
thing in a style that is believable enough to be
credited to the performer. In the domain of rap
specifically, rappers sometimes function as ghost-
writers early on before embarking on their own
public careers, and there are even businesses that
provide written lyrics as a service 1. The goal
of GhostWriter is to produce a system that can
take a given artist’s lyrics and generate similar yet
unique lyrics. To accomplish this, we must cre-
ate a language model to produce text, while also
understanding what ’style’ means in a quantitative
sense.

The contribution of this paper is three-fold: (1)
we present the ghostwriting problem of producing
similar yet different lyrics; (2) we present compu-
tational, quantitative evaluation methods for these

1http://www.rap-rebirth.com/,
http://www.precisionwrittens.com/
rap-ghostwriters-for-hire/

two aspects; (3) we evaluate the performance of
a Long Short-Term Memory (LSTM) vs n-gram
model for this problem.

2 Related Work

Recent work (Sutskever et al., 2011; Graves,
2013) has shown the effectiveness of Recurrent
Neural Networks (RNNs) for text generation. In
their works, the authors use an RNN to create a
language model at the character level. The results
are inspiring, as the models learn various gram-
matical and punctuation rules, such as opening
and closing parentheses, plus learning a large vo-
cabulary of English words at the character level.
Graves (2013) uses a variation of an RNN called
LSTM architecture which creates a better lan-
guage model than a regular RNN.

Text generation for artistic purposes, such as po-
etry and lyrics, has also been explored, often using
templates and constraints (Oliveira et al., 2014;
Barbieri et al., 2012). In regards to rap lyrics, Wu
et al. (2013) present a system for rap lyric gener-
ation that produces a single line of lyrics that are
meant to be a response to a single line of input.
However, the work that is most similar to ours is
that of Malmi et al. (2015). The authors create
fixed 16-line verses, generating the verse line-by-
line using full lines from existing rap songs. The
system predicts the best next line based on the pre-
vious lines, using a system that records an 81.9%
accuracy predicting next lines in already existing
verses. The feature that provides the greatest accu-
racy gain is a neural embedding of the lines, cre-
ated from the character level.

Hirjee and Brown (2010b) have developed a
rhyme detection tool based on a probabilistic
model (Hirjee and Brown, 2010a) that analyzes
phoneme patterns in words. The model is trained
on a set of lyrics that were manually annotated for
rhyming words. The statistics generated by the
rhyme detection tool will be an important part of

1919

our evaluation (see Section 5).

3 Generating Lyrics

In a departure from previous work on poetry/lyric
generation, our goal is to build a model that
does not require templates/constraints to generate
lyrics, while also being able to produce full verses,
as opposed to single lines. The system must be
able to model general human language in order to
produce fluent lyrics, but it must also be able to
model the style of a target artist, by understanding
the artist’s vocabulary and rhythmic style, in order
to fully execute the ghostwriting task of producing
similar yet new lyrics.

3.1 LSTM

Here we will give a very brief overview of RNNs
and LSTMs. For a more detailed explanation
please refer to (Graves, 2013). The foundation
of an RNN (of which an LSTM is specific ar-
chitecture) is a word embedding E that provides
a vector representation for each of the words in
our corpus. Given a history of words wk, ..., w0

we want to determine P (wk+1|wk, ..., w0; E, Φ),
where Φ is a set of parameters used by our
model. In the context of an RNN we define this
probability by:

P (wk+1|wk, ..., w0; E, Φ) = f(x, s) (1)

At each time-step the RNN computes f given an
observation x and a previous state s. The input
goes through a transformation where it passes
through one or several hidden layers.

The LSTM model uses a specific architecture
for the hidden transformation, defined by the
LSTM memory cell. The key feature to the LSTM
memory cell is the presence of an input gate, out-
put gate, forget gate, and cell/cell memory, which
manifest themselves in the model as activation
vectors. Each of these gates/cells has its own
bias vector, and the hidden layer at each time-step
is now a complex nonlinear combination of gate,
cell, and hidden vectors.

3.2 Using LSTM for Lyrics Generation

Since previous work has shown the power of
RNNs to model language, we hope that it can cap-
ture the rhythmic style of an artist by learning
rhyme and meter patterns. As noted in Section 2,
LSTMs have performed well at sequence forecast-

ing, for example at learning punctuation, such as
opening and closing parentheses. We see the task
of rhyme detection as something similar in na-
ture. Kaparthy et al. (2015) have also shown that
LSTMs could successfully learn where to place
the brackets and indentation in C++ code. In their
model, certain LSTM cells activated specifically
when encountering end of the line. We believe
learning rhymes at the end of the line is concep-
tually similar to such tasks.

3.3 Verse Structure and Rhyme Inference

The goal of our model is to not just generate
lyrics, but generate the structure for the lyrics as
well. To do this, we have added “<endLine>”
and “<endVerse>” tokens to the lyrics. From this,
the system will generate its own line breaks, while
also defining when a generated verse ends. This
allows us to analyze non-rhyming features from
(Hirjee and Brown, 2010a), such as number of
syllables per line and number of lines per verse.
We also desire that, by using the “<endLine>”
token, the system has a better chance of un-
derstanding rhyme schemes used by an artist.
For example, the LSTM can capture the pat-
tern of “came <endLine>” followed shortly by
“name <endLine>” to understand that “came”
and “name” are a rhyming pair. To do this effec-
tively, the system would need sufficient training
data where rhyming pairs occur frequently enough
to actually dictate a pattern, similar to (Reddy and
Knight, 2011; Addanki and Wu, 2013).

4 Experimental Design

4.1 Dataset

We collected songs from 14 artists from the site
The Original Hip-Hop (Rap) Lyrics Archive -
OHHLA.com - Hip-Hop Since 19922. In the
present lyrics generation experiments, we used the
lyrics from the rapper Fabolous. For training, we
used 219 verses with at least 175 words in each
verse. We selected Fabolous because his lyrics
produced the highest accuracy in the artist recog-
nition experiments in (Hirjee and Brown, 2010a).
We conjecture that because of this, he had the most
consistent style, making him a good choice for ini-
tial experiments.

2http://www.ohhla.com/

1920

4.2 Baseline

To compare with the results of the LSTM model,
we followed the work of (Barbieri et al., 2012)
and created a Markov model for lyric generation.
Since the goal of our work is to make an unsu-
pervised system, we do not use any constraints
or templates to produce the lyrics. Thus, our
baseline simplifies to a basic n-gram model.
Given a history of wk+n−1,...,wk, the system
generates a new token t as follows:

P (wk+n = t|wk+n−1, ..., wk) =
|wk,...,wk+n−1,t|
|wk,...,wk+n−1,•| (2)

where |wk...wk+n−1t| is the amount of times
the the context wk+n−1,...,w1 is followed by t
in the training data, and |wk...wk+n−1 • | is the
amount of times the context appears followed by
any token. There is the possibility that the context
has never been encountered in the training data.
When this occurs, we back off to a smaller n-gram
model:

P (wk+n = t|wk+n−2, ..., wk) =
|wk,...,wk+n−2,•,t|
|wk,...,wk+n−2,•,•| (3)

The model may have to back-off multiple
times before it encounters context it has seen
in the training data. Once we back-off to the
point where we compute P (wn+k = t|wk), we
are guaranteed to have at least one non-zero
probability, because wk must have appeared in
the vocabulary for it to have been generated
previously.

Note that rather than backing off to a lower-
order n-gram model, we use a skip-gram model
which drops the words immediately preceding the
predicted word. The main motivation for this is
that it allows us to capture long-range dependen-
cies, which makes it into a better baseline compar-
ison for an LSTM.

4.3 Model Initialization

When producing lyrics with either the LSTM
or baseline model, we initialize with the
“<startVerse>” token. Once the model produces
a token, it becomes part of the context for the next
step of token generation. Our models are closed in
the sense that they only produce tokens that appear
in the training vocabulary.

4.4 LSTM Implementation

We used a Python implementation of an LSTM
from Jonathan Raiman3. The LSTM is built on
top of Theano (Bastien et al., 2012; Bergstra et
al., 2010). Following (Graves, 2013), we set the
amount of LSTM inputs/outputs to be equal to the
vocabulary size. Also, to avoid the vanishing gra-
dient problem when training RNNs, we clip the
gradients in the range [-1,1]. We train our LSTM
model using a Tesla K40 GPU on a single work-
station.

5 Evaluation Methods

In this section, we present automated methods for
evaluating the quality of generated lyrics. Ide-
ally, judging system output in terms of, e.g. flu-
ency, should be conducted using manual evalua-
tion. However, conducting formal human evalua-
tion is somewhat problematic. For a full qualita-
tive evaluation of a given artist that would assess
both similarity of style and novelty, the evaluator
would need to know that particular artist’s body
of work very well. Even finding annotators who
are well-versed in the general art of rap lyrics can
be challenging (Addanki and Wu, 2014). While
this may be possible for the present experiments
that focus on a single artist, it is hardly feasible for
larger-scale studies that will use our full data set
that contains the lyrics of 14 different artists. We
therefore propose an automated evaluation method
which we believe is able to capture two critical as-
pects of ghostwriting, which are in fact quite tricky
to capture together: being similar, yet different.

5.1 Similarity to existing lyrics

In order to evaluate the novelty of generated
lyrics, we compare the similarity of the generated
lyrics to the lyrics in our training set. We used an
algorithm proposed by (Mahedero et al., 2005)
for calculating the similarity between produced
lyrics and all verses from the same artist. This
algorithm is based on the well-known Inverse
Document Frequency, using cosine on document
vectors to calculate distance. First, we build the
Term-Document Matrix with weights for each
term in each song:

wij = fijlog(N
nj

) (4)

3https://github.com/JonathanRaiman/
theano_lstm

1921

where N is the total number of documents
(verses, in our case), nj is the number of verses
that contains term j and fij is the frequency of
term j in the ith verse. Using this matrix, we can
calculate the cosine distance between verses and
use it as a measure of similarity. When discussing
similarity, we refer to the max similarity: of all
verses it is most similar to, exactly how similar is
it? The lower the max similarity score, the more
novel the lyrics.

5.2 Numerical features of the lyrics

We also produced the features from (Hirjee and
Brown, 2010a) for our generated verses. The
statistics of these features are meant to represent
how effective we are in modeling an artist’s style.
The point of the system is not to produce arbitrary
rhymes; it is to produce rhyme types and rhyme
frequency that are similar to the target artist. Fol-
lowing (Malmi et al., 2015), the rhyme feature we
examine in this work is rhyme density. Rhyme
density is defined as the total number of rhymed
syllables divided by the total number of syllables.

6 Results

For the lyrics generation experiments reported
here, we used the rapper Fabolous as the artist
whose style we tried to emulate.

6.1 Example of Generated Lyrics (Warning:
Explicit Content)

Below is a sample of lyrics generated by the
LSTM model:

Line 1: i m old enough to know better young
enough to not give a fuck
Line 2: rather hold my head high and die then
live and duck
Line 3: i got ta fuck be up and little niggaz go
in
Line 4: when i m in the feds and scoped by
uncle sam
Line 5: dope and hunn ed grams rope and
hunn ed grams
Line 6: at the same time she jerking and wig-
gling
Line 7: smirking and giggling

While the pairs of rhyming end-lines in the gen-
erated lyrics are taken from the training data (the
max similarity is 0.41), no more than two lines

appear from a single verse. Though the gener-
ated lyrics aren’t novel in a strict sense, the LSTM
model is more effective than the n-gram model
at using lines from multiple verses (see next Sec-
tion 6.3). The rhyme density of this verse is 0.35,
which is almost equal to Fabolous’s average rhyme
density (0.34).

6.2 Quantitative Analysis

As previously mentioned, the key to effective
ghostwriting is to mirror an artist’s style, but
also providing original content. While vocabu-
lary and lyrical content are key components for an
artist’s style, this is inherently satisfied by using
words only from the training data. Thus, rhyme
style – specifically rhyme density – will be the
key performance indicator for imitating an artist’s
style. In terms of rap lyrics in general, a higher
rhyme density is often better. Therefore for our
system we would like a high rhyme density, but
with a low max similarity score (a higher nov-
elty). Figures 2 and 1 show the graph for rhyme
density and max similarity for the LSTM and n-
grams models, respectively. For the LSTM model
the values are graphed compared to training iter-
ation number – as the model becomes more fit to
the data. For the n-gram model they are graphed
dependent on n-gram value. For each n-gram
value, we generate 10 verses and compute the av-
erage value of the two metrics. One expects that
a perfectly fit LSTM model without regularization
would exactly reproduce lyrics from the training
data, and a high n-gram value would would also
produce duplicate lyrics. This is evident in the
graphs.

Figure 1: Values of rhyme density and max simi-
larity versus n-gram value for the n-gram model.

1922

Figure 2: Values of rhyme density and max sim-
ilarity versus iteration number when training the
LSTM model.

6.3 Correlation of Rhyme Density and Max
Similarity

Since exact replication would assuredly give a
higher rhyme density than randomly produced
lyrics, we desire a low correlation between rhyme
density and max similarity. The correlation be-
tween rhyme density and max similarity for the
LSTM model is 0.32, and for the n-gram model it
is 0.47. When examining Figures 1 and 2 one may
notice the anomalous points of high rhyme density
(at n = 6 on the n-gram graph and 3,000 iterations
for the LSTM model). After further inspection of
the lyrics at these points, we see the lyrics con-
tain repetitions of the exact same phrase. Since
words are repeated frequently, the rhyme density
of the lyrics is high (repeated words create rhymed
phonemes, according to the rhyme detection tool).
These points cause the similarity-density correla-
tions to be artificially lower. After removing these
data points, the LSTM model still has a lower
correlation than the n-gram model, but the gap is
much smaller: 0.71 compared to 0.75. Ultimately
however, this shows that the LSTM model is better
at generating original, rhyming lyrics.

6.4 Style Matching
Unfortunately, the correlation numbers do not dic-
tate specifically the effectiveness of the LSTM
model in the ghostwriting task. Instead, we can
look at that max similarity values of both systems
when they generate lyrics that produce a rhyme
density similar to the average rhyme density of
the target rapper. Looking at 100 randomly se-
lected verses, Fabolous has an average rhyme den-
sity of 0.34. To do our analysis, first we create
four regression lines, one for each metric (max

similarity and rhyme density) in each model (we
do not include the points of high rhyme density).
Next we use the two rhyme density lines to deter-
mine at which iteration/n value the systems gen-
erate a rhyme density of 0.34. After that we plug
these numbers into the two similarity lines to de-
termine what similarity is needed to achieve the
target rhyme density. The n-gram model line has
a similarity of 1.28 at this point (above the max
value of 1 for the metric), while the LSTM model
has a value of 0.59. Based on these numbers,
the LSTM model clearly outperforms the n-gram
model when it comes to making original lyrics that
are similar in style to our target rapper.

7 Conclusion

In this work, we have shown the effectiveness of
an LSTM model for generating novel lyrics that
are similar in style to a target artist. We com-
pare the performance of the LSTM model to a
much simpler system: an n-gram model. The re-
sults of our experiments show that, as an unsu-
pervised, non-template model, the LSTM model
is better able to produce novel lyrics that also re-
flect the rhyming style of the target artist. In fu-
ture work, we plan to use more data to train our
model, making it easier for our system to actually
identify rhyming pairs and use them in new con-
texts. We also plan to encode phoneme features of
words to improve rhyme discovery. Furthermore,
we plan to generate lyrics from artists with a vary-
ing vocabulary size to see if it is easier to generate
lyrics for an artist with a smaller vocabulary. In
terms of evaluation, we hope to incorporate some
method to evaluate the fluency of generated lyrics
(Addanki and Wu, 2014). Lastly, to further avoid
over-fitting to the training data and reproducing
lyrics with a high similarity, we plan to use weight
noise (Jim et al., 1996) to regularize our model.

Acknowledgments

We would like to thank the anonymous reviewers
for their feedback.

References
Karteek Addanki and Dekai Wu. 2013. Unsupervised

rhyme scheme identification in hip hop lyrics using
hidden markov models. In Statistical Language and
Speech Processing, pages 39–50. Springer.

Karteek Addanki and Dekai Wu. 2014. Evaluating
improvised hip hop lyrics–challenges and observa-

1923

tions. In Proceedings of The Ninth International
Conference on Language Resources and Evaluation
(LREC).

Gabriele Barbieri, François Pachet, Pierre Roy, and
Mirko Degli Esposti. 2012. Markov constraints for
generating lyrics with style. In ECAI, pages 115–
120.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed im-
provements. arXiv preprint arXiv:1211.5590.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a cpu and gpu
math expression compiler. In Proceedings of the
Python for scientific computing conference (SciPy),
volume 4, page 3. Austin, TX.

Alex Graves. 2013. Generating sequences
with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Hussein Hirjee and Daniel Brown. 2010a. Using auto-
mated rhyme detection to characterize rhyming style
in rap music.

Hussein Hirjee and Daniel G Brown. 2010b. Rhyme
analyzer: An analysis tool for rap lyrics. In Pro-
ceedings of the 11th International Society for Music
Information Retrieval Conference. Citeseer.

Kam-Chuen Jim, Clyde Lee Giles, and Bill G Horne.
1996. An analysis of noise in recurrent neural net-
works: convergence and generalization. Neural Net-
works, IEEE Transactions on, 7(6):1424–1438.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
CoRR, abs/1506.02078.

Jose PG Mahedero, Álvaro MartÍnez, Pedro Cano,
Markus Koppenberger, and Fabien Gouyon. 2005.
Natural language processing of lyrics. In Proceed-
ings of the 13th annual ACM international confer-
ence on Multimedia, pages 475–478. ACM.

Eric Malmi, Pyry Takala, Hannu Toivonen, Tapani
Raiko, and Aristides Gionis. 2015. Dopelearning:
A computational approach to rap lyrics generation.
arXiv preprint arXiv:1505.04771.

Hugo Gonçalo Oliveira, Raquel Hervás, Alberto Dı́az,
and Pablo Gervás. 2014. Adapting a generic plat-
form for poetry generation to produce spanish po-
ems. In 5th International Conference on Computa-
tional Creativity, ICCC.

Sravana Reddy and Kevin Knight. 2011. Unsuper-
vised discovery of rhyme schemes. In Proceedings
of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Tech-
nologies: short papers-Volume 2, pages 77–82. As-
sociation for Computational Linguistics.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
1017–1024.

Dekai Wu, Karteek Addanki, Markus Saers, and
Meriem Beloucif. 2013. Learning to freestyle:
Hip hop challenge-response induction via transduc-
tion rule segmentation. In 2013 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2013), Seattle, Washington, USA.

1924

