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Abstract

Two problems arise when using distant su-
pervision for relation extraction. First, in
this method, an already existing knowl-
edge base is heuristically aligned to texts,
and the alignment results are treated as la-
beled data. However, the heuristic align-
ment can fail, resulting in wrong label
problem. In addition, in previous ap-
proaches, statistical models have typically
been applied to ad hoc features. The noise
that originates from the feature extraction
process can cause poor performance.

In this paper, we propose a novel
model dubbed the Piecewise Convolu-
tional Neural Networks (PCNNs) with
multi-instance learning to address these
two problems. To solve the first prob-
lem, distant supervised relation extraction
is treated as a multi-instance problem in
which the uncertainty of instance labels
is taken into account. To address the lat-
ter problem, we avoid feature engineering
and instead adopt convolutional architec-
ture with piecewise max pooling to auto-
matically learn relevant features. Exper-
iments show that our method is effective
and outperforms several competitive base-
line methods.

1 Introduction

In relation extraction, one challenge that is faced
when building a machine learning system is the
generation of training examples. One common
technique for coping with this difficulty is distant
supervision (Mintz et al., 2009) which assumes
that if two entities have a relationship in a known
knowledge base, then all sentences that mention
these two entities will express that relationship in
some way. Figure 1 shows an example of the auto-

Freebase
Mentions from free texts

Figure 1: Training instances generated through
distant supervision. Upper sentence: correct la-
beling; lower sentence: incorrect labeling.

matic labeling of data through distant supervision.
In this example, Apple and Steve Jobs are two re-
lated entities in Freebase1. All sentences that con-
tain these two entities are selected as training in-
stances. The distant supervision strategy is an ef-
fective method of automatically labeling training
data. However, it has two major shortcomings
when used for relation extraction.

First, the distant supervision assumption is too
strong and causes the wrong label problem. A sen-
tence that mentions two entities does not necessar-
ily express their relation in a knowledge base. It is
possible that these two entities may simply share
the same topic. For instance, the upper sentence
indeed expresses the “company/founders” relation
in Figure 1. The lower sentence, however, does not
express this relation but is still selected as a train-
ing instance. This will hinder the performance of
a model trained on such noisy data.

Second, previous methods (Mintz et al., 2009;
Riedel et al., 2010; Hoffmann et al., 2011) have
typically applied supervised models to elaborately
designed features when obtained the labeled data
through distant supervision. These features are
often derived from preexisting Natural Language
Processing (NLP) tools. Since errors inevitably
exist in NLP tools, the use of traditional features
leads to error propagation or accumulation. Dis-
tant supervised relation extraction generally ad-

1http://www.freebase.com/
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Figure 2: The sentence length distribution of
Riedel’s dataset.

dresses corpora from the Web, including many
informal texts. Figure 2 shows the sentence
length distribution of a benchmark distant super-
vision dataset that was developed by Riedel et
al. (2010). Approximately half of the sentences
are longer than 40 words. McDonald and Nivre
(2007) showed that the accuracy of syntactic pars-
ing decreases significantly with increasing sen-
tence length. Therefore, when using traditional
features, the problem of error propagation or ac-
cumulation will not only exist, it will grow more
serious.

In this paper, we propose a novel model dubbed
Piecewise Convolutional Neural Networks (PC-
NNs) with multi-instance learning to address the
two problems described above. To address the first
problem, distant supervised relation extraction is
treated as a multi-instance problem similar to pre-
vious studies (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012). In multi-instance
problem, the training set consists of many bags,
and each contains many instances. The labels of
the bags are known; however, the labels of the in-
stances in the bags are unknown. We design an
objective function at the bag level. In the learning
process, the uncertainty of instance labels can be
taken into account; this alleviates the wrong label
problem.

To address the second problem, we adopt con-
volutional architecture to automatically learn rel-
evant features without complicated NLP prepro-
cessing inspired by Zeng et al. (2014). Our pro-
posal is an extension of Zeng et al. (2014), in
which a single max pooling operation is utilized
to determine the most significant features. Al-
though this operation has been shown to be effec-
tive for textual feature representation (Collobert et
al., 2011; Kim, 2014), it reduces the size of the

hidden layers too rapidly and cannot capture the
structural information between two entities (Gra-
ham, 2014). For example, to identify the relation
between Steve Jobs and Apple in Figure 1, we need
to specify the entities and extract the structural
features between them. Several approaches have
employed manually crafted features that attempt
to model such structural information. These ap-
proaches usually consider both internal and exter-
nal contexts. A sentence is inherently divided into
three segments according to the two given entities.
The internal context includes the characters inside
the two entities, and the external context involves
the characters around the two entities (Zhang et
al., 2006). Clearly, single max pooling is not suf-
ficient to capture such structural information. To
capture structural and other latent information, we
divide the convolution results into three segments
based on the positions of the two given entities and
devise a piecewise max pooling layer instead of
the single max pooling layer. The piecewise max
pooling procedure returns the maximum value in
each segment instead of a single maximum value
over the entire sentence. Thus, it is expected to
exhibit superior performance compared with tra-
ditional methods.

The contributions of this paper can be summa-
rized as follows.

• We explore the feasibility of performing dis-
tant supervised relation extraction without
hand-designed features. PCNNS are pro-
posed to automatically learn features without
complicated NLP preprocessing.

• To address the wrong label problem, we de-
velop innovative solutions that incorporate
multi-instance learning into the PCNNS for
distant supervised relation extraction.

• In the proposed network, we devise a piece-
wise max pooling layer, which aims to cap-
ture structural information between two enti-
ties.

2 Related Work

Relation extraction is one of the most important
topics in NLP. Many approaches to relation ex-
traction have been developed, such as bootstrap-
ping, unsupervised relation discovery and super-
vised classification. Supervised approaches are
the most commonly used methods for relation
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extraction and yield relatively high performance
(Bunescu and Mooney, 2006; Zelenko et al., 2003;
Zhou et al., 2005). In the supervised paradigm, re-
lation extraction is considered to be a multi-class
classification problem and may suffer from a lack
of labeled data for training. To address this prob-
lem, Mintz et al. (2009) adopted Freebase to per-
form distant supervision. As described in Sec-
tion 1, the algorithm for training data generation
is sometimes faced with the wrong label problem.
To address this shortcoming, (Riedel et al., 2010;
Hoffmann et al., 2011; Surdeanu et al., 2012) de-
veloped the relaxed distant supervision assump-
tion for multi-instance learning. The term ‘multi-
instance learning was coined by (Dietterich et al.,
1997) while investigating the problem of predict-
ing drug activity. In multi-instance learning, the
uncertainty of instance labels can be taken into ac-
count. The focus of multi-instance learning is to
discriminate among the bags.

These methods have been shown to be effec-
tive for relation extraction. However, their per-
formance depends strongly on the quality of the
designed features. Most existing studies have con-
centrated on extracting features to identify the
relations between two entities. Previous meth-
ods can be generally categorized into two types:
feature-based methods and kernel-based methods.
In feature-based methods, a diverse set of strate-
gies is exploited to convert classification clues
(e.g., sequences, parse trees) into feature vec-
tors (Kambhatla, 2004; Suchanek et al., 2006).
Feature-based methods suffer from the necessity
of selecting a suitable feature set when convert-
ing structured representations into feature vectors.
Kernel-based methods provide a natural alterna-
tive to exploit rich representations of input classifi-
cation clues, such as syntactic parse trees. Kernel-
based methods enable the use of a large set of fea-
tures without needing to extract them explicitly.
Several kernels have been proposed, such as the
convolution tree kernel (Qian et al., 2008), the sub-
sequence kernel (Bunescu and Mooney, 2006) and
the dependency tree kernel (Bunescu and Mooney,
2005).

Nevertheless, as mentioned in Section 1, it is
difficult to design high-quality features using ex-
isting NLP tools. With the recent revival of in-
terest in neural networks, many researchers have
investigated the possibility of using neural net-
works to automatically learn features (Socher et

al., 2012; Zeng et al., 2014). Inspired by Zeng
et al. (2014), we propose the use of PCNNs with
multi-instance learning to automatically learn fea-
tures for distant supervised relation extraction. Di-
etterich et al. (1997) suggested that the design
of multi-instance modifications for neural net-
works is a particularly interesting topic. Zhang
and Zhou (2006) successfully incorporated multi-
instance learning into traditional Backpropagation
(BP) and Radial Basis Function (RBF) networks
and optimized these networks by minimizing a
sum-of-squares error function. In contrast to their
method, we define the objective function based on
the cross-entropy principle.

3 Methodology

Distant supervised relation extraction is formu-
lated as multi-instance problem. In this section,
we present innovative solutions that incorporate
multi-instance learning into a convolutional neu-
ral network to fulfill this task. PCNNs are pro-
posed for the automatic learning of features with-
out complicated NLP preprocessing. Figure 3
shows our neural network architecture for distant
supervised relation extraction. It illustrates the
procedure that handles one instance of a bag. This
procedure includes four main parts: Vector Rep-
resentation, Convolution, Piecewise Max Pooling
and Softmax Output. We describe these parts in
detail below.

3.1 Vector Representation
The inputs of our network are raw word tokens.
When using neural networks, we typically trans-
form word tokens into low-dimensional vectors.
In our method, each input word token is trans-
formed into a vector by looking up pre-trained
word embeddings. Moreover, we use position fea-
tures (PFs) to specify entity pairs, which are also
transformed into vectors by looking up position
embeddings.

3.1.1 Word Embeddings
Word embeddings are distributed representations
of words that map each word in a text to a ‘k’-
dimensional real-valued vector. They have re-
cently been shown to capture both semantic and
syntactic information about words very well, set-
ting performance records in several word similar-
ity tasks (Mikolov et al., 2013; Pennington et al.,
2014). Using word embeddings that have been
trained a priori has become common practice for
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Figure 3: The architecture of PCNNs (better viewed in color) used for distant supervised relation extrac-
tion, illustrating the procedure for handling one instance of a bag and predicting the relation between
Kojo Annan and Kofi Annan.

enhancing many other NLP tasks (Parikh et al.,
2014; Huang et al., 2014).

A common method of training a neural network
is to randomly initialize all parameters and then
optimize them using an optimization algorithm.
Recent research (Erhan et al., 2010) has shown
that neural networks can converge to better local
minima when they are initialized with word em-
beddings. Word embeddings are typically learned
in an entirely unsupervised manner by exploiting
the co-occurrence structure of words in unlabeled
text. Researchers have proposed several methods
of training word embeddings (Bengio et al., 2003;
Collobert et al., 2011; Mikolov et al., 2013). In
this paper, we use the Skip-gram model (Mikolov
et al., 2013) to train word embeddings.

3.1.2 Position Embeddings
In relation extraction, we focus on assigning labels
to entity pairs. Similar to Zeng et al. (2014), we
use PFs to specify entity pairs. A PF is defined
as the combination of the relative distances from
the current word to e1 and e2. For instance, in the
following example, the relative distances from son
to e1 (Kojo Annan) and e2 (Kofi Annan) are 3 and
-2, respectively.

... hired Kojo Annan , the son of Kofi Annan , in ...3 -2
Two position embedding matrixes (PF1 and

PF2) are randomly initialized. We then transform
the relative distances into real valued vectors by
looking up the position embedding matrixes. In
the example shown in Figure 3, it is assumed that

the size of the word embedding is dw = 4 and that
the size of the position embedding is dp = 1. In
combined word embeddings and position embed-
dings, the vector representation part transforms an
instance into a matrix S ∈ Rs×d, where s is the
sentence length and d = dw + dp ∗ 2. The matrix
S is subsequently fed into the convolution part.

3.2 Convolution
In relation extraction, an input sentence that is
marked as containing the target entities corre-
sponds only to a relation type; it does not predict
labels for each word. Thus, it might be necessary
to utilize all local features and perform this predic-
tion globally. When using a neural network, the
convolution approach is a natural means of merg-
ing all these features (Collobert et al., 2011).

Convolution is an operation between a vector of
weights, w, and a vector of inputs that is treated as
a sequence q. The weights matrix w is regarded
as the filter for the convolution. In the example
shown in Figure 3, we assume that the length of
the filter is w (w = 3); thus, w ∈ Rm (m = w∗d).
We consider S to be a sequence {q1,q2, · · · ,qs},
where qi ∈ Rd. In general, let qi:j refer to the
concatenation of qi to qj . The convolution op-
eration involves taking the dot product of w with
each w-gram in the sequence q to obtain another
sequence c ∈ Rs+w−1:

cj = wqj−w+1:j (1)

where the index j ranges from 1 to s+w−1. Out-
of-range input values qi, where i < 1 or i > s, are
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taken to be zero.
The ability to capture different features typi-

cally requires the use of multiple filters (or feature
maps) in the convolution. Under the assumption
that we use n filters (W = {w1,w2, · · · ,wn}),
the convolution operation can be expressed as fol-
lows:

cij = wiqj−w+1:j 1 ≤ i ≤ n (2)

The convolution result is a matrix C =
{c1, c2, · · · , cn} ∈ Rn×(s+w−1). Figure 3 shows
an example in which we use 3 different filters in
the convolution procedure.

3.3 Piecewise Max Pooling
The size of the convolution output matrix C ∈
Rn×(s+w−1) depends on the number of tokens s
in the sentence that is fed into the network. To
apply subsequent layers, the features that are ex-
tracted by the convolution layer must be com-
bined such that they are independent of the sen-
tence length. In traditional Convolution Neural
Networks (CNNs), max pooling operations are of-
ten applied for this purpose (Collobert et al., 2011;
Zeng et al., 2014). This type of pooling scheme
naturally addresses variable sentence lengths. The
idea is to capture the most significant features
(with the highest values) in each feature map.

However, despite the widespread use of single
max pooling, this approach is insufficient for rela-
tion extraction. As described in the first section,
single max pooling reduces the size of the hidden
layers too rapidly and is too coarse to capture fine-
grained features for relation extraction. In addi-
tion, single max pooling is not sufficient to cap-
ture the structural information between two enti-
ties. In relation extraction, an input sentence can
be divided into three segments based on the two
selected entities. Therefore, we propose a piece-
wise max pooling procedure that returns the max-
imum value in each segment instead of a single
maximum value. As shown in Figure 3, the output
of each convolutional filter ci is divided into three
segments {ci1, ci2, ci3} by Kojo Annan and Kofi
Annan. The piecewise max pooling procedure can
be expressed as follows:

pij = max(cij) 1 ≤ i ≤ n, 1 ≤ j ≤ 3 (3)

For the output of each convolutional filter,
we can obtain a 3-dimensional vector pi =
{pi1, pi2, pi3}. We then concatenate all vectors

p1:n and apply a non-linear function, such as the
hyperbolic tangent. Finally, the piecewise max
pooling procedure outputs a vector:

g = tanh(p1:n) (4)

where g ∈ R3n. The size of g is fixed and is no
longer related to the sentence length.

3.4 Softmax Output
To compute the confidence of each relation, the
feature vector g is fed into a softmax classifier.

o = W1g + b (5)

W1 ∈ Rn1×3n is the transformation matrix, and
o ∈ Rn1 is the final output of the network, where
n1 is equal to the number of possible relation types
for the relation extraction system.

We employ dropout (Hinton et al., 2012) on the
penultimate layer for regularization. Dropout pre-
vents the co-adaptation of hidden units by ran-
domly dropping out a proportion p of the hidden
units during forward computing. We first apply a
“masking” operation (g◦r) on g, where r is a vec-
tor of Bernoulli random variables with probability
p of being 1. Eq.(5) becomes:

o = W1(g ◦ r) + b (6)

Each output can then be interpreted as the con-
fidence score of the corresponding relation. This
score can be interpreted as a conditional probabil-
ity by applying a softmax operation (see Section
3.5). In the test procedure, the learned weight vec-
tors are scaled by p such that Ŵ1 = pW1 and are
used (without dropout) to score unseen instances.

3.5 Multi-instance Learning
In order to alleviate the wrong label problem,
we use multi-instance learning for PCNNs. The
PCNNs-based relation extraction can be stated as a
quintuple θ = (E,PF1,PF2,W,W1)2. The in-
put to the network is a bag. Suppose that there are
T bags {M1, M2, · · · ,MT } and that the i-th bag
contains qi instances Mi = {m1

i ,m
2
i , · · · , mqi

i }.
The objective of multi-instance learning is to pre-
dict the labels of the unseen bags. In this paper, all
instances in a bag are considered independently.
Given an input instance mj

i , the network with the
parameter θ outputs a vector o, where the r-th
component or corresponds to the score associated

2E represents the word embeddings.
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Algorithm 1 Multi-instance learning

1: Initialize θ. Partition the bags into mini-
batches of size bs.

2: Randomly choose a mini-batch, and feed the
bags into the network one by one.

3: Find the j-th instance mj
i (1 ≤ i ≤ bs) in each

bag according to Eq. (9).
4: Update θ based on the gradients of mj

i (1 ≤
i ≤ bs) via Adadelta.

5: Repeat steps 2-4 until either convergence or
the maximum number of epochs is reached.

with relation r. To obtain the conditional probabil-
ity p(r|m, θ), we apply a softmax operation over
all relation types:

p(r|mj
i ; θ) =

eor

n1∑
k=1

eok

(7)

The objective of multi-instance learning is to dis-
criminate bags rather than instances. To do so,
we must define the objective function on the bags.
Given all (T ) training bags (Mi, yi), we can define
the objective function using cross-entropy at the
bag level as follows:

J (θ) =
T∑

i=1

log p(yi|mj
i ; θ) (8)

where j is constrained as follows:

j∗ = arg max
j

p(yi|mj
i ; θ) 1 ≤ j ≤ qi (9)

Using this defined objective function, we max-
imize J(θ) through stochastic gradient descent
over shuffled mini-batches with the Adadelta
(Zeiler, 2012) update rule. The entire training pro-
cedure is described in Algorithm 1.

From the introduction presented above, we
know that the traditional backpropagation algo-
rithm modifies a network in accordance with all
training instances, whereas backpropagation with
multi-instance learning modifies a network based
on bags. Thus, our method captures the nature
of distant supervised relation extraction, in which
some training instances will inevitably be incor-
rectly labeled. When a trained PCNN is used for
prediction, a bag is positively labeled if and only
if the output of the network on at least one of its
instances is assigned a positive label.

4 Experiments

Our experiments are intended to provide evidence
that supports the following hypothesis: automat-
ically learning features using PCNNs with multi-
instance learning can lead to an increase in perfor-
mance. To this end, we first introduce the dataset
and evaluation metrics used. Next, we test several
variants via cross-validation to determine the pa-
rameters to be used in our experiments. We then
compare the performance of our method to those
of several traditional methods. Finally, we evalu-
ate the effects of piecewise max pooling and multi-
instance learning3.

4.1 Dataset and Evaluation Metrics

We evaluate our method on a widely used dataset4

that was developed by (Riedel et al., 2010) and
has also been used by (Hoffmann et al., 2011; Sur-
deanu et al., 2012). This dataset was generated by
aligning Freebase relations with the NYT corpus,
with sentences from the years 2005-2006 used as
the training corpus and sentences from 2007 used
as the testing corpus.

Following previous work (Mintz et al., 2009),
we evaluate our method in two ways: the held-out
evaluation and the manual evaluation. The held-
out evaluation only compares the extracted rela-
tion instances against Freebase relation data and
reports the precision/recall curves of the experi-
ments. In the manual evaluation, we manually
check the newly discovered relation instances that
are not in Freebase.

4.2 Experimental Settings

4.2.1 Pre-trained Word Embeddings
In this paper, we use the Skip-gram model
(word2vec)5 to train the word embeddings on the
NYT corpus. Word2vec first constructs a vocab-
ulary from the training text data and then learns
vector representations of the words. To obtain the
embeddings of the entities, we concatenate the to-
kens of a entity using the ## operator when the
entity has multiple word tokens. Since a compar-
ison of the word embeddings is beyond the scope

3With regard to the position feature, our experiments yield
the same positive results described in Zeng et al. (2014). Be-
cause the position feature is not the main contribution of this
paper, we do not present the results without the position fea-
ture.

4http://iesl.cs.umass.edu/riedel/ecml/
5https://code.google.com/p/word2vec/
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Window
size

Feature
maps

Word
dimension

Position
dimension

Batch
size

Adadelta parameter Dropout
probability

w = 3 n = 230 dw = 50 dp = 5 bs = 50 ρ = 0.95, ε = 1e−6 p = 0.5

Table 1: Parameters used in our experiments.

of this paper, our experiments directly utilize 50-
dimensional vectors.

4.2.2 Parameter Settings
In this section, we experimentally study the ef-
fects of two parameters on our models: the win-
dow size, w, and the number of feature maps, n.
Following (Surdeanu et al., 2012), we tune all of
the models using three-fold validation on the train-
ing set. We use a grid search to determine the op-
timal parameters and manually specify subsets of
the parameter spaces: w ∈ {1, 2, 3, · · · , 7} and
n ∈ {50, 60, · · · , 300}. Table 1 shows all parame-
ters used in the experiments. Because the position
dimension has little effect on the result, we heuris-
tically choose dp = 5. The batch size is fixed
to 50. We use Adadelta (Zeiler, 2012) in the up-
date procedure; it relies on two main parameters,
ρ and ε, which do not significantly affect the per-
formance (Zeiler, 2012). Following (Zeiler, 2012),
we choose 0.95 and 1e−6, respectively, as the val-
ues of these parameters. In the dropout operation,
we randomly set the hidden unit activities to zero
with a probability of 0.5 during training.

4.3 Comparison with Traditional Approaches
4.3.1 Held-out Evaluation
The held-out evaluation provides an approximate
measure of precision without requiring costly hu-
man evaluation. Half of the Freebase relations are
used for testing. The relation instances discovered
from the test articles are automatically compared
with those in Freebase.

To evaluate the proposed method, we select
the following three traditional methods for com-
parison. Mintz represents a traditional distant-
supervision-based model that was proposed by
(Mintz et al., 2009). MultiR is a multi-instance
learning method that was proposed by (Hoffmann
et al., 2011). MIML is a multi-instance multi-
label model that was proposed by (Surdeanu et al.,
2012). Figure 4 shows the precision-recall curves
for each method, where PCNNs+MIL denotes
our method, and demonstrates that PCNNs+MIL
achieves higher precision over the entire range of
recall. PCNNs+MIL enhances the recall to ap-

Figure 4: Performance comparison of the pro-
posed method with traditional approaches.

Top N Mintz MultiR MIML PCNNs+MIL
Top 100 0.77 0.83 0.85 0.86
Top 200 0.71 0.74 0.75 0.80
Top 500 0.55 0.59 0.61 0.69
Average 0.676 0.720 0.737 0.783

Table 2: Precision values for the top 100, top 200,
and top 500 extracted relation instances upon man-
ual evaluation.

proximately 34% without any loss of precision. In
terms of both precision and recall, PCNNs+MIL
outperforms all other evaluated approaches. No-
tably, the results of the methods evaluated for com-
parison were obtained using manually crafted fea-
tures. By contrast, our result is obtained by au-
tomatically learning features from original words.
The results demonstrate that the proposed method
is an effective technique for distant supervised re-
lation extraction. Automatically learning features
via PCNNs can alleviate the error propagation that
occurs in traditional feature extraction. Incorpo-
rating multi-instance learning into a convolutional
neural network is an effective means of addressing
the wrong label problem.

4.3.2 Manual Evaluation
It is worth emphasizing that there is a sharp de-
cline in the held-out precision-recall curves of PC-
NNs+MIL at very low recall (Figure 4). A manual
check of the misclassified examples that were pro-
duced with high confidence reveals that the ma-
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jorities of these examples are false negatives and
are actually true relation instances that were mis-
classified due to the incomplete nature of Free-
base.

Thus, the held-out evaluation suffers from false
negatives in Freebase. We perform a manual eval-
uation to eliminate these problems. For the manual
evaluation, we choose the entity pairs for which
at least one participating entity is not present in
Freebase as a candidate. This means that there is
no overlap between the held-out and manual can-
didates. Because the number of relation instances
that are expressed in the test data is unknown, we
cannot calculate the recall in this case. Instead, we
calculate the precision of the top N extracted rela-
tion instances. Table 2 presents the manually eval-
uated precisions for the top 100, top 200, and top
500 extracted instances. The results show that PC-
NNs+MIL achieves the best performance; more-
over, the precision is higher than in the held-out
evaluation. This finding indicates that many of the
false negatives that we predict are, in fact, true re-
lational facts. The sharp decline observed in the
held-out precision-recall curves is therefore rea-
sonable.

4.4 Effect of Piecewise Max Pooling and
Multi-instance Learning

In this paper, we develop a method of piecewise
max pooling and incorporate multi-instance learn-
ing into convolutional neural networks for distant
supervised relation extraction. To demonstrate the
effects of these two techniques, we empirically
study the performance of systems in which these
techniques are not implemented through held-out
evaluations (Figure 5). CNNs represents convolu-
tional neural networks to which single max pool-
ing is applied. Figure 5 shows that when piecewise
max pooling is used (PCNNs), better results are
produced than those achieved using CNNs. More-
over, compared with CNNs+MIL, PCNNs achieve
slightly higher precision when the recall is greater
than 0.08. Since the parameters for all the model
are determined by grid search, we can observe that
CNNs cannot achieve competitive results com-
pared to PCNNs when increasing the size of the
hidden layer of convolutional neural networks. It
means that we cannot capture more useful infor-
mation by simply increasing the network param-
eter. These results demonstrate that the proposed
piecewise max pooling technique is beneficial and

Figure 5: Effect of piecewise max pooling and
multi-instance learning.

can effectively capture structural information for
relation extraction. A similar phenomenon is also
observed when multi-instance learning is added to
the network. Both CNNs+MIL and PCNNs+MIL
outperform their counterparts CNNs and PCNNs,
respectively, thereby demonstrating that incorpo-
ration of multi-instance learning into our neural
network was successful in solving the wrong label
problem. As expected, PCNNs+MIL obtains the
best results because the advantages of both tech-
niques are achieved simultaneously.

5 Conclusion

In this paper, we exploit Piecewise Convolutional
Neural Networks (PCNNs) with multi-instance
learning for distant supervised relation extraction.
In our method, features are automatically learned
without complicated NLP preprocessing. We also
successfully devise a piecewise max pooling layer
in the proposed network to capture structural in-
formation and incorporate multi-instance learning
to address the wrong label problem. Experimental
results show that the proposed approach offers sig-
nificant improvements over comparable methods.
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