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Abstract

The narrative cloze is an evaluation met-
ric commonly used for work on automatic
script induction. While prior work in this
area has focused on count-based meth-
ods from distributional semantics, such as
pointwise mutual information, we argue
that the narrative cloze can be productively
reframed as a language modeling task. By
training a discriminative language model
for this task, we attain improvements of up
to 27 percent over prior methods on stan-
dard narrative cloze metrics.

1 Introduction

Although the concept of scripts in artificial intelli-
gence dates back to the 1970s (Schank and Abel-
son, 1977), interest in this topic has renewed with
recent efforts to automatically induce scripts from
text on a large scale. One particularly influential
work in this area, Chambers and Jurafsky (2008),
treats the problem of script induction as one of
learning narrative chains, which they accomplish
using simple textual co-occurrence statistics. For
the novel task of learning narrative chains, they
introduce a new evaluation metric, the narrative
cloze test, which involves predicting a missing
event from a chain of events drawn from text.
Several follow-up works (Chambers and Jurafsky,
2009; Jans et al., 2012; Pichotta and Mooney,
2014; Rudinger et al., 2015) employ and ex-
tend Chambers and Jurafsky (2008)’s methods for
learning narrative chains, each using the narrative
cloze to evaluate their work. 1

In this paper, we take the position that the nar-
rative cloze test, which has been treated predom-

1A number of related works on script induction use alter-
native task formulations and evaluations. (Chambers, 2013;
Cheung et al., 2013; Cheung and Penn, 2013; Frermann et
al., 2014; Manshadi et al., 2008; Modi and Titov, 2014; Reg-
neri et al., 2010)

inantly as a method for evaluating script knowl-
edge, is more productively thought of simply as a
language modeling task.2 To support this claim,
we demonstrate a marked improvement over pre-
vious methods on this task using a powerful dis-
criminative language model – the Log-Bilinear
model (LBL). Based on this finding, we believe
one of the following conclusions must follow: ei-
ther discriminative language models are a more
effective technique for script induction than pre-
vious methods, or the narrative cloze test is not a
suitable evaluation for this task.3

2 Task Definition

Following the definitions of Chambers and Juraf-
sky (2008), a narrative chain is “a partially or-
dered set of narrative events that share a common
actor,” where a narrative event is “a tuple of an
event (most simply a verb) and its participants,
represented as typed dependencies.” (De Marneffe
et al., 2006) Formally, e := (v, d), where e is a
narrative event, v is a verb lemma, and d is the
syntactic dependency (nsubj or dobj) between v
and the protagonist. As an example, consider the
following narrative:

John studied for the exam and aced it.
His teacher congratulated him.

With John as protagonist, we have a se-
quence of three narrative events: (study, nsubj),
(ace, nsubj), and (congratulate, dobj).

In the narrative cloze test, a sequence of nar-
rative events (like the example provided here) is
extracted automatically from a document, and one

2Manshadi et al. (2008) also take a language modeling
approach to event prediction, although their experiments are
not directly comparable.

3We note that, whether the narrative cloze was originally
intended as a rigorous evaluation of script induction tech-
niques or merely a preliminary metric, we are motivated by
the observation that this evaluation has nonetheless become a
standard metric for this task.
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narrative event is removed; the task is to predict
the missing event.

Data Each of the models discussed in the fol-
lowing section are trained and tested on chains of
narrative events extracted from stories in the New
York Times portion of the Gigaword corpus (Graff
et al., 2003) with Concrete annotations (Ferraro et
al., 2014). Training is on the entirety of the 1994–
2006 portion (16,688,422 chains with 58,515,838
narrative events); development is a subset of the
2007–2008 portion (10,000 chains with 35,109
events); and test is a subset of the 2009–2010 por-
tion (5,000 chains with 17,836 events). All ex-
tracted chains are of length two or greater.

Chain Extraction To extract chains of narra-
tive events for training and testing, we rely on
the (automatically-generated) coreference chains
present in Concretely Annotated Gigaword. Each
narrative event in an extracted chain is derived
from a single mention in the corresponding coref-
erence chain, i.e., it consists of the verb and syn-
tactic dependency (nsubj or dobj) that governs
the head of the mention, if such a dependency ex-
ists. Overlapping mentions within a coreference
chain are collapsed to a single mention to avoid
redundant extractions.

3 Models

In this section we present each of the models we
train for the narrative cloze evaluation. In a sin-
gle narrative cloze test, a sequence of narrative
events, (e1, · · · , eL), with an insertion point, k,
for the missing event is provided. Given a fixed
vocabulary of narrative events, V , a candidate se-
quence is generated for each vocabulary item by
inserting that item into the sequence at index k.
Each model generates a score for the candidate se-
quences, yielding a ranking over the vocabulary
items. The rank assigned to the actual missing vo-
cabulary item is the score the model receives on
that cloze test. In this case, we set V to include
all narrative events, e, that occur at least ten times
in training, yielding a vocabulary size of 12,452.
All out-of-vocabulary events are converted to (and
scored as) the symbol UNK.

3.1 Count-based Methods

Unigram Baseline (UNI) A simple but strong
baseline introduced by Pichotta and Mooney
(2014) for this task is the unigram model: can-

didates are ranked by their observed frequency in
training, without regard to context.

Unordered PMI (UOP) The original model for
this task, proposed by Chambers and Jurafsky
(2008), is based on the pointwise mutual informa-
tion (PMI) between events.

pmi(e1, e2) ∝ log
C(e1, e2)

C(e1, ∗)C(∗, e2)
(1)

Here, C(e1, e2) is the number of times e1 and e2

occur in the same narrative event sequence, i.e.,
the number of times they “had a coreferring entity
filling the values of [their] dependencies,” and the
ordering of e1 and e2 is not considered. In our
implementation, individual counts are defined as
follows:

C(e, ∗) :=
∑
e′∈V

C(e, e′) (2)

This model selects the best candidate event in a
given cloze test according to the following score:

ê = arg max
e∈V

L∑
i=1

pmi(e, ei) (3)

We tune this model with an option to apply a mod-
ified version of discounting for PMI from Pantel
and Ravichandran (2004).

Ordered PMI (OP) This model is a slight vari-
ation on Unordered PMI introduced by Jans et al.
(2012). The only distinction is that C(e1, e2) is
treated as an asymmetric count, sensitive to the or-
der in which e1 and e2 occur within a chain.

Bigram Probability (BG) Another variant intro-
duced by Jans et al. (2012), the “bigram proba-
bility” model uses conditional probabilities rather
than PMI to compute scores. In a cloze test, this
model selects the following event:

ê = arg max
e∈V

k∏
i=1

p(e|ei)
L∏

i=k+1

p(ei|e) (4)

where p(e2|e1) = C(e1,e2)
C(e1,∗) and C(e1, e2) is asym-

metric. We tune this model with an option to per-
form absolute discounting. Note that this model is
not a bigram model in the typical language mod-
eling sense.
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Len UNI UOP OP BG LBL2 LBL4 Tests
2 490 1887 2363 1613 369 371 5668
3 452 1271 1752 1009 330 334 2793
4 323 806 1027 502 229 232 1616
5 364 735 937 442 254 243 1330
6 347 666 891 483 257 249 942
7 330 629 838 468 241 237 630
8 259 466 510 278 208 201 512
9 299 610 639 348 198 195 396

10+ 331 472 397 277 240 229 3949
ALL 400 1115 1382 868 294 292 17836

(a) Average Rank

Len UNI UOP OP BG LBL2 LBL4 Tests
2 .148 .053 .077 .149 .205 .204 5668
3 .179 .043 .065 .164 .217 .215 2793
4 .226 .042 .064 .195 .253 .253 1616
5 .225 .049 .076 .213 .261 .266 1330
6 .213 .054 .079 .214 .254 .263 942
7 .213 .061 .092 .215 .243 .247 630
8 .235 .063 .091 .244 .268 .278 512
9 .259 .058 .107 .252 .280 .278 396

10+ .191 .082 .113 .193 .198 .205 3949
ALL .186 .057 .083 .181 .221 .223 17836

(b) Mean Reciprocal Rank (MRR)

Len UNI UOP OP BG LBL2 LBL4 Tests
2 23.9 09.4 11.9 23.8 34.0 34.1 5668
3 28.8 08.2 11.1 28.0 36.3 35.6 2793
4 33.9 07.7 14.4 32.2 38.7 38.7 1616
5 33.4 10.1 18.7 34.0 39.6 40.3 1330
6 34.8 10.9 22.2 36.8 40.5 41.9 942
7 32.5 12.2 24.0 34.9 39.4 39.2 630
8 36.7 13.7 21.7 38.7 41.6 43.2 512
9 37.9 15.2 28.5 39.1 41.7 43.2 396

10+ 31.4 18.5 24.0 32.7 35.7 35.7 3949
ALL 29.5 11.6 16.8 29.8 36.5 36.6 17836

(c) Percent Recall at 10

Len UNI UOP OP BG LBL2 LBL4 Tests
2 41.7 16.9 25.5 38.6 51.2 51.0 5668
3 46.8 20.2 30.2 45.0 54.8 54.0 2793
4 53.8 25.3 37.8 54.0 59.0 60.0 1616
5 52.5 29.9 40.5 54.3 59.1 61.1 1330
6 53.9 33.2 40.7 55.2 60.6 61.7 942
7 51.8 34.3 42.7 56.5 61.6 63.8 630
8 58.2 42.2 47.7 61.3 67.2 67.0 512
9 58.1 42.2 47.7 60.1 66.2 67.0 396

10+ 49.9 47.4 50.1 54.2 58.4 59.8 3949
ALL 48.0 28.6 36.4 48.3 56.3 56.8 17836

(d) Percent Recall at 50

Table 1: Narrative cloze results bucketed by chain length for each model and scoring metric with best results in bold. The
models are Unigram Model (UNI), Unordered PMI (UOP), Ordered PMI (OP), Bigram Probability Model (BG), Log-Bilinear
Model N=2 (LBL2), Log-Bilinear Model N=4 (LBL4)

Skip N-gram We tune the previous three
models (UOP, OP, and BG) with the skip n-gram
counting methods introduced by Jans et al. (2012)
for this task, varying the ways in which the
counts, C(e1, e2), are collected. Using skip-n
counting, C(e1, e2) is incremented every time e1

and e2 co-occur within a window of size n. We
experiment with skip-0 (consecutive events only),
skip-3 (window size 3), and skip-all (entire chain
length) settings.

For each of the four narrative cloze scoring
metrics we report on (average rank, mean re-
ciprocal rank, recall at 10, and recall at 50),
we tune the Unordered PMI, Ordered PMI, and
Bigram Probability models over the following
parameter space: {skip-0, skip-3, skip-all} ×
{discount, no-discount} × {T=4, T=10, T=20},
where T is a pairwise count threshold.

3.2 A Discriminative Method

Log-Bilinear Language Model (LBL) The
Log-Bilinear language model is a language model
that was introduced by Mnih and Hinton (2007).
Like other language models, the LBL produces
a probability distribution over the next possible
word given a sequence of N previously observed
words. N is a hyper-parameter that determines the
size of the context used for computing the prob-
abilities. While many variants of the LBL have
been proposed since its introduction, we use the

simple variant described below.
Formally, we associate one context vector ce ∈

Rd, one bias parameter be ∈ R, and one tar-
get vector te ∈ Rd to each narrative event
e ∈ V ∪ { UNK, BOS, EOS }. V is the vocab-
ulary of events and BOS, EOS, and UNK are the
beginning-of-sequence, end-of-sequence, and out-
of-vocabulary symbols, respectively. The proba-
bility of an event e that appears after a sequence
s = [s1, s2, . . . , sN ] of context words is defined
as:

p(e|s) =
exp(tᵀ

e t̂s + be)∑
e′∈V∪{ UNK, EOS }

exp(tᵀ
e′ t̂s + be′)

where t̂s =
N∑

j=1

mj � csj

The� operator performs element-wise multiplica-
tion of two vectors. The parameters that are opti-
mized during training are mj ∀j ∈ [1, . . . , N ] and
ce, te ∀e ∈ V ∪ { UNK, BOS, EOS }. To calcu-
late the log-probability of a sequence of narrative
events E = (e1, . . . , eL) we compute:

l(S) =

(
n∑

i=1

log(p(ei|fE(ei)))

)
+ log(p(EOS|fE(EOS)))

(5)

Here fE is a function that returns the sequence
of N words that precede the event ei in the se-
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Figure 1: Narrative cloze results over all chain lengths. Unigram Model (UNI), Unordered PMI Model (UOP), Ordered PMI
Model (OP), Bigram Probability Model (BG), Log-Bilinear Model with context size 2 or 4 (LBL2, LBL4). Average Rank
(avgrnk), Mean Reciprocal Rank (mrr), % Recall at 10 (rec10), % Recall at 50 (rec50).

quence E′ made by prepending N BOS tokens and
appending a single EOS token to E.

The LBL models are trained by minimizing
the objective described in Equation 5 for all the
sequences in the training corpus. We used the
OxLM toolkit (Paul et al., 2014) which internally
uses Noise-Contrastive Estimation (NCE) (Gut-
mann and Hyvärinen, 2010) and processor paral-
lelization for speeding up the training. For this
task, we train LBL models with N = 2 (LBL2)
and N = 4 (LBL4). In our experiments, increas-
ing context size to N = 6 did not significantly
improve (or degrade) performance.

4 Experimental Results

Table 1 shows the results of 17,836 narrative cloze
tests (derived from 5,000 held-out test chains),
with results bucketed by chain length. Perfor-
mance is reported on four metrics: average rank,
mean reciprocal rank, recall at 10, and recall at 50.

For each of the four metrics, the best overall
performance is achieved by one of the two LBL
models (context size 2 or 4); the LBL models
also achieve the best performance on every chain
length. Not only are the gains achieved by the
discriminative LBL consistent across metrics and

chain length, they are large. For average rank, the
LBL achieves a 27.0% relative improvement over
the best non-discriminative model; for mean re-
ciprocal rank, a 19.9% improvement; for recall at
10, a 22.8% improvement; and for recall at 50,
a 17.6% improvement. (See Figure 1.) Further-
more, note that both PMI models and the Bigram
model have been individually tuned for each met-
ric, while the LBL models have not. (The two LBL
models are tuned only for overall perplexity on the
development set.)

All models trend toward improved performance
on longer chains. Because the unigram model also
improves with chain length, it appears that longer
chains contain more frequent events and are thus
easier to predict. However, LBL performance is
also likely improving on longer chains because
of additional contextual information, as is evident
from LBL4’s slight relative gains over LBL2 on
longer chains.

5 Conclusion

Pointwise mutual information and other related
count-based techniques have been used widely
to identify semantically similar words (Church
and Hanks, 1990; Lin and Pantel, 2001; Tur-
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ney and Pantel, 2010), so it is natural that these
techniques have also been applied to the task
of script induction. Qualitatively, PMI often
identifies intuitively compelling matches; among
the top 15 events to share a high PMI with
(eat, nsubj) under the Unordered PMI model, for
example, we find events such as (overeat, nsubj),
(taste, nsubj), (smell, nsubj), (cook, nsubj),
and (serve, dobj). When evaluated by the narra-
tive cloze test, however, these count-based meth-
ods are overshadowed by the performance of a
general-purpose discriminative language model.

Our decision to attempt this task with the Log-
Bilinear model was motivated by the simple ob-
servation that the narrative cloze test is, in reality,
a language modeling task. Does the LBL’s suc-
cess on this task mean that work in script induc-
tion should abandon traditional count-based meth-
ods for discriminative language modeling tech-
niques? Or does it mean that an alternative eval-
uation metric is required to measure script knowl-
edge? While we believe our results are sufficient
to conclude that one of these alternatives is the
case, we leave the task of determining which to
future research.
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