
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1637–1642,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Reverse-engineering Language: A Study on the Semantic
Compositionality of German Compounds

Corina Dima
Collaborative Research Center 833
University of Tübingen, Germany

corina.dima@uni-tuebingen.de

Abstract

In this paper we analyze the perfor-
mance of different composition models
on a large dataset of German compound
nouns. Given a vector space model for the
German language, we try to reconstruct
the observed representation (the corpus-
estimated vector) of a compound by com-
posing the observed representations of its
two immediate constituents. We explore
the composition models proposed in the
literature and also present a new, simple
model that achieves the best performance
on our dataset.

1 Introduction

Vector space models of language like the ones
presented in (Collobert et al., 2011b; Mikolov et
al., 2013; Pennington et al., 2014) create good
representations for the individual words of a lan-
guage. However, the words in a language can
be combined into infinitely many distinct, well-
formed phrases and sentences. Creating meaning-
ful, reusable representations for such longer word
sequences is still an open problem.

In this paper we focus on building represen-
tations for syntactic units just above the word
level, by exploring compositional models for com-
pounds. Bauer (2001) defines a compound as “a
lexical unit made up of two or more elements,
each of which can function as a lexeme indepen-
dent of the other(s) in other contexts” (e.g. apple
tree). The vast majority of compounds are com-
positional, i.e. we can understand the meaning of
the compound if we know the meaning of its con-
stituent words. We would like to equip the vector
space model with a composition function able to
construct a composite representation for apple tree
from the representations of apple and tree. The
composite representation should ideally be indis-
tinguishable from its observed representation, i.e.

the representation learned directly by the language
model if the compound is part of the dictionary.

We situate our investigations in the context of
the German language, a language where com-
pounds represent an important fraction of the vo-
cabulary. Baroni et al. (2002) analyzed the 28 mil-
lion words German APA news corpus and discov-
ered that compounds account for 47% of the word
types but only 7% of the overall token count, with
83% of compounds having a corpus frequency of 5
or lower. The high productivity of the compound-
ing process makes the compositional approach the
most tractable way to create meaningful represen-
tations for all the compounds that have been or will
be coined by the speakers of the German language.

German compounds have a strategic advantage
for our study: they are generally written as a
contiguous word, irrespective of how many con-
stituents they have. Our example English com-
pound, apple tree, translates into the German com-
pound Apfelbaum, with the head Baum “tree” and
the modifier Apfel “apple”. Because the com-
pound is written as a single word, we can di-
rectly learn the representations for the compound
and for its constituents. Given a large dataset of
German compounds together with their immedi-
ate constituents, and the corresponding distributed
representations for each of the individual words,
one can try to reverse-engineer the compounding
process and learn the parameters of a function that
combines the representation of the constituents
into the representation of the compound. More
formally, we are interested in learning a compo-
sition function f such that

ccomp = f(mobs, hobs)

where ccomp ∈ Rn is the composite representa-
tion of the compound and mobs, hobs ∈ Rn are
the observed representations of its modifier and its
head. The function should minimize J , the mean
squared error between the composite (ccomp) and

1637

the observed (cobs) representations of the |C| com-
pounds in the training set:

J =
|C|∑
i=1

1
n

n∑
j=1

(ccomp
ij − cobs

ij)2

Several compositionality models have already
been proposed in the literature (Mitchell and La-
pata, 2010; Baroni and Zamparelli, 2010; Socher
et al., 2012). In this paper we evaluate several
of the proposed composition functions and also
present a new composition model which outper-
forms all previous models on a dataset of German
compounds.

2 Word Representations and
Compounds Dataset

We trained 4 vector space language models for
German (with 50, 100, 200 and 300 dimensions
respectively) using the GloVe package (Penning-
ton et al., 2014) and a 10 billion token raw-text
corpus extracted from the DECOW14AX corpus
(Schäfer, 2015). We use a vocabulary of 1,029,270
(1M) words, obtained by selecting all the words
with a minimum frequency of 100 (the full vocab-
ulary had 50M unique words). We used the default
GloVe training parameters, the only modifications
being the use of a symmetric context when con-
structing the co-occurence matrix (10 words to the
left and to the right of the target word) and training
each model for 15 iterations. All the vector spaces
were normalized to the L2-norm, first across fea-
tures then across samples using scikit-learn (Pe-
dregosa et al., 2011).

The German compounds dataset used in the ex-
periments is a subset of the 54759 compounds
available in GermaNet 9.01. The compounds
in the list were automatically split and manu-
ally post-corrected (Henrich and Hinrichs, 2011).
Each entry in the list is a triple of the form (com-
pound, modifier, head). We filtered the entries in
the list, keeping only those where all three words
have a minimum frequency of 500 in the support
corpus used to create the vector space represen-
tations. The reason for the filtering step is that
a “well-learned” representation (based on a suffi-
ciently large number of contexts) should allow for
a more accurate reconstruction than a representa-
tion based only on a few contexts. The filtered
dataset contains 34497 entries. This dataset was

1http://www.sfs.uni-tuebingen.de/lsd/compounds.shtml

randomized and partitioned into train, test
and dev splits according to the 70-20-10 rule. The
dataset contains 8580 unique modifiers and heads,
and a dictionary of 41732 unique words. 1345
compounds appear as the modifier or head of an-
other compound.

3 12 ways to Represent A Compound

We adopt a notation similar to the one introduced
in (Mitchell and Lapata, 2010), where the compos-
ite representation p is the result of applying a com-
position function f to the vectors u and v. In this
study we tested the following composition func-
tions:

1. p = v, the second constituent of the com-
pound

2. p = u, the first constituent of the compound
3. p = u � v, component-wise vector multipli-

cation
4. p = (u · u)v + (λ− 1)(u · v)u, dilation
5. p = 0.5u+ 0.5v, vector addition
6. p = λu + βv, weighted vector addition,

where the λ and β are estimated using the
training set. Models 1 through 6 were intro-
duced in (Mitchell and Lapata, 2010).

7. p = Uv, where v ∈ Rn is the vectorial
representation of the head word (given) and
U ∈ Rn×n is a matrix representation for the
modifier, estimated with the help of the train-
ing data. The model estimates one matrix for
each word that is used as a modifier. Referred
to as alm in (Baroni and Zamparelli, 2010)
and as Lexfunc in (Dinu et al., 2013b).

8. p = M1u + M2v, where M1,M2 ∈ Rn×n

are two matrices that modify the first and the
second constituent vectors, respectively. In
contrast to the previous model, this model es-
timates just one matrix for all the modifiers
and one matrix for all the head words. Ref-
ered to as EAM in (Zanzotto et al., 2010) and
as Fulladd in (Dinu et al., 2013b).

9. p = g(W [u; v]), where: [u; v] ∈ R2n×1 is the
concatenation of the individual word vectors;
W ∈ Rn×2n is a global matrix that: (i) com-
bines the individual dimensions of the con-
catenated input vector [u; v]; (ii) brings the
composite representation back into the Rn×1

space; g is an element-wise function, in our
experiments the hyperbolic tangent tanh. In-
troduced in (Socher et al., 2010).

10. p = g(W [V u;Uv]). Introduced in (Socher

1638

et al., 2012), it is a generalization of model 7.
Each word is represented using an Rn×n ma-
trix and a Rn vector. The vectors are given,
while the matrices are estimated using the
training data. Referred to as Fulllex in (Dinu
et al., 2013b).

11. p = u�u′+v�v′′, the additive mask model
(Addmask) and

12. p = g(W [u � u′; v � v′′]), the global ma-
trix mask model (Wmask), both presented in
subsection 3.1.

Models 1 through 8 were tested using the im-
plementations available in the DISSECT toolkit
(Dinu et al., 2013a). As a side note, the Lex-
func implementation in DISSECT does not pro-
duce a composite representation for 11.5% of the
our test data, where a word does not appear as a
modifier during training. Therefore, we reimple-
mented the Lexfunc model and solved the missing
training material problem by initializing the ma-
trix for all the words in the dictionary with I + ε,
the identity matrix plus a small amount of Gaus-
sian noise. This type of initialization was proposed
by (Socher et al., 2012), and allows the model to
back-off to the model p = v when there is no data
to estimate the parameters of the modifier matrix.
We also reimplemented models 9 and 10, which
were used in (Socher et al., 2010; Socher et al.,
2012), as the existing implementations are part of
a more complex recursive architecture aimed at
constructing representations for full sentences.

3.1 The mask models

The newly introduced mask models build upon the
idea that when a word w enters a composition pro-
cess, there is some variation in its meaning de-
pending on whether it is the first or the second el-
ement of the composition. Think, for instance, of
the compounds company car and car factory. In
the first case, car has its primary denotation, that
of a road vehicle. In the second case, what mat-
ters more about the car is its product aspect, the
fact that it is an “artifact produced in a factory”. A
good representation of the word car should encode
both aspects. Likewise, a good composition model
should be able to select from the individual word
representations only those aspects that are relevant
for the composition process.

We want to give the composition model the pos-
sibility to deal with these slight sense variations,
so we train, for each word in the dictionary, two

masks, one for the case when it is the first word
in the composition process and one for when it is
the second word. The masks of the word w rep-
resented by u ∈ Rn are two vectors u′, u′′ ∈ Rn.
The mask vectors are initialized with a vector of
all ones, 1, and estimated with the help of the train-
ing data. Each time w is the first word in the com-
position process, it is represented as the element-
wise multiplication of the vector u and the mask
u′, u � u′. When w is the second word in the
composition, it is represented by the element-wise
multiplication of u and the mask u′′, u� u′′.

It is important to note that the initial vector rep-
resentations remain fixed during the learning pro-
cess. The learning process only affects the mask
vectors. The composite representation of a com-
pound like car factory is obtained by combin-
ing the masked representations, ucar � u′car and
vfactory � v′′factory. We tried two different combi-
nation methods: (i) p = u � u′ + v � v′′, called
Addmask (model 11), where the masked represen-
tations are combined via component-wise addi-
tion, and (ii) p = g(W [u � u′; v � v′′]), called
Wmask (model 12), where the combination of the
masked representations is made via a global ma-
trix W ∈ Rn×2n and a nonlinearity g (tanh), sim-
ilar to model 10.

3.2 Implementing composition models

Models 7, 9 and 10 and the mask models were im-
plemented using neural network architectures in
the Torch7 library (Collobert et al., 2011a). We
use the mean squared error as a training criterion,
and optimize all models using Adagrad (Duchi et
al., 2011) and a mini-batch of 100 samples. The
hyperparameters were chosen by testing different
parameter values and evaluating their performance
on the dev set. To avoid overfitting we used early
stopping (Prechelt, 1998). All the implemented
models keep the input vectors fixed during the
composition process.

Training the mask models entails estimating
modifier and head masks for every word in the dic-
tionary D. The two types of masks to be learned
can be formalized as two matrices WM ,WH ∈
Rn×|D|, where n is the size of the initial word
representations. The masks of the word wi ∈ D
are the ith rows in WM and WH . In Torch7 such
representations can be learned using lookup table
layers (Collobert et al., 2011b), which map matrix
indices to the corresponding row vector.

1639

The masked representation of the modifier is
obtained by first feeding the index of the word to
LTWM

, the modifier lookup table, to obtain the
modifier mask, and then multiplying the modifier
mask with the initial representation for the modi-
fier. The masked representation of the head is ob-
tained in a similar manner via a lookup operation
in LTWH

, the head lookup table. The Addmask
and Wmask models differ only in the composi-
tion method used after the masking process: the
masked representations are directly added together
in the case of Addmask and are passed through a
composition matrix W ∈ Rn×2n and a nonlin-
earity g in the case of Wmask. The two matri-
ces WM ,WH are initialized with all ones and are
modified via backpropagation during the training
process.

4 Evaluation and Results

The twelve composition models presented in Sec-
tion 3 were evaluated using word representations
of increasing size (described in Section 2). All
the models are trained on the train split and
tested on the test split. We used the rank eval-
uation method proposed by (Baroni and Zampar-
elli, 2010) for a similar task: first, we generate
a composite representation for each of the 6901
compounds in the test set; then, we use the co-
sine similarity to rank each composite representa-
tion with respect to the observed representations
of the 41732 unique words in the dataset dictio-
nary. If the observed representation is the nearest
neighbour, the composition is assigned the rank 1.
Similar to (Baroni and Zamparelli, 2010), we as-
sign the rank 1000 (≥1K) when the observed rep-
resentation is not one of the nearest 1000 neigh-
bours of the composite representation. We then
compute the first, second and third quartiles (Q1,
Q2, Q3) across all the compounds in the test set.
A Q1 value of 2 means that the first 25% of the
data was only assigned ranks 1 and 2. Similarly,
Q2 and Q3 refer to the ranks assigned to the first
50% and 75% of data, respectively. The results of
our evaluation are displayed in Table 1.

The observed representation of the head (model
1) was used as a strong baseline for the compound
composition task. Two of the tested models, mul-
tiplicative (model 3) and dilation (model 4) score
worse than the head baseline, while the additive
models (5 and 6) score only slightly above it. The
fact that the worst performing model is the multi-

plicative model is surprising considering its good
performance in previous studies (Mitchell and La-
pata, 2010). This might be either a side-effect of
the normalization procedure, or a genuine incom-
patibility of this compositionality model with the
vectorial representations produced by GloVe.

The new Addmask and Wmask models (intro-
duced in Section 3.1) perform very well, with
Wmask producing the best results on the test
dataset across all dimensions. It is interesting to
note that the linguistically motivated Lexfunc and
Fulllex models, which build dedicated representa-
tions for each individual constituent, are outper-
formed by a simple model like Fulladd, that only
learns two modification matrices, one for each po-
sition. The explanation is, in our opinion, that the
available training material is not enough for train-
ing all the parameters of the complex Lexfunc and
Fulllex models, but good enough for the more sim-
ple Fulladd.

The mask models are computationally cheaper
than models like Lexfunc and Fulllex, as they they
only train 2n parameters for each word in the vo-
cabulary, and not n2 parameters like the aforemen-
tioned models. They manage to strike a balance
and learn a dedicated representation for each con-
stituent with a small number of parameters, thus
performing better than the more complex models.

We used non-parametric statistical tests to de-
tect significant differences between the results ob-
tained by the models. We focused our analysis on
the best performing 4 models: model 9, which we
will label the Matrix model, Fulladd (model 8),
Addmask (model 11) and Wmask (model 12). The
comparison takes into account two separate fac-
tors: (i) differences between the models using rep-
resentations of the same size; (ii) differences in the
performance of the same model using representa-
tions of different sizes.

A Friedman test on the ranks obtained by the
4 selected models on representations of size 300
showed that there is a significant difference be-
tween the models (p < 0.01). Pairwise compar-
isons (using the Wilcoxon signed rank test and
Bonferroni corrections) showed that there is a sig-
nificant difference (p < 0.01) between all but one
pair of models, namely the Matrix and the Ad-
dmask models (p = 0.9). The same test confirmed
that there are significant differences in the perfor-
mance of the best model Wmask when using repre-
sentations of different sizes (p < 0.01). Pairwise

1640

no f I 50d 100d 200d 300d
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

1 p = v D 66 445 ≥1K 36 202 ≥1K 33 197 989 29 174 884
2 p = u D 445 ≥1K ≥1K 215 ≥1K ≥1K 171 917 ≥1K 144 808 ≥1K
3 p = u� v D ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K ≥1K
4 p = (u · u)v + (λ− 1)(u · v)u D 75 492 ≥1K 38 213 ≥1K 35 209 ≥1K 30 181 926
5 p = 0.5u+ 0.5v D 85 408 ≥1K 29 137 600.5 28 140 637 24 120 553
6 p = λu+ βv D 62 329 ≥1K 23.5 118 556 23 121 568 20 105 503
7 p = Uv (on 88.5% of test data) D 38 415 ≥1K 15 147 ≥1K 9 61 636 8 47 443
7 p = Uv R 10 88 829 8 64 595 7 48 479.5 7 51 526.5
10 p = g(W [V u;Uv]) R 3 18 178 3 12 111 3 16 188 4 26 334
9 p = g(W [u; v]) R 4 19 137 3 11 64 2 7 33 2 7 29
11 p = u� u′ + v � v′′ N 3 12 85 3 8 45 3 7 30 3 7 27
8 p = M1u+M2v D 4 19 135 3 10 61 2 7 33 2 6 27
12 p = g(W [u� u′; v � v′′]) N 2 9 62 2 7 35 2 6 25 2 6 24

Table 1: Quartiles for the 6901 composite representations in the test set, ranked with respect to the
observed representations. Best possible rank is 1. D marks the models tested with DISSECT, R marks
reimplementations of existing models and N marks new models.

comparisons showed that Wmask model signifi-
cantly improves its performance (p < 0.01) when
using word representations of increasing size (50,
100, 200 and 300 dimensions).

The twelve composition models were also com-
pared in terms of the mean squared error (MSE)
objective function, by computing the MSE be-
tween the composite and the observed represen-
tation of the compounds in the test set. The best
scoring models in the rank evaluation were also
the best in the MSE evaluation. However, the dif-
ference in performance between the best and the
worst models was considerably smaller: the MSE
of the multiplicative model is only twice as large
as the MSE of the best performing Wmask model.
This is in contrast to the rank evaluation where the
multiplicative model assigned the observed repre-
sentations in the test set only ranks ≥ 1000, while
Wmask assigned ranks ≤ 25 to 75% of the test
data. Additional investigations are necessary to es-
timate the impact of different objective functions
on the performance of compositional models.

5 Comparison to related work

The experiments reported in this paper are, to the
best of our knowledge, the first large scale experi-
ments on the composition of German compounds.
Other studies (Kisselew et al., 2015; Lazaridou
et al., 2013) focused on morphologically complex
words in German and English respectively. In
terms of the size of the training and test material,
our experiments are closest to the adjective-noun
experiments in (Baroni and Zamparelli, 2010) and
(Dinu et al., 2013b) where the lexical function

model performed the best, with lowest reported
median ranks (Q2) above 100.

6 Conclusions

Twelve composition models were evaluated on the
task of building compositional representations for
German compounds. The best results (median
rank 6) were obtained by the newly introduced
Wmask model, p = g(W [u� u′; v� v′′]). The re-
sults show that it is possible to learn a composition
function specific to compounds, an idea which we
would like to further explore using existing com-
pound datasets for English (Ó Séaghdha, 2008;
Tratz and Hovy, 2010). The implementation of
the newly introduced composition methods can be
downloaded from the author’s website.

Acknowledgments

The author would like to thank Emanuel Dima,
Erhard Hinrichs, Daniël de Kok, Dörte de Kok
and Jianqiang Ma, as well as the anonymous re-
viewers for their insightful comments and sugges-
tions. Financial support for the research reported
in this paper was provided by the German Re-
search Foundation (DFG) as part of the Collabo-
rative Research Center “Emergence of Meaning”
(SFB 833), project A3.

References

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Represent-
ing adjective-noun constructions in semantic space.
In Proceedings of the Conference on Empirical

1641

Methods in Natural Language Processing (EMNLP
2010), pages 1183–1193.

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Predicting the components of German nom-
inal compounds. In F. van Harmelen, editor, Pro-
ceedings of the 15th European Conference on Artifi-
cial Intelligence (ECAI), pages 470–474.

Laurie Bauer. 2001. Compounding. In Martin
Haspelmath, editor, Language Typology and Lan-
guage Universals. Mouton de Gruyter, The Hague.

Ronan Collobert, Koray Kavukcuoglu, and Clément
Farabet. 2011a. Torch7: A Matlab-like environment
for machine learning. In BigLearn, NIPS Workshop,
number EPFL-CONF-192376.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011b. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Georgiana Dinu, The Pham Nghia, and Marco Baroni.
2013a. DISSECT - DIStributional SEmantics Com-
position Toolkit. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2013), pages 31–36, Sofia, Bulgaria.

Georgiana Dinu, The Pham Nghia, and Marco Baroni.
2013b. General estimation and evaluation of com-
positional distributional semantic models. In Work-
shop on Continuous Vector Space Models and their
Compositionality, Sofia, Bulgaria.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, 12:2121–2159.

Verena Henrich and Erhard W. Hinrichs. 2011. De-
termining Immediate Constituents of Compounds in
GermaNet. In Proceedings of Recent Advances in
Natural Language Processing (RANLP 2011), pages
420–426, Hissar, Bulgaria.

Max Kisselew, Sebastian Padó, Alexis Palmer, and Jan
Šnajder. 2015. Obtaining a Better Understand-
ing of Distributional Models of German Deriva-
tional Morphology. In Proceedings of the 11th In-
ternational Conference on Computational Seman-
tics (IWCS 2015), pages 58–63, London, UK.

Angeliki Lazaridou, Marco Marelli, Roberto Zampar-
elli, and Marco Baroni. 2013. Compositional-ly
Derived Representations of Morphologically Com-
plex Words in Distributional Semantics. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (ACL 2013), pages
1517–1526, Sofia, Bulgaria.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388–1429.

Diarmuid Ó Séaghdha. 2008. Learning compound
noun semantics. Ph.D. thesis, Computer Laboratory,
University of Cambridge. Published as University
of Cambridge Computer Laboratory Technical Re-
port 735.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of the Em-
piricial Methods in Natural Language Processing
(EMNLP 2014), volume 12.

Lutz Prechelt. 1998. Early stopping - but when? In
Neural Networks: Tricks of the trade, pages 55–69.
Springer.

Roland Schäfer. 2015. Processing and querying large
web corpora with the COW14 architecture. In
Challenges in the Management of Large Corpora
(CMLC-3).

Richard Socher, Christopher D. Manning, and An-
drew Y. Ng. 2010. Learning continuous phrase
representations and syntactic parsing with recursive
neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning
Workshop, pages 1–9.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1201–1211.

Stephen Tratz and Eduard Hovy. 2010. A taxonomy,
dataset, and classifier for automatic noun compound
interpretation. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics (ACL-10), Uppsala, Sweden.

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating Linear Models for Compositional Distri-
butional Semantics. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics, pages 1263–1271.

1642

