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Abstract

Transition-based dependency parsers usu-
ally use transition systems that monotoni-
cally extend partial parse states until they
identify a complete parse tree. Honni-
bal et al. (2013) showed that greedy one-
best parsing accuracy can be improved
by adding additional non-monotonic tran-
sitions that permit the parser to “repair”
earlier parsing mistakes by “over-writing”
earlier parsing decisions. This increases
the size of the set of complete parse trees
that each partial parse state can derive, en-
abling such a parser to escape the “gar-
den paths” that can trap monotonic greedy
transition-based dependency parsers.

We describe a new set of non-monotonic
transitions that permits a partial parse state
to derive a larger set of completed parse
trees than previous work, which allows our
parser to escape from a larger set of gar-
den paths. A parser with our new non-
monotonic transition system has 91.85%
directed attachment accuracy, an improve-
ment of 0.6% over a comparable parser us-
ing the standard monotonic arc-eager tran-
sitions.

1 Introduction

Recent work from Dyer et al. (2015) and Weiss
et al. (2015) show that neural network models can
improve greedy transition-based parsers dramat-
ically, even beyond the 20% error reduction re-
ported by Chen and Manning (2014). Improve-
ments on beam-search parsing are much more lim-
ited, due to the difficulty of applying neural net-
works to structured prediction.

We suggest that the lack of a ready search so-
lution may present the next barrier to further im-
provements in accuracy. Some degree of search
flexibility seems inherently necessary, no mat-
ter how powerful the local model becomes, as
even the human sentence processor can be ‘garden
pathed’ by local structural ambiguities.

We take inspiration from Frazier and Rayner
(1982) and other psycholinguists and propose re-
pair actions as a light-weight alternative to beam-
search. In a transition-based dependency parser,
transitions map parse states to parse states, ulti-
mately producing completed parse trees. This pro-
cess is non-deterministic, since usually more than
one transition can apply to a parse state. This
means that each partial parse state can be associ-
ated with a set of complete parse trees (i.e., the
complete parses that can be produced by applying
sequences of transitions to the partial parse state).
In general adding additional transitions (mono-
tonic or non-monotonic) increases the number of
complete parse trees that any given partial parse
state can derive.

We explore adding non-monotonic parsing tran-
sitions to a greedy arc-eager dependency parser in
this paper, in order to permit the parser to recover
from attachment errors made early in the parsing
process. These additional non-monotonic transi-
tions permit the parser to modify what would have
been irrevocable parsing decisions in the mono-
tonic arc-eager system when later information jus-
tifies this action. Thus one effect of adding the
non-monotonic parsing transitions is to effectively
delay the location in the input where the parser
must ultimately commit to a particular attachment.

Our transition-system builds on the work of
Honnibal et al. (2013) and Nivre and Fernandez-
Gonzalez (2014), who each present modifications
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to the arc-eager transition system that introduce
some non-monotonic behaviour, resulting in small
improvements in accuracy. However, these sys-
tems only apply non-monotonic transitions to a
relatively small number of configurations, so they
can only have a small impact on parse accuracy.

We introduce a non-monotonic transition sys-
tem that combines ideas from these two ap-
proaches, and allows substantially more repair ca-
pability (and hence search flexibility). We ob-
serve a 0.6% improvement in accuracy on the
OntoNotes corpus, which is an error reduction of
6.25% over a competitive baseline. A parser using
our transition system is guaranteed to run in linear
time, and the modifications to the algorithm have
no negative impact on run-time in our implemen-
tation.

Very recently there has been considerable suc-
cess in applying neural network models to pre-
dict which transition to apply in greedy one-best
transition-based parsing. In their preprints, both
Dyer et al. (2015) and Weiss et al. (2015) re-
port error reductions of around 20-30% for greedy
one-best parsing, and much more modest im-
provements for transition-based parsers with beam
search. Because the neural network approaches
improve the local model that predicts which tran-
sition to apply next, while this paper suggests
changes to the transition system itself, it is rea-
sonable to expect that the improvements reported
here are largely orthogonal to those obtained us-
ing the neural network techniques. In future work
we would like to explore integrating such neural
network models of transition prediction with the
extended transition system proposed here.

2 Improved non-monotonic transition
system

Our transition-system is based on the tree-
constrained arc-eager system of Nivre and
Fernandez-Gonzalez (2014), which extends the
classic arc-eager system (Nivre, 2003) with a new
non-monotonic operation that they call “Unshift”.
They introduce the Unshift action to repair con-
figurations where the buffer is exhausted and the
stack contains multiple words that are without in-
coming arcs (i.e. without governors). The origi-
nal arc-eager configuration outputs partial parses
in this situation.

Nivre and Fernandez-Gonzalez restrict their
Unshift action, such that it can only be applied

when the buffer is exhausted and the word on top
of the stack has no incoming arc. In this config-
uration, the Unshift action is the only action that
can be applied. The use of the new action is there-
fore entirely deterministic, and they do not need
to produce example configurations for the Unshift
action during training. They train their model with
what Goldberg and Nivre (2012) term a ‘static or-
acle’, which can only label configurations that are
consistent with the gold-standard parse.

We take the Nivre and Fernandez-Gonzalez
(2014) Unshift operation, and import it into the
non-monotonic parsing model of Honnibal et al.
(2013), which uses a dynamic oracle to determine
the gold-standard actions for configurations pro-
duced by the parser. This training strategy is crit-
ical to the success of a non-monotonic transition
system. The model cannot learn to recover from
previous errors if the training data cannot contain
configurations that result from incorrect actions.

Honnibal et al. (2013) allow the parser to cor-
rect prior misclassifications between the Shift and
Right-Arc actions. Both of these actions push the
first word of the buffer onto the stack, but the
Right-Arc action also adds an arc. After the Right-
Arc is applied, the top two words of the stack are
connected.

In the original arc-eager system, the presence
or absence of this arc determines which of the two
pop moves, Reduce or Left-Arc, is valid. If the arc
is present, then Left-Arc is excluded; if it is absent,
the Reduce action is excluded. Honnibal et al.
(2013) argue that these deterministic constraints
are unmotivated when the parser is trained using a
dynamic, instead of static, oracle. Instead of a con-
straint, they suggest that consistency be achieved
by refining the logic of the actions, so that they
have a broader applicability. Instead of preventing
the Left-Arc from applying when the word on top
of the stack has an incoming arc, they update the
definition of the Left-Arc so that it first deletes the
existing arc if necessary. A corresponding change
is made to the Reduce action: if the model predicts
Reduce when the word on top of the stack has no
incoming arc, the ‘missing’ arc is inserted. The
arc is labelled by noting the best-scoring Right-
Arc label on each Shift action, so that the label
can be assigned during non-monotonic Reduce.

We show that the Nivre and Fernandez-
Gonzalez Unshift operation serves as a far supe-
rior non-monotonic Reduce action than the one
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Notation
(σ, β,A,S) is a configuration, where
σ|s is a stack of word indices with topmost element s
b|β is a buffer of word indices with first element b
A is a vector of head indices
A(i) = j denotes an arc wj → wi

S is a bit-vector used to prevent Shift/Unshift cycles
Initial ([ ], [1...n],A(1) = 1)
Terminal ([i], [ ],A)
Shift (σ, b|β,A,S(b) = 0) ⇒ (σ|b, β,A,S(b) = 1)
Right-Arc (σ|s, b|β,A,S) ⇒ (σ|s|b, β,A(b) = s,S)
Reduce (σ|s, β,A(s) 6= 0,S) ⇒ (σ, β,A,S)
Unshift (σ|s, β,A(s) = 0,S) ⇒ (σ, s|β,A,S)
Left-Arc (σ|s, b|β,A,S) ⇒ (σ, s|β,A(s) = b,S

Table 1: Our non-monotonic transition system, which integrates the Unshift action of Nivre and
Fernandez-Gonzalez (2014) into the model of Honnibal et al. (2013).

Honnibal et al. use in their system, and that the re-
sulting transition system improves parse accuracy
by considerably more than either the Honnibal et
al or Nivre et al systems do.

2.1 Definition of Transition System

The hybrid transition system is defined in Table
1. Arcs are stored in a vector, A, where the entry
A(i) = j denotes an arc wj → wi. Words are
pushed from the buffer β onto the stack σ, using
either the Shift or the Right-Arc actions.

If a word was pushed with the Shift action, it
will not have an incoming arc. The new Unshift
action will then be valid, at any point at which the
word is on top of the stack — even after many ac-
tions have been performed.

The Unshift action pops the top word of the
stack, s, and places it at the start of the buffer.
Parsing then proceeds as normal. To prevent cy-
cles, the Shift action checks and sets a bit in the
new boolean vector S. The Shift action is invalid
if S(b) = 1, for a word b at the front of the buffer.
This bit will be set if the word was previously
Shifted, and then Unshifted.

At worst, each word can be pushed and popped
from the stack twice, so parsing is guaranteed to
terminate after a maximum of 4n transitions for a
sentence of length n.

The terminal condition is reached when the
buffer is exhausted and exactly one word remains
on the stack. This word will be deemed the root
of the sentence. No ‘dummy’ root token is neces-
sary, removing the need to choose whether the to-

ken is placed at the beginning or end of the buffer
(Ballesteros and Nivre, 2013).

Note that if the two words each seem like the
governor of the sentence, such that the parser
deems all incoming arcs to these words unlikely,
the transition system is guaranteed to arrive at a
configuration where these two words are adjacent
to each other. The model can then predict an arc
between them, initiated by either word.

2.2 Dynamic Training Oracle
Goldberg and Nivre (2013) describe three ques-
tions that need to be answered in order to imple-
ment their training algorithm.
Exploration Policy: When do we follow an incor-
rect transition, and which one do we follow?
We always follow the predicted transition, i.e.
their two hyper-parameters are set k = 1 and
p = 1.0.
Optimality: What constitutes an optimal transi-
tion in configurations from which the gold tree is
not reachable?
We follow Honnibal et al. (2013) in defining a
transition as optimal if it:

1. Renders no additional arcs unreachable using
the monotonic arc-eager transitions; and

2. Renders no additional arcs unreachable using
the non-monotonic transitions.

Said another way, we mark a transition as opti-
mal if it leads to an analysis with as few errors
as possible, and in cases of ties, uses as few non-
monotonic transitions as possible.
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For example, given the input string I saw Jack,
consider a configuration where saw is on the stack,
Jack is at the front of the buffer, and I is attached to
saw. The gold arcs are saw → I and saw → Jack.
In the monotonic system, the Shift action would
make the gold arc saw→ Jack newly unreachable.
In our system, this arc is still reachable after Shift,
via the Unshift action, but we consider the Shift
move non-optimal, so that the non-monotonic ac-
tions are reserved as ”repair” operations.
Oracle: Given a definition of optimality, how do
we calculate the set of optimal transitions in a
given configuration?
Goldberg and Nivre (2013) show that with the
monotonic arc-eager actions, the following arcs
are reachable from an arbitrary configuration:

1. Arcs {wi → wj : i ∈ σ, j ∈ β} — i.e. all
arcs from stack words to buffer words;

2. Arcs {wi → wj : i ∈ β, j ∈ σ, A(j) = 0}
— i.e. all arcs from buffer words to headless
stack words;

3. Arcs {wi → wj : i ∈ β, j ∈ β} — i.e. all
arcs between words in buffer.

Our non-monotonic actions additionally allow the
following arcs to be reached:

4. Arcs {wi → wj : i ∈ β, j ∈ σ,A(j) 6= 0}
(LeftArc can now ”clobber” existing heads)

5. Arcs {wi → wj or wj → wi : i, j ∈ σ, i <
j,A(j) = 0} — i.e. if a word i is on the
stack, it can reach an arc to or from a word j
ahead of it on the stack if that word does not
have a head set.

In practice, we therefore only need to add two
rules to determine the set of optimal transitions:

1. If σ0 has a head, and its true head is in the
buffer, the Reduce action is now non-optimal.

2. If σ0 does not have a head, and its true head
is in the stack, the LeftArc action is now non-
optimal.

The oracle calculation is simple because the sys-
tem preserves the arc decomposition property that
Goldberg and Nivre (2013) prove for the arc eager
system: if two arcs of a projective tree are individ-
ually reachable from a configuration, a projective
tree that includes both arcs is also reachable. To

see that this property is preserved in our system,
consider that an arc h → d between two stack
words is only unreachable if h < d and A(d) 6= 0.
But a projective tree with arc h → d cannot also
have an arc x → y such that h < x < d < y.
So there can be no other arc part of the same pro-
jective tree as h → d that would require d to be
assigned to some other head.

3 Training Procedure

We follow Honnibal et al. (2013) in using the
dynamic oracle-based search-and-learn training
strategy introduced by Goldberg and Nivre (2012).
A dynamic oracle is a function that labels config-
urations with gold-standard actions. Importantly,
a dynamic oracle can label arbitrary configura-
tions, while a so-called ‘static’ oracle can only as-
sign labels to configurations that are part of gold-
standard derivations.

We employ the dynamic oracle in an on-
line learning strategy, similar to imitation-based
learning, where the examples are configurations
produced by following the current model’s pre-
dictions. The configurations are labelled by
the dynamic oracle, which determines which of
the available actions excludes the fewest gold-
standard arcs.

Often, multiple actions will be labelled as gold-
standard for a given configuration. This implies ei-
ther spurious ambiguity (the same analysis reach-
able via different derivations) or previous errors,
such that the best parse reachable by different ac-
tions are equally bad. When this occurs, we base
the perceptron update on the highest-scoring gold-
standard label.

3.1 Single class for Unshift/Reduce

The Unshift and Reduce actions are applicable to
a disjoint set of configurations. If the word on top
of the stack already has an incoming arc, the Re-
duce move is valid; otherwise, the Unshift move
is valid. For the purpose of training and predic-
tion, we therefore model these actions as a single
class, which we interpret based on the configura-
tion. This allows us to learn the Unshift action
more effectively, as it is allowed to share a repre-
sentation with the Reduce move. In preliminary
development, we found that assigning a distinct
class to the Unshift action was not effective. We
plan to evaluate this option more rigorously in fu-
ture work.
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4 Experiments

We implemented a greedy transition-based parser,
and used rich contextual features following Zhang
and Nivre (2011). We extended the feature set to
include Brown cluster features, using the cluster
prefix trick described by Koo and Collins (2010).
Brown clusters are a standard way to improve
the cross-domain performance of supervised lin-
ear models. The use of Brown cluster features ac-
counts for the 0.7% improvement in accuracy ob-
served between our baseline parser and the Gold-
berg and Nivre (2012) result shown in Table 2.
The two models are otherwise the same.

Part-of-speech tags were predicted using a
greedy averaged perceptron model that achieved
97.2% accuracy on the evaluation data. Most pre-
vious work uses a n-way jack-knifing to train the
stacked tagger/parser model. For convenience, we
instead train the tagger at the same time as the
parser, as both allow online learning. We find this
makes no difference to accuracy.

Our parsers are trained and evaluated on the
same data used by Tetreault et al. (2015) in their
recent ‘bake-off’ of leading dependency pars-
ing models. Specifically, we use the OntoNotes
corpus converted into dependencies using the
ClearNLP 3.1 converter, with the train / dev / test
split of the CoNLL 2012 shared task.

5 Results

We implemented three previous versions of the
arc-eager transition system, in order to evaluate
the effect of our proposed transition-system on
parser accuracy. The four systems differ only in
their transition system — they are otherwise iden-
tical. All use identical features, and all are trained
with the dynamic oracle.

Orig. Arc Eager (Nivre, 2003): the origi-
nal arc-eager system, which constrains the Re-
duce and Left-Arc actions to ensure monotonic-
ity; Prev. Non-Monotic (Honnibal et al., 2013):
relaxes the monotonicity constraints, allowing
Left-Arc to ”clobber” existing arcs, and insert-
ing missing arcs on Reduce with a simple heuris-
tic; Tree Constrained (Nivre and Fernandez-
Gonzalez, 2014): adds an Unshift action to the
arc-eager system, that is only employed when the
buffer is exhausted; This work: merges the Un-
shift action into our previous non-monotonic tran-
sition system.

Transition System Search UAS LAS

Orig. Arc Eager Greedy 91.25 89.40
Tree Constrained Greedy 91.40 89.50
Prev. Non-Monotonic Greedy 91.36 89.52
This work Greedy 91.85 89.91
Chen and Manning (2014) Greedy 89.59 87.63
Goldberg and Nivre (2012) Greedy 90.54 88.75
Choi and Mccallum (2013) Branch 92.26 90.84
Zhang and Nivre (2011) Beam32 92.24 90.50
Bohnet (2010) Graph 92.50 90.70

Table 2: Our non-monotonic transition system improves
accuracy by 0.6% unlabelled attachment score, for a final
score of 91.85 on the OntoNotes corpus.

Table 2 shows the unlabelled and labelled at-
tachment scores of the parsers on the evaluation
data. The two previous non-monotonic systems,
Prev. Non-monotonic and Tree Constrained, were
slightly more accurate than the Orig. Arc Eager
system. Our new transition-system had a much
bigger impact, improving UAS by 0.6% and LAS

by 0.51%. To put the scores in context, we have
also included figures reported in a recent sur-
vey of the current state-of-the-art (Tetreault et al.,
2015). Our parser out-performs existing greedy
parsers, and is much more efficient than non-
greedy parsers.

6 Conclusions and Future Work

This paper integrates innovations from Honnibal
et al. (2013) and Nivre and Fernandez-Gonzalez
(2014) to produce a novel non-monotonic set of
transitions for transition-based dependency pars-
ing. Doing this required us to use the dynamic
oracle of Goldberg and Nivre (2012) during train-
ing in order to produce configurations that exercise
the non-monotonic transitions. We show that this
combination of innovations results in a parser with
91.85% directed accuracy, which is an improve-
ment of 0.6% directed accuracy over an equivalent
arc-standard parser. Interestingly, the Honnibal et
al and Nivre et al innovations applied on their own
only produce improvements of 0.11% and 0.15%
respectively, so it seems that these improvements
taken together do interact synergistically.

Because our innovation largely affects the
search space of a greedy one-best parser, it is
likely to be independent of the recent improve-
ments in parsing accuracy that come from using
neural networks to predict the best next parsing
transition. In future work we plan to combine
such neural network models with a version of our
parser that incorporates a much larger set of non-
monotonic parsing transitions.
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