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Abstract

Currently most of state-of-the-art meth-
ods for Chinese word segmentation are
based on supervised learning, whose fea-
tures aremostly extracted from a local con-
text. Thesemethods cannot utilize the long
distance information which is also crucial
for word segmentation. In this paper, we
propose a novel neural network model for
Chinese word segmentation, which adopts
the long short-term memory (LSTM) neu-
ral network to keep the previous impor-
tant information inmemory cell and avoids
the limit of window size of local context.
Experiments on PKU, MSRA and CTB6
benchmark datasets show that our model
outperforms the previous neural network
models and state-of-the-art methods.

1 Introduction

Word segmentation is a fundamental task for Chi-
nese language processing. In recent years, Chi-
nese word segmentation (CWS) has undergone
great development. The popular method is to re-
gard word segmentation task as a sequence label-
ing problem (Xue, 2003; Peng et al., 2004). The
goal of sequence labeling is to assign labels to all
elements in a sequence, which can be handled with
supervised learning algorithms such as Maximum
Entropy (ME) (Berger et al., 1996) and Condi-
tional RandomFields (CRF) (Lafferty et al., 2001).
However, the ability of these models is restricted
by the design of features, and the number of fea-
tures could be so large that the result models are
too large for practical use and prone to overfit on
training corpus.
Recently, neural network models have increas-

ingly used for NLP tasks for their ability to min-
imize the effort in feature engineering (Collobert
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et al., 2011; Socher et al., 2013; Turian et al.,
2010; Mikolov et al., 2013b; Bengio et al., 2003).
Collobert et al. (2011) developed the SENNA sys-
tem that approaches or surpasses the state-of-the-
art systems on a variety of sequence labeling tasks
for English. Zheng et al. (2013) applied the archi-
tecture of Collobert et al. (2011) to Chinese word
segmentation and POS tagging, also he proposed a
perceptron style algorithm to speed up the train-
ing process with negligible loss in performance.
Pei et al. (2014) models tag-tag interactions, tag-
character interactions and character-character in-
teractions based on Zheng et al. (2013). Chen et al.
(2015) proposed a gated recursive neural network
(GRNN) to explicitly model the combinations of
the characters for Chinese word segmentation task.
Each neuron in GRNN can be regarded as a differ-
ent combination of the input characters. Thus, the
whole GRNN has an ability to simulate the design
of the sophisticated features in traditional methods.
Despite of their success, a limitation of them

is that their performances are easily affected by
the size of the context window. Intuitively, many
words are difficult to segment based on the local
information only. For example, the segmentation
of the following sentence needs the information of
the long distance collocation.
冬天 (winter)，能 (can) 穿 (wear) 多少
(amount) 穿 (wear) 多少 (amount)；夏天
(summer)，能 (can)穿 (wear)多 (more)少
(little)穿 (wear)多 (more)少 (little)。
Without the word “夏天 (summer)” or “冬天

(winter)”, it is difficult to segment the phrase “能
穿多少穿多少”. Therefore, we usually need uti-
lize the non-local information for more accurate
word segmentation. However, it does not work
by simply increasing the context window size. As
reported in (Zheng et al., 2013), the performance
drops smoothly when the window size is larger
than 3. The reason is that the number of its pa-
rameters is so large that the trained network has
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overfitted on training data. Therefore, it is neces-
sary to capture the potential long-distance depen-
dencies without increasing the size of the context
window.
In order to address this problem, we propose a

neural model based on Long Short-Term Memory
Neural Network (LSTM) (Hochreiter and Schmid-
huber, 1997) that explicitly model the previous
information by exploiting input, output and for-
get gates to decide how to utilize and update the
memory of pervious information. Intuitively, if
the LSTM unit detects an important feature from
an input sequence at early stage, it easily carries
this information (the existence of the feature) over
a long distance, hence, capturing the potential use-
ful long-distance information. We evaluate our
model on three popular benchmark datasets (PKU,
MSRA and CTB6), and the experimental results
show that our model achieves the state-of-the-art
performance with the smaller context window size
(0,2).
The contributions of this paper can be summa-

rized as follows.

• We first introduce the LSTM neural network
for Chinese word segmentation. The LSTM
can capture potential long-distance depen-
dencies and keep the previous useful informa-
tion in memory, which avoids the limit of the
size of context window.

• Although there are relatively few researches
of applying dropout method to the LSTM,
we investigate several dropout strategies and
find that dropout is also effective to avoid the
overfitting of the LSTM.

• Despite Chinese word segmentation being a
specific case, our model can be easily gener-
alized and applied to the other sequence la-
beling tasks.

2 Neural Model for Chinese Word
Segmentation

Chinese word segmentation is usually regarded as
character-based sequence labeling. Each character
is labeled as one of {B, M, E, S} to indicate the
segmentation. {B, M, E} represent Begin, Mid-
dle, End of a multi-character segmentation respec-
tively, and S represents a Single character segmen-
tation.
The neural model is usually characterized by

three specialized layers: (1) a character embedding

layer; (2) a series of classical neural network lay-
ers and (3) tag inference layer. An illustration is
shown in Figure 1.
The most common tagging approach is based

on a local window. The window approach as-
sumes that the tag of a character largely depends
on its neighboring characters. Given an input sen-
tence c(1:n), a window of size k slides over the
sentence from character c(1) to c(n), where n is
the length of the sentence. As shown in Figure
1, for each character c(t)(1 ≤ t ≤ n), the con-
text characters (c(t−2),c(t−1),c(t),c(t+1),c(t+2)) are
fed into the lookup table layer when the window
size k is 5. The characters exceeding the sen-
tence boundaries are mapped to one of two spe-
cial symbols, namely “start” and “end” symbols.
The character embeddings extracted by the lookup
table layer are then concatenated into a single vec-
tor x(t) ∈ RH1 , where H1 = k × d is the size
of layer 1. Then x(t) is fed into the next layer
which performs linear transformation followed by
an element-wise activation function g such as sig-
moid function σ(x) = (1+e−x)−1 and hyperbolic
tangent function ϕ(x) = ex−e−x

ex+e−x here.

h(t) = g(W1x(t) + b1), (1)

whereW1 ∈ RH2×H1 , b1 ∈ RH2 , h(t) ∈ RH2 . H2

is a hyper-parameter which indicates the number of
hidden units in layer 2. Given a set of tags T of size
|T |, a similar linear transformation is performed
except that no non-linear function is followed:

y(t) = W2h(t) + b2, (2)

where W2 ∈ R|T |×H2 , b2 ∈ R|T |. y(t) ∈ R|T | is
the score vector for each possible tag. In Chinese
word segmentation, the most prevalent tag set T j
T is {B, M, E, S} as mentioned above.
To model the tag dependency, a transition score

Aij is introduced to measure the probability of
jumping from tag i ∈ T to tag j ∈ T (Collobert
et al., 2011). Although this model works well for
Chinese word segmentation and other sequence la-
beling tasks, it just utilizes the information of con-
text of a limited-length window. Some useful long
distance information is neglected.

3 Long Short-Term Memory Neural
Network for Chinese Word
Segmentation

In this section, we introduce the LSTM neural net-
work for Chinese word segmentation.
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Figure 1: General architecture of neural model for
Chinese word segmentation.

3.1 Character Embeddings

The first step of using neural network to process
symbolic data is to represent them into distributed
vectors, also called embeddings (Bengio et al.,
2003; Collobert and Weston, 2008).
Formally, in Chinese word segmentation task,

we have a character dictionary C of size |C|. Un-
less otherwise specified, the character dictionary is
extracted from the training set and unknown char-
acters are mapped to a special symbol that is not
used elsewhere. Each character c ∈ C is repre-
sented as a real-valued vector (character embed-
ding) vc ∈ Rd where d is the dimensionality of the
vector space. The character embeddings are then
stacked into an embeddingmatrixM ∈ Rd×|C|. For
a character c ∈ C, the corresponding character em-
bedding vc ∈ Rd is retrieved by the lookup table
layer. And the lookup table layer can be regarded
as a simple projection layer where the character
embedding for each context character is achieved
by table lookup operation according to its index.

3.2 LSTM

The long short term memory neural network
(LSTM) (Hochreiter and Schmidhuber, 1997) is an
extension of the recurrent neural network (RNN).

The RNN has recurrent hidden states whose
output at each time is dependent on that of the
previous time. More formally, given a sequence
x(1:n) = (x(1), x(2), . . . , x(t), . . . , x(n)), the RNN
updates its recurrent hidden state h(t) by

h(t) = g(Uh(t−1) +Wx(t) + b), (3)

where g is a nonlinear function as mentioned
above.
Though RNN has been proven successful on

many tasks such as speech recognition (Vinyals
et al., 2012), language modeling (Mikolov et al.,
2010) and text generation (Sutskever et al., 2011),
it can be difficult to train them to learn long-
term dynamics, likely due in part to the vanishing
and exploding gradient problem (Hochreiter and
Schmidhuber, 1997).
The LSTM provides a solution by incorporating

memory units that allow the network to learn when
to forget previous information and when to update
the memory cells given new information. Thus, it
is a natural choice to apply LSTM neural network
to word segmentation task since the LSTM neural
network can learn from data with long range tem-
poral dependencies (memory) due to the consider-
able time lag between the inputs and their corre-
sponding outputs. In addition, the LSTM has been
applied successfully in many NLP tasks, such as
text classification (Liu et al., 2015) and machine
translation (Sutskever et al., 2014).
The core of the LSTM model is a memory cell

c encoding memory at every time step of what in-
puts have been observed up to this step (see Figure
2) . The behavior of the cell is controlled by three
“gates”, namely input gate i, forget gate f and out-
put gate o. The operations on gates are defined as
element-wise multiplications, thus gate can either
scale the input value if the gate is non-zero vector
or omit input if the gate is zero vector. The output
of output gate will be fed into the next time step
t + 1 as previous hidden state and input of upper
layer of neural network at current time step t. The
definitions of the gates, cell update and output are
as follows:

i(t) = σ(Wixx(t) + Wihh(t−1) + Wicc(t−1)), (4)

f(t) = σ(Wfxx(t) + Wfhh(t−1) + Wfcc(t−1)), (5)

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ ϕ(Wcxx(t) + Wchh(t−1)),
(6)

o(t) = σ(Woxx(t) +Wohh(t−1) +Wocc(t)), (7)

h(t) = o(t) ⊙ ϕ(c(t)), (8)
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Figure 2: LSTM Memory Unit. The memory unit
contains a cell cwhich is controlled by three gates.
The green links show the signals at time t − 1,
while the black links show the current signals. The
dashed links represent the weight matrices from
beginning to end are diagonal. Moreover, the solid
pointers mean there are weight matrices on the
connections, and hollow pointers mean none. The
current output signal, h(t), will fed back to the next
time t + 1 via three gates, and is the input of the
higher layer of the neural network as well.

whereσ andϕ are the logistic sigmoid function and
hyperbolic tangent function respectively; i(t), f(t),
o(t) and c(t) are respectively the input gate, forget
gate, output gate, and memory cell activation vec-
tor at time step t, all of which have the same size as
the hidden vector h(t) ∈ RH2 ; the parameter ma-
trices W s with different subscripts are all square
matrices; ⊙ denotes the element-wise product of
the vectors. Note that Wic, Wfc and Woc are di-
agonal matrices.

3.3 LSTM Architectures for Chinese Word
Segmentation

To fully utilize the LSTM, we propose four differ-
ent structures of neural network to select the effec-
tive features via memory units. Figure 3 illustrates
our proposed architectures.

LSTM-1 The LSTM-1 simply replace the hid-
den neurons in Eq. (1) with LSTM units (See Fig-
ure 3a).

The input of the LSTM unit is from a window of
context characters. For each character, c(t), (1 ≤
t ≤ n), the input of the LSTM unit x(t),

x(t) = v(t−k1)
c ⊕ · · · ⊕ v(t+k2)

c , (9)

is concatenated from character embeddings of
c(t−k1):(t+k2), where k1 and k2 represent the num-
bers of characters from left and right contexts re-
spectively. The output of the LSTM unit is used
in final inference function (Eq. (11) ) after a linear
transformation.

LSTM-2 The LSTM-2 can be created by stack-
ing multiple LSTM hidden layers on top of each
other, with the output sequence of one layer form-
ing the input sequence for the next (See Figure 3b).
Here we use two LSTM layers. Specifically, input
of the upper LSTM layer takes h(t) from the lower
LSTM layer without any transformation. The in-
put of the first layer is same to LSTM-1, and the
output of the second layer is as same operation as
LSTM-1.

LSTM-3 The LSTM-3 is a extension of LSTM-
1, which adopts a local context of LSTM layer as
input of the last layer (See Figure 3c). For each
time step t, we concatenate the outputs of a win-
dow of the LSTM layer into a vector ĥ(t),

ĥ(t)
= h(t−m1) ⊕ · · · ⊕ h(t+m2), (10)

wherem1 andm2 represent the lengths of time lags
before and after current time step.Finally, ĥ(t) is
used in final inference function (Eq. (11) ) after a
linear transformation.

LSTM-4 The LSTM-4 (see Figure 3d) is a mix-
ture of the LSTM-2 and LSTM-3, which consists
of two LSTM layers. The output sequence of the
lower LSTM layer forms the input sequence of the
upper LSTM layer. The final layer adopts a local
context of upper LSTM layer as input.

3.4 Inference at Sentence Level
To model the tag dependency, previous neural net-
work models (Collobert et al., 2011; Zheng et al.,
2013; Pei et al., 2014) introduced the transition
score Aij for measuring the probability of jump-
ing from tag i ∈ T to tag j ∈ T . For a input sen-
tence c(1:n) with a tag sequence y(1:n), a sentence-
level score is then given by the sum of tag transi-
tion scores and network tagging scores:
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Figure 3: Our proposed LSTM architectures for Chinese word segmentation.

s(c(1:n), y(1:n), θ) =

n∑
t=1

(
Ay(t−1)y(t) + y(t)

y(t)

)
, (11)

where y(t)

y(t) indicates the score of tag y(t),
and y(t) is computed by the network as in
Eq. (2). The parameter set of our model θ =
{M,A,Wic,Wfc,Woc,Wix,Wfx,Wox,Wih,Wfh,
Woh,Wcx,Wch}.
4 Training

4.1 Max-Margin criterion
We use the Max-Margin criterion to train our
model. Intuitively, the Max-Margin criterion pro-
vides an alternative to probabilistic, likelihood
based estimation methods by concentrating di-
rectly on the robustness of the decision boundary
of a model (Taskar et al., 2005). We use Y (xi) to
denote the set of all possible tag sequences for a
given sentence xi and the correct tag sequence for
xi is yi. The parameter set of our model is θ. We
first define a structured margin loss ∆(yi, ŷ) for
predicted tag sequence ŷ:

∆(yi, ŷ) =
n∑
t

η1{y(t)
i ̸= ŷ(t)}, (12)

where n is the length of sentence xi and η is a dis-
count parameter. The loss is proportional to the
number of characters with incorrect tags in the pro-
posed tag sequence. For a given training instance
(xi, yi),the predicted tag sequence ŷi ∈ Y (xi) is
the one with the highest score:

ŷi = argmax
y∈Y (xi)

s(xi, y, θ), (13)

where the function s(·) is sentence-level score and
defined in equation (11).
Given a set of training setD, the regularized ob-

jective function is the loss function J(θ) including

a l2-norm term:

J(θ) =
1
|D|

∑
(xi,yi)∈D

li(θ) +
λ

2
∥θ∥2

2, (14)

where li(θ) = max(0, s(xi, ŷi, θ) + ∆(yi, ŷi) −
s(xi, yi, θ)).
To minimize J(θ), we use a generalization

of gradient descent called subgradient method
(Ratliff et al., 2007) which computes a gradient-
like direction.
Following (Socher et al., 2013), we also use the

diagonal variant of AdaGrad (Duchi et al., 2011)
with minibatchs to minimize the objective. The
parameter update for the i-th parameter θt,i at time
step t is as follows:

θt,i = θt−1,i − α√∑t
τ=1 g2

τ,i

gt,i, (15)

where α is the initial learning rate and gτ ∈ R|θi|

is the subgradient at time step τ for parameter θi.
In addition, the process of back propagation is fol-
lowd Hochreiter and Schmidhuber (1997).

4.2 Dropout
Dropout is one of prevalent methods to avoid over-
fitting in neural networks (Srivastava et al., 2014).
When dropping a unit out, we temporarily remove
it from the network, alongwith all its incoming and
outgoing connections. In the simplest case, each
unit is omitted with a fixed probability p indepen-
dent of other units, namely dropout rate, where p
is also chosen on development set.

5 Experiments

5.1 Datasets
We use three popular datasets, PKU, MSRA
and CTB6, to evaluate our model. The PKU
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Figure 4: Performances of LSTM-1 with the different context lengths and dropout rates on PKU devel-
opment set.

Context length (k1, k2) = (0, 2)
Character embedding size d = 100
Hidden unit number H2 = 150
Initial learning rate α = 0.2
Margin loss discount η = 0.2
Regularization λ = 10−4

Dropout rate on input layer p = 0.2

Table 1: Settings of the hyper-parameters.
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Figure 5: Performances of LSTM-1 (0,2) with
20% dropout on PKU development set.

and MSRA data are provided by the second In-
ternational Chinese Word Segmentation Bakeoff
(Emerson, 2005), and CTB6 is from Chinese Tree-
Bank 6.0 (LDC2007T36) (Xue et al., 2005), which
is a segmented, part-of-speech tagged and fully
bracketed corpus in the constituency formalism.
These datasets are commonly used by previous
state-of-the-art models and neural network mod-
els. In addition, we use the first 90% sentences of
the training data as training set and the rest 10%

sentences as development set for PKU and MSRA
datasets. For CTB6 dataset, we divide the training,
development and test sets according to (Yang and
Xue, 2012)
All datasets are preprocessed by replacing the

Chinese idioms and the continuous English char-
acters and digits with a unique flag.
For evaluation, we use the standard bake-off

scoring program to calculate precision, recall, F1-
score and out-of-vocabulary (OOV) word recall.

5.2 Hyper-parameters

Hyper-parameters of neural model impact the per-
formance of the algorithm significantly. Accord-
ing to experiment results, we choose the hyper-
parameters of our model as showing in Figure
1. The minibatch size is set to 20. Generally,
the number of hidden units has a limited impact
on the performance as long as it is large enough.
We found that 150 is a good trade-off between
speed and model performance. The dimension-
ality of character embedding is set to 100 which
achieved the best performance. All these hyper-
parameters are chosen according to their average
performances on three development sets.
For the context lengths (k1, k2) and dropout

strategy, we give detailed analysis in next section.

5.3 Dropout and Context Length

We first investigate the different dropout strate-
gies, including dropout at different layers and with
different dropout rate p. As a result, we found that
it is a good trade-off between speed and model per-
formance to drop the input layer only with dropout
rate pinput = 0.2. However, it does not show
any significant improvement to dropout on hidden
LSTM layers.
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Context Length Dropout rate=20% Dropout rate=50% without Dropout
P R F P R F P R F

LSTM-1 (2,2) 95.8 95.3 95.6 94.8 94.4 94.6 95.2 94.9 95.1
LSTM-1 (1,2) 95.7 95.3 95.5 94.8 94.4 94.6 95.4 94.9 95.2
LSTM-1 (0,2) 95.8 95.5 95.7 94.6 94.2 94.4 95.4 95.0 95.2

Table 2: Performances of LSTM-1 with the different context lengths and dropout rates on PKU test set.

models Contextr Length = (0,2)
P R F

LSTM-1 95.8 95.5 95.7
LSTM-2 95.1 94.5 94.8
LSTM-3 89.1 90.4 89.8
LSTM-4 92.1 91.7 91.9

Table 3: Performance on our four proposedmodels
on PKU test set.

Due to space constraints, we just give the per-
formances of LSTM-1 model on PKU dataset with
different context lengths (k1, k2) and dropout rates
in Figure 4 and Table 2. From Figure 4, we can see
that 20% dropout converges slightly slower than
the one without dropout, but avoids overfitting.
50% or higher dropout rate seems to be underfit-
ting since its training error is also high.
Table 2 shows that the LSTM-1 model performs

consistently well with the different context length,
but the LSTM-1 model with short context length
saves computational resource, and gets more ef-
ficiency. At the meanwhile, the LSTM-1 model
with context length (0,2) can receive the same or
better performance than that with context length
(2,2), which shows that the LSTM model can well
model the pervious information, and it is more ro-
bust for its insensitivity of window size variation.
We employ context length (0,2) with the 20%

dropout rate in the following experiments to bal-
ance the tradeoff between accuracy and efficiency.

5.4 Model Selection
We also evaluate the our four proposed models
with the hyper-parameter settings in Table 1. For
LSTM-3 and LSTM-4 models, the context win-
dow length of top LSTM layer is set to (2,0). For
LSTM-2 and LSTM-4,the number of upper hidden
LSTM layer is set to 100. We use PKU dataset to
select the best model. Figure 5 shows the results of
the fourmodels on PKUdevelopment set from first
epoch to 60-th epoch. We see that the LSTM-1 is
the fastest one to converge and achieves the best

performance. The LSTM-2 (two LSTM layers)
get worse, which shows the performance seems
not to benefit from deep model. The LSTM-3 and
LSTM-4 models do not converge, which could be
caused by the complexity of models.
The results on PKU test set are also shown in Ta-

ble 3, which again show that the LSTM-1 achieves
the best performance. Therefore, in the rest of
the paper we will give more analysis based on the
LSTM-1with hyper-parameter settings as showing
in Table 1.

5.5 Experiment Results
In this section, we give comparisons of the LSTM-
1 with pervious neural models and state-of-the-art
methods on the PKU, MSRA and CTB6 datasets.
We first compare our model with two neural

models (Zheng et al., 2013; Pei et al., 2014) on
Chinese word segmentation task with random ini-
tialized character embeddings. As showing in Ta-
ble 4, the performance is boosted significantly by
utilizing LSTM unit. And more notably, our win-
dow size of the context characters is set to (0,2),
while the size of the other models is (2,2).
Previous works found that the performance can

be improved by pre-training the character embed-
dings on large unlabeled data. We use word2vec
1 (Mikolov et al., 2013a) toolkit to pre-train the
character embeddings on the Chinese Wikipedia
corpus. The obtained embeddings are used to ini-
tialize the character lookup table instead of random
initialization. Inspired by (Pei et al., 2014), we also
utilize bigram character embeddings which is sim-
ply initialized as the average of embeddings of two
consecutive characters.
Table 5 shows the performances with addi-

tional pre-trained and bigram character embed-
dings. Again, the performances boost significantly
as a result. Moreover, when we use bigram embed-
dings only, which means we do close test without
pre-training the embeddings on other extra corpus,
our model still perform competitively compared

1http://code.google.com/p/word2vec/
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models PKU MSRA CTB6
P R F P R F P R F

(Zheng et al., 2013) 92.8 92.0 92.4 92.9 93.6 93.3 94.0* 93.1* 93.6*
(Pei et al., 2014) 93.7 93.4 93.5 94.6 94.2 94.4 94.4* 93.4* 93.9*
LSTM 95.8 95.5 95.7 96.7 96.2 96.4 95.0 94.8 94.9

Table 4: Performances on three test sets with random initialized character embeddings. The results with
* symbol are from our implementations of their methods.

models PKU MSRA CTB6
P R F P R F P R F

+Pre-train
(Zheng et al., 2013) 93.5 92.2 92.8 94.2 93.7 93.9 93.9* 93.4* 93.7*
(Pei et al., 2014) 94.4 93.6 94.0 95.2 94.6 94.9 94.2* 93.7* 94.0*
LSTM 96.3 95.6 96.0 96.7 96.5 96.6 95.9 95.5 95.7
+bigram
LSTM 96.3 95.9 96.1 97.1 97.1 97.1 95.6 95.3 95.5
+Pre-train+bigram
(Pei et al., 2014) - - 95.2 - - 97.2 - - -
LSTM 96.6 96.4 96.5 97.5 97.3 97.4 96.2 95.8 96.0

Table 5: Performances on three test sets with pre-trained and bigram character embeddings. The results
with * symbol are from our implementations of their methods.

Models PKU MSRA CTB6
(Tseng et al., 2005) 95.0 96.4 -

(Zhang and Clark, 2007) 95.1 97.2 -
(Sun and Xu, 2011) - - 95.7
(Zhang et al., 2013) 96.1 97.4 -

This work 96.5 97.4 96.0

Table 6: Comparison of our model with state-of-
the-art methods on three test sets.

with previous neural models with pre-trained em-
bedding and bigram embeddings.
Table 6 lists the performances of our model as

well as previous state-of-the-art systems. (Zhang
and Clark, 2007) is a word-based segmentation
algorithm, which exploit features of complete
words, while the rest of the list are character-based
word segmenters, whose features are mostly ex-
tracted from a window of characters. Moreover,
some systems (such as Sun and Xu (2011) and
Zhang et al. (2013)) also exploit kinds of extra in-
formation such as unlabeled data or other knowl-
edge. Despite our model only uses simple bigram
features, it outperforms previous state-of-the-art
models which use more complex features.
Since that we do not focus on the speed of the al-

gorithm in this paper, we do not optimize the speed

a lot. On PKU dataset, it takes about 3 days to train
themodel (last row of Table 5) usingCPU (Intel(R)
Xeon(R) CPU E5-2665 @ 2.40GHz) only. All im-
plementation is based on Python.

6 Related Work

Chinese word segmentation has been studied with
considerable efforts in the NLP community. The
most popular word segmentation methods is based
on sequence labeling (Xue, 2003). Recently, re-
searchers have tended to explore neural network
based approaches (Collobert et al., 2011) to re-
duce efforts of feature engineering (Zheng et al.,
2013; Pei et al., 2014; Qi et al., 2014; Chen et al.,
2015). The features of all these methods are ex-
tracted from a local context and neglect the long
distance information. However, previous informa-
tion is also crucial for word segmentation. Our
model adopts the LSTM to keep the previous im-
portant information in memory and avoids the lim-
itation of ambiguity caused by limit of the size of
context window.

7 Conclusion

In this paper, we use LSTM to explicitly model the
previous information for Chinese word segmen-
tation, which can well model the potential long-

1204



distance features. Though our model use smaller
context window size (0,2), it still outperforms the
previous neural models with context window size
(2,2). Besides, our model can also be easily gener-
alized and applied to other sequence labeling tasks.
Although our model achieves state-of-the-art

performance, it only makes use of previous con-
text. The future context is also useful for Chi-
nese word segmentation. In future work, wewould
like to adopt the bidirectional recurrent neural net-
work (Schuster and Paliwal, 1997) to process the
sequence in both directions.
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