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Abstract

In this paper we propose a framework to
improve word segmentation accuracy us-
ing input method logs. An input method
is software used to type sentences in lan-
guages which have far more characters
than the number of keys on a keyboard.
The main contributions of this paper are:
1) an input method server that proposes
word candidates which are not included in
the vocabulary, 2) a publicly usable input
method that logs user behavior (like typ-
ing and selection of word candidates), and
3) a method for improving word segmen-
tation by using these logs. We conducted
word segmentation experiments on tweets
from Twitter, and showed that our method
improves accuracy in this domain. Our
method itself is domain-independent and
only needs logs from the target domain.

1 Introduction

The first step of almost all natural language
processing (NLP) for languages with ambiguous
word boundaries (such as Japanese and Chinese)
is solving the problem of word identification am-
biguity. This task is called word segmentation
(WS) and the accuracy of state-of-the-art methods
based on machine learning techniques is more than
98% for Japanese and 95% for Chinese (Neubig
et al., 2011; Yang and Vozila, 2014). Compared
to languages like English with clear word bound-
aries, this ambiguity poses an additional problem
for NLP tasks in these languages. To make matters
worse, the domains of the available training data
often differ from domains where there is a high
demand for NLP, which causes a severe degrada-
tion in WS performance. Examples include ma-

*This work was done when the first author was at Kyoto
University.

chine translation of patents, text mining of med-
ical texts, and marketing on the micro-blog site
Twitter1. Some papers have reported low accuracy
on WS or the joint task of WS and part-of-speech
(POS) tagging of Japanese or Chinese in these do-
mains (Mori and Neubig, 2014; Kaji and Kitsure-
gawa, 2014; Liu et al., 2014)

To cope with this problem, we propose a way
to collect information from people as they type
Japanese or Chinese on computers. These lan-
guages use far more characters than the number of
keys on a keyboard, so users use software called an
input method (IM) to type text in these languages.
Unlike written texts in these languages, which lack
word boundary information, text entered with an
IM can provide word boundary information that
can used by NLP systems. As we show in this pa-
per, logs collected from IMs are a valuable source
of word boundary information.

An IM consists of a client (front-end) and a
server (back-end). The client receives a key se-
quence typed by the user and sends a phoneme
sequence (kana in Japanese or pinyin in Chinese)
or some predefined commands to the server. The
server converts the phoneme sequence into normal
written text as a word sequence or proposes word
candidates for the phoneme sequence in the region
specified by the user. We noticed that the actions
performed by people using the IM (such as typ-
ing and selecting word candidates) provide infor-
mation about word boundaries, including context
information.

In this paper, we first describe an IM for
Japanese which allows us to collect this informa-
tion. We then propose an automatic word seg-
menter that uses IM logs as a language resource to
improve its performance. Finally, we report exper-
imental results showing that our method increases
the accuracy of a word segmenter on Twitter texts
by using logs collected from a browser add-on ver-

1https://twitter.com/ (accessed in 2015 May).
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sion of our IM.
The three main contributions of this paper are:

• an IM server that proposes word candidates
which are not included in the vocabulary
(Section 3),

• a publicly usable IM that logs user behavior
(such as typing and selection of word candi-
dates) (Section 4),

• a method for improving word segmentation
by using these logs (Section 5).

To the best of our knowledge, this is the first paper
proposing a method for using IM logs to success-
fully improve WS.

2 Related Work

The main focus of this paper is WS. Corpus-based,
or empirical, methods were proposed in the early
90’s (Nagata, 1994). Then (Mori and Kurata,
2005) extended it by lexicalizing the states like
many researches in that era, grouping the word-
POS pairs into clusters inspired by the class-based
n-gram model (Brown et al., 1992), and making
the history length variable like a POS tagger in
English (Ron et al., 1996). In parallel, there were
attempts at solving Chinese WS in a similar way
(Sproat and Chang, 1996). WS or the joint task of
WS and POS tagging can be seen as a sequence
labeling problem. So conditional random fields
(CRFs) (Peng et al., 2004; Lafferty et al., 2001)
have been applied to this task and showed bet-
ter performance than POS-based Markov models
(Kudo et al., 2004). The training time of sequence-
based methods tends to be long, especially when
we use partially annotated data. Thus a simple
method based on pointwise classification has been
shown to be as accurate as sequence-based meth-
ods and fast enough to make active learning prac-
tically possible (Neubig et al., 2011). Since the
pointwise method decides whether there is a word
boundary or not between two characters without
referring to other word boundary decisions in the
same sentence, it is straightforward to train the
model from partially annotated sentences. We
adopt this WS system for our experiments.

Along with the evolution of models, the NLP
community has become increasingly aware of the
importance of language resources (Neubig and
Mori, 2010; Mori and Neubig, 2014). So Mori

and Oda (2009) proposed to incorpolate dictio-
naries for human into a WS system with a differ-
ent word definition. CRFs were also extended to
enable training from partially annotated sentences
(Tsuboi et al., 2008). When using partially anno-
tated sentences for WS training data, word bound-
ary information exists only between some charac-
ter pairs and is absent for others. This extension
was adopted in Chinese WS to make use of so-
called natural annotations (Yang and Vozila, 2014;
Jiang et al., 2013). In that work, tags in hyper-texts
were regarded as annotations and used to improve
WS performance. The IM logs used in this paper
are also classified as natural annotations, but con-
tain much more noise. In addition, we need an IM
that is specifically designed to collect logs as nat-
ural annotations.

Server design is the most important factor in
capturing information from IM logs. The most
popular IM servers are based on statistical lan-
guage modeling (Mori et al., 1999; Chen and
Lee, 2000; Maeta and Mori, 2012). Their param-
eters are trained from manually segmented sen-
tences whose words are annotated with phoneme
sequences, and from sentences automatically an-
notated with NLP tools which are also based on
machine learning models trained on the annotated
sentences. Thus normal IM servers are not capa-
ble of presenting out-of-vocabulary (OOV) words
(which provide large amounts of information on
word boundaries) as conversion candidates. To
make our IM server capable of presenting OOV
words, we extend a statistical IM server based on
(Mori et al., 2006), and ensure that it is compu-
tationally efficient enough for practical use by the
public.

The target domain in our experiments is Twit-
ter, a site where users post short messages called
tweets. Since tweets are an immediate and power-
ful reflection of public attitudes and social trends,
there have been numerous attempts at extracting
information from them. Examples include infor-
mation analysis of disasters (Sakai et al., 2010),
estimation of depressive tendencies (Tsugawa et
al., 2013), speech diarization (Higashinaka et al.,
2011), and many others. These works require pre-
processing of tweets with NLP tools, and WS is
the first step. So it is clear that there is strong de-
mand for improving WS accuracy. Another reason
why we have chosen Twitter for the test domain is
that the tweets typed using our server are open and
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we can avoid privacy problems. Our method does
not utilize any other characteristics of tweets. So
it also works in other domains such as blogs.

3 Input Method Suggesting OOV Words

In this section we propose a practical statistical IM
server that suggests OOV word candidates in ad-
dition to words in its vocabulary.

3.1 Statistical Input Method
An input method (IM) is software which converts
a phoneme sequence into a word sequence. This is
useful for languages which contain far more char-
acters than keys on a keyboard. Since there are
some ambiguities in conversion, a conversion en-
gine based on a word n-gram model has been pro-
posed (Chen and Lee, 2000). Today, almost all IM
engines are based on statistical methods.

For the LM unit, instead of words we propose to
adopt word-pronunciation pairs u = 〈y, w〉. Thus
given a phoneme sequence yl

1 = y1y2 · · · yl as
the input, the goal of our IM engine is to output
a word sequence ŵm

1 that maximizes the probabil-
ity P (w, yl

1) as follows:

ŵm
1 = argmax

w
P (w, yl

1),

P (w, yl
1) =

m+1∏
i=1

P (ui|ui−1
i−n+1),

where the concatenation of yi in each ui is equal to
the input: yl

1 = y1y2 · · ·ym. In addition uj (j ≤
0) are special symbols introduced to simplify the
notation and um+1 is a special symbol indicating
a sentence boundary.

As in existing statistical IM engines, parame-
ters are estimated from a corpus whose sentences
are segmented into words annotated with their pro-
nunciations as follows:

P (ui|ui−1
i−n+1) =

F (ui
i−n+1)

F (ui−1
i−n+1)

, (1)

where F (·) denotes the frequency of a pair se-
quence in the corpus. In contrast to IM engines
based on a word n-gram model, ours does not re-
quire an additional model describing relationships
between words and pronunciations, and thus it is
much simpler and more practical.

Existing statistical IM engines only need an ac-
curate automatic word segmenter to estimate the
parameters of the word n-gram model. As the

equation above shows, our pair-based engine also
needs an accurate way of automatically estimat-
ing pronunciation (phoneme sequences). How-
ever, recently an automatic pronunciation estima-
tor (Mori and Neubig, 2011) that delivers as accu-
rate as state-of-the-art word segmenters has been
proposed. As we explain in Section 6, in our ex-
periments both our IM engine and existing ones
delivered accuracy of 91%.

3.2 Enumerating Substrings as Candidate
Words

Essentially, the IM engine which we have ex-
plained above does not have the ability to enumer-
ate words which are unknown to the word seg-
menter and the pronunciation estimator used to
build the training data. The aim of our research is
to gather language information from user behav-
ior as they use an IM. So we extend the basic IM
engine to enumerate all the substrings in a corpus
with all possible pronunciations. For that purpose,
we adopt the notion of a stochastically segmented
corpus (SSC) (Mori and Takuma, 2004) and ex-
tend it to the pronunciation annotation to words.

3.2.1 Stochastically Segmented Corpora
An SSC is defined as a combination of a raw cor-
pus Cr (hereafter referred to as the character se-
quence xnr

1 ) and word boundary probabilities of
the form Pi, which is the probability that a word
boundary exists between two characters xi and
xi+1. These probabilities are estimated by a model
based on logistic regression (LR)(Fan et al., 2008)
trained on a manually segmented corpus referring
to the same features as those used in (Neubig et
al., 2011). Since there are word boundaries be-
fore the first character and after the last character
of the corpus, P0 = Pnr = 1. Then word n-gram
frequencies on an SSC are calculated as follows:

Word 0-gram frequency: This is defined as the
expected number of words in the SSC:

f(·) = 1 +
nr−1∑
i=1

Pi.

Word n-gram frequency (n ≥ 1): Consider the
situation in which a word sequence wn

1 occurs
in the SSC as a subsequence beginning at the
(i + 1)-th character and ending at the k-th char-
acter and each word wm in the word sequence is
equal to the character sequence beginning at the
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xi xb1 xe1| {z }
w1

xb2 xe2| {z }
w2

xbn xbn+1 xen xk+1| {z }
wn

fr(w
n
1 ) = Pi(1 − Pb1)Pe1(1 − Pb2)Pe2 · · · (1 − Pbn)(1 − Pbn+1)Pen

Figure 1: Word n-gram frequency in a stochastically segmented corpus.

bm-th character and ending at the em-th charac-
ter (xem

bm
= wm, 1 ≤ ∀m ≤ n; em + 1 =

bm+1, 1 ≤ ∀m ≤ n − 1; b1 = i + 1; en = k)
(See Figure 1 for an example). The word n-
gram frequency of a word sequence fr(wn

1 ) in
the SSC is defined by the summation of the
stochastic frequency at each occurrence of the
character sequence of the word sequence wn

1

over all of the occurrences in the SSC:

fr(wn
1 ) =

∑
(i,en

1 )∈On

Pi

 n∏
m=1


em−1∏
j=bm

(1 − Pj)

Pem

 ,

where en
1 = (e1, e2, · · · , en) and On =

{(i, en
1 )|xem

bm
= wm, 1 ≤ m ≤ n}.

We calculate word n-gram probabilities by divid-
ing word n-gram frequencies by word (n − 1)-
gram frequencies. For a detailed explanation and
a mathematical proof of this method, please refer
to (Mori and Takuma, 2004).

3.2.2 Pseudo-Stochastically Segmented
Corpora

The computational costs (in terms of both time and
space) for calculating an n-gram model from an
SSC are very high2, so it is not a practical tech-
nique for implementing an IM engine. In order
to reduce the computational costs we approximate
an SSC using a deterministically tagged corpus,
which is called a pseudo-stochastically segmented
corpus (pSSC) (Kameko et al., 2015). The follow-
ing is the method for producing a pSSC from an
SSC.

• For i = 1 to nr − 1

1. output a character xi,
2. generate a random number 0 ≤ p < 1,
3. output a word boundary if p < Pi or

output nothing otherwise.

Now we have a corpus in the same format as
a standard segmented corpus with variable (non-
constant) segmentation.

2This is because an SSC has many words and word frag-
ments. Additionally, word n-gram frequencies must be cal-
culated using floating point numbers instead of integers.

3.2.3 Pseudo-Stochastically Tagged Corpora
We can annotate a word with its all possi-
ble pronunciations and their probabilities, as is
done in an SSC. We call a corpus containing
sequences of words (w1w2 · · ·wi · · · ) annotated
with a sequence of pairs of a pronunciation and
its probability (〈yi,1, pi,1〉, 〈yi,2, pi,2〉, · · · , where∑

j pi,j = 1, for ∀i) a stochastically tagged cor-
pus (STC)3. We can estimate these probabilities
using an LR model built from sentences annotated
with pronunciations (Mori and Neubig, 2011).

Similar to pSSC we then produce a pseudo-
stochastically tagged sentence (pSTC) from an
STC as follows:

• For each wi in the sentence

1. generate a random number 0 ≤ p < 1,
2. annotate wi with its j-th phoneme se-

quence yi,j , where
∑j−1

1 pi,j ≤ p <∑j
1 pi,j

Now we have a corpus in the same format as a
standard corpus annotated with variable pronunci-
ation.

By estimating the parameters in Equation (1)
from a pSTC derived from a pSSC, our IM en-
gine can also suggest OOV word candidates with
various possible segmentation and pronunciations
without incurring high computational costs.

3.2.4 Suggestion of OOV Words
Here we give an intuitive explanation why our
IM engine can suggest OOV words for a certain
phoneme sequence. Let us take an OOV word
example: “横アリ/yo-ko-a-ri,” an abbreviation of
“横浜アリーナ” (Yokohama city arena). A WS
system tends to segment it into “横” (side) and “
アリ” (ant) because they are frequent nouns. In
a pSSC, however, some occurrences of the string
“横アリ” are remain concatenated as the correct
word. For pronunciation, the first character has
two possible pronunciations “yo-ko” and “o-u.”

3Because the existence or non-existence of a word bound-
ary information can also be expressed as a tag, a stochasti-
cally tagged corpus includes stochastic segmentation.
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Figure 2: Input method for collecting logs.

So deterministic pronunciation estimation of this
new word has the risk of outputting the erroneous
result “o-u-a-ri.” This prevents our engine from
presenting “横アリ” as a conversion candidate for
the input “yo-ko-a-ri.” The pSTC, however, con-
tains two possible pronunciations for this word
and allows our engine to present the OOV word
“横アリ” for the input “yo-ko-a-ri.”

Thus when the user of our IM engine types “yo-
ko-a-ri-ni-i-ku” and selects “横アリに (to) 行く
(go),” the engine can learn an OOV word “横ア
リ/yo-ko-a-ri” with context “に/ni行く/i-ku”.

4 Input Method Logs

In this section we first propose an IM which al-
lows us to collect user logs. We then examine the
characteristics of these logs and some difficulties
in using them as language resources.

4.1 Collecting Logs from an Input Method
As Figure 2 shows, the client of our IM, running
on the user’s PC, is used to input characters and
to modify conversion results. The server logs both
input from the client and the results of conversions
performed in response to requests from the client.

Our IM has two phases: phoneme typing and
conversion result editing. In each phase, the client
sends the typed keys to the server with a timestamp
and its IP address.

Phoneme typing: First the user inputs ASCII

characters for a phoneme sequence. If the
phoneme sequence itself is what the user
wants to write, the user may not go to the
next phase. The server records the keys typed
to enter the phoneme sequence, cursor move-
ments, and the phoneme sequence if the user
selects it as-is.

Conversion result editing: Then the user presses
a space key to make the IM engine con-
vert the phoneme sequence to the most likely
word sequence based on Equation (1). Some-
times the user changes some word bound-
aries, makes the IM engine enumerate can-
didate words covering the region, and selects
the intended one from the list of candidates.
The server records a space key and the final
word sequence.

4.2 Characteristics of Input Method Logs
Table 1 shows an example of interesting log mes-
sages from the same IP address4. In many cases,
users type sentence fragments but not a complete
sentence. So in the example there are six frag-
ments within a short period indicated by the times-
tamps. If the user selects the phoneme sequence
as-is without going to the conversion result editing
phase, we can expect that there are word bound-
aries on both sides of the phoneme sequence. In-

4In reality, logs from different IPs are stored in the order
that they were received.
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Table 1: Input method logs of a tweet ‘横アリに比べると安めかと’ (It is cheap compared with Yoko-
hama arena).
Timestamp Phoneme sequence Edit result Note
18:37:11.21 よこありに/yo-ko-a-ri-ni 横アリ/yo-ko-a-ri に/ni (with Yokohama arena)
18:37:12.60 くらっべる/ku-ra-b-be-ru くらっ/ku-ra-b ベル/be-ru Mistyping
18:37:14.94 くらべる/ku-ra-be-ru 比べ/ku-ra-be る/ru Revised input (compare)
18:37:15.32 と/to N/A (inflectional ending)
18:37:19.82 ものの/mo-no-no N/A Discarded in the twitter
18:37:22.42 やすめかと/ya-su-me-ka-to 安め/ya-su-me か/ka と/to (cheap)

side the phoneme sequence, however, there is no
information. If the user goes to the conversion
result editing phase, we can expect that the final
word sequence has correct word boundary infor-
mation.

There are two main problems that make it dif-
ficult to directly use IM logs as a training cor-
pus for word segmentation. The first problem is
fragmentation. IM users send the phoneme se-
quences for sentence fragments to the engine to
avoid editing long conversion results that require
many cursor movements. Thus the phoneme se-
quence and the final word sequence tend to be
sentence fragments (as we noted above) and as a
result they lose context information. The second
problem is noise. Word boundary information is
unreliable even when it is present because of mis-
takenly selected conversions or words entered sep-
arately. From these observations, the IM logs are
treated as partially segmented sentence fragments
that include noise.

5 Word Segmentation Using Input
Method Logs

In this section we first explain various ways to
generate language resources for a word segmenter
from IM logs. We then describe an automatic word
segmenter which utilizes these resources. In the
examples below we use the three-valued notation
(Mori and Oda, 2009) to denote partial segmenta-
tion as follows:

| : there is a word boundary,
- : there is not a word boundary,

: there is no information.

5.1 Input Method Logs as Language
Resources

The phoneme sequences and edit results in the fi-
nal selection themselves are considered to be par-
tially segmented sentences. We call the corpus

generated directly from the logs “Log-as-is.” Ex-
amples in Table 1 are converted as following.

Example of Log-as-is (12 annotations)� �
横-ア-リ|に と
く-ら-っ|ベ-ル も の の
比-べ|る 安-め|か|と� �

Here the number of annotations is the sum of “-”
and “|”. In this example, one entry corresponds
to one entry of the training data for the word seg-
menter. As you can easily imagine, Log-as-is may
contain mistaken results (noise) and short entries
(fragmentation). Both are harmful for a word seg-
menter.

To cope with the fragmentation problem, we
propose to connect some logs based on their times-
tamps. If the difference between the timestamps of
two sequential logs is short, both logs are proba-
bly from the same sentence. So we connect two
sequential logs if the time difference between the
last key of the first log and the first key of the sec-
ond log is smaller than a certain threshold s. In the
experiment we set s = 500[ms] based on observa-
tions of our behavior5. This method is referred to
as “Log-chunk.” Using this method, we obtain
the following from the examples in Table 1.

Example of Log-chunk (15 annotations)� �
横-ア-リ|に|く-ら-っ|ベ-ル
比-べ|る|と|も の の
安-め|か|と� �

We see that Log-chunk contains more context in-
formation than Log-as-is.

For preventing the noise problem, we propose
to filter out logs with a small number of conver-
sions. We expect that an edited sentence will have
many OOV words and not much noise. Therefore
we use logs which were converted more than nc

times. In the experiment we set nc = 2 based on

5The results were stable for s in preliminary experiments.
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Table 2: Corpus specifications.
#sent. #words #char.

Training
BCCWJ 56,753 1,324,951 1,911,660
Newspaper 8,164 240,097 361,843
Conversation 11,700 147,809 197,941

Test
BCCWJ-test 6,025 148,929 212,261
TWI-test 2,976 37,010 58,316

observations of our behavior6. This method is re-
ferred to as “Log-mconv.” Using this method, the
examples in Table 1 becomes the following.

Example of Log-mconv (3 annotations)� �
横-ア-リ|に� �

As this example shows, Log-mconv contains short
entries (fragmentation) like Log-as-is. However,
we expect that the annotated tweets do not include
mistaken boundaries or conversions that were dis-
carded.

Obviously we can combine Log-chunk and
Log-mconv to avoid both the fragmentation and
noise problems. This combination is referred to as
“Log-chunk-mconv.”

5.2 Training a Word Segmenter on Logs

The IM logs give us partially segmented sentence
fragments, so we need a word segmenter capa-
ble of learning from them. We can use a word
segmenter based on a sequence classifier (Tsuboi
et al., 2008; Yang and Vozila, 2014; Jiang et al.,
2013) or one based on a pointwise classifier (Neu-
big et al., 2011). Although both types are viable,
we adopt the latter in the experiments because it
requires much less training time while delivering
comparable accuracy.

Here is a brief explanation of the word seg-
menter based on the pointwise method. For more
detail the reader may refer to (Neubig et al., 2011).
The input is an unsegmented character sequence
x = x1x2 · · ·xk. The word segmenter decides if
there is a word boundary ti = 1 or not ti = 0
by using support vector machines (SVMs) (Fan et
al., 2008)7. The features are character n-grams

6The results were stable for nc in the preliminary experi-
ments.

7The reason why we use SVM for word segmentation is
that the accuracy is generally higher than that based on LR. It
was so in the experiments of this paper. The F-measure of LR
on TWI-test was 91.30 (Recall = 89.50, Precision = 93.17),

Table 3: Language resources derived from logs.
#sentence
fragments #annotations

Log-as-is 32,119 39,708
Log-chunk 8,685 63,144
Log-mconv 4,610 10,852
Log-chunk-mconv 1,218 14,242

and character type n-grams (n = 1, 2, 3) around
the decision points in a window with a width of
6 characters. Additional features are triggered if
character n-grams in the window match with char-
acter sequences in the dictionary. This approach is
called pointwise because the word boundary deci-
sion is made without referring to the other deci-
sions on the points j 6= i. As you can see from the
explanation given above, we can also use partially
segmented sentences from IM logs for training in
the standard way.

6 Evaluation

As an evaluation of our methods, we measured
the accuracy of WS without using logs (the base-
line) and using logs converted by several methods.
There are two test corpora: one is the general do-
main corpus from which we built the baseline WS,
and the other is the same domain that the IM logs
were collected from, Twitter.

6.1 Corpora

The annotated corpus we used to build the base-
line word segmenter is the manually annotated
part (core data) of the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) (Maekawa,
2008), plus newspaper articles and daily conver-
sation sentences. We also used a 234,652-word
dictionary (UniDic) provided with the BCCWJ. A
small portion of the BCCWJ core data is reserved
for testing. In addition, we manually segmented
sentences randomly obtained from Twitter8 during
the same period as the log collection for the test
corpus. Table 2 shows the details of these corpora.

which is lower than that of SVM (see Table 4). To make an
SSC, however, we use an LR model because we need word
boundary probabilities.

8We extracted body text from 1,592 tweets excluding
mentions, hash tags, URLs, and ticker symbols. Then we
divided the body text into sentences by separating on newline
characters, resulting in 2,976 sentences.
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Table 4: WS accuracy on the tweets.
Recall [%] Precision [%] F-measure

Baseline 90.31 94.05 92.14
+ Log-as-is 90.33 93.77 92.02
+ Log-chunk 91.04 94.29 92.64
+ Log-mconv 90.62 94.09 92.32
+ Log-chunk-mconv 91.40 94.45 92.90

Table 5: WS accuracy on BCCWJ.
Recall [%] Precision [%] F-measure

Baseline 99.01 98.97 98.99
+ Log-as-is 99.02 98.87 98.94
+ Log-chunk 99.05 98.88 98.96
+ Log-mconv 98.98 98.91 98.95
+ Log-chunk-mconv 98.98 98.92 98.95

6.2 Models using Input Method Logs

To make the training data for our IM server, we
first chose randomly selected tweets (786,331 sen-
tences) in addition to the unannotated part of the
BCCWJ (358,078 sentences). We then trained LR
models which estimate word boundary probabili-
ties and pronunciation probabilities for words (and
word candidates) from the training data shown in
Table 2 and UniDic. We made a pSTC for our
IM engine from 1,207,182 sentences randomly ob-
tained from Twitter by following the procedure
which we explained in Subsection 3.2.39.

We launched our IM as a browser add-on for
Twitter and collected 19,770 IM logs from 7 users
between April 24 and December 31, 2014. Fol-
lowing the procedures in Section 5.1, we obtained
the language resources shown in Table 3. We com-
bined them with the training corpus and dictionar-
ies to build four WSs, which we compared with
the baseline.

6.3 Results and Discussion

Following the standard in WS experiments, the
evaluation criteria are recall, precision, and F-
measure (their harmonic mean). Recall is the
number of correctly segmented words divided by
the number of words in the test corpus. Preci-
sion is the number of correctly segmented words
divided by the number of words in the system out-
put.

Table 4 and 5 show WS accuracy on TWI-test
and BCCWJ-test, respectively. The difference in

9There is no overlap with the test data.

accuracy of the baseline method on BCCWJ-test
and TWI-test shows that WS of tweets is very dif-
ficult. The fact that the precision on TWI-test is
much higher than the recall indicates that the base-
line model suffers from over-segmentation. This
over-segmentation problem is mainly caused by
OOV words being divided into known words. For
example, “横アリ” (Yokohama arena) is divided
into the two know words “横” (side) and “アリ”
(ant).

When we compare the F-measures on TWI-test,
all the models referring to the IM logs outperform
the baseline model trained only from the BCCWJ.
The highest is the Log-chunk-mconv model and
the improvement over the baseline is statistically
significant (significance level: 1%). In addition
the accuracies of the five methods on the BCCWJ
(Table 5) are almost the same and there is no statis-
tical significance (significance level: 1%) between
any two of them.

We analyzed the words misrecognized by the
WSs, which we call error words. Table 6 shows
the number of error words, the number of OOV
words, and the ratio of OOV words to error words.
Here the vocabulary is the set of the words appear-
ing in the training data or in UniDic (see Table 2).
Although the result of the WS trained on Log-as-
is contains more error words than the baseline, the
OOV ratio is less than the baseline. This means
that the IM logs have a potential to reduce errors
caused by OOV words.

Table 6 also indicates that the best method Log-
chunk-mconv had the greatest success in reducing

1193



Table 6: Ratio of OOV words in error words.

#Error words #OOV words (ratio[%])
Baseline 446 103 (23.09)
+ Log-as-is 467 89 (19.06)
+ Log-chunk 428 81 (18.93)
+ Log-mconv 443 88 (19.86)
+ Log-chunk-mconv 413 74 (17.79)
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Figure 3: Relationship between WS accuracy on
the tweets and log size.

errors caused by OOV words. However, the ma-
jority of error words are in-vocabulary words. It
can be said that our log chunking method (Log-
chunk or Log-chunk-mconv) enabled the WSs to
eliminate many known word errors by using con-
text information.

To investigate the impact of the log size, we
measured WS accuracy on TWI-test when vary-
ing the log size during training. Figure 3 shows
the results. Table 4 says that Log-chunk-mconv
and Log-chunk increase the accuracy nicely. The
graph, however, clarifies that Log-chunk-mconv
achieves high accuracy with fewer training data
converted from logs. In other words, the method
Log-chunk-mconv is good at distilling the in-
formative parts and filtering out the noisy parts.
These characteristics are very important properties
to have as we consider deploying our IM to a wider
audience. An IM is needed to type Japanese and
the number of Japanese speakers is more than 100
million. If we can use input logs of even 1% of
them for the same or longer period10, the idea we
propose in this paper can improve WS accuracy on
various domains efficiently and automatically.

As a final remark, this paper describes a suc-

10The number of users using our system in this paper is 7
for 8 months.

cessful example of how to build a useful tool for
the NLP community. This process has three steps:
1) design a useful NLP application that can collect
user logs, 2) deploy it for public use, and 3) devise
a method for mining data from the logs.

7 Conclusion

This paper described the design of a publicly us-
able IM which collects natural annotations for use
as training data for another system. Specifically,
we (1) described how to construct an IM server
that suggests OOV word candidates, (2) designed
a publicly usable IM that collects logs of user
behavior, and (3) proposed a method for using
this data to improve word segmenters. Tweets
from Twitter are a promising source of data with
great potential for NLP, which is one reason why
we used them as the target domain for our ex-
periments. The experimental results showed that
our methods improve accuracy in this domain.
Our method itself is domain-independent and only
needs logs from the target domain, so it is worth
testing on other domains and with much longer pe-
riods of data collection.
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