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Abstract

According to the principle of composi-
tionality, the meaning of a sentence is
computed from the meaning of its parts
and the way they are syntactically com-
bined. In practice, however, the syntactic
structure is computed by automatic parsers
which are far-from-perfect and not tuned
to the specifics of the task. Current re-
cursive neural network (RNN) approaches
for computing sentence meaning therefore
run into a number of practical difficulties,
including the need to carefully select a
parser appropriate for the task, deciding
how and to what extent syntactic context
modifies the semantic composition func-
tion, as well as on how to transform parse
trees to conform to the branching settings
(typically, binary branching) of the RNN.
This paper introduces a new model, the
Forest Convolutional Network, that avoids
all of these challenges, by taking a parse
forest as input, rather than a single tree,
and by allowing arbitrary branching fac-
tors. We report improvements over the
state-of-the-art in sentiment analysis and
question classification.

1 Introduction

For many natural language processing tasks we
need to compute meaning representations for sen-
tences from meaning representations of words. In
a recent line of research on ‘recursive neural net-
works’ (e.g., Socher et al. (2010)), both the word
and sentence representations are vectors, and the
word vectors (“embeddings”) are borrowed from
work in distributional semantics or neural lan-
guage modelling. Sentence representations, in this
approach, are computed by recursively applying a
neural network that combines two vectors into one

(typically according to the syntactic structure pro-
vided by an external parser). The network, which
thus implements a ‘composition function’, is opti-
mized for delivering sentence representations that
support a given semantic task: sentiment analysis
(Irsoy and Cardie, 2014; Le and Zuidema, 2015),
paraphrase detection (Socher et al., 2011), seman-
tic relatedness (Tai et al., 2015) etc. Studies with
recursive neural networks have yielded promising
results on a variety of such tasks.

In this paper, we represent a new recursive neu-
ral network architecture that fits squarely in this
tradition, but aims to solve a number of difficulties
that have arisen in existing work. In particular, the
model we propose addresses three issues:

1. how to make the composition functions adap-
tive, in the sense that they operate adequately
for the many different types of combina-
tions (e.g., adjective-noun combinations are
of a very different type than VP-PP combina-
tions);

2. how to deal with different branching factors
of nodes in the relevant syntactic trees (i.e.,
we want to avoid having to binarize syntac-
tic trees,1 but also do not want ternary pro-
ductions to be completely independent from
binary productions);

3. how to deal with uncertainty about the correct
parse inside the neural architecture (i.e., we
don’t want to work with just the best or k-best
parses for a sentence according to an external
model, but receive an entire distribution over
possible parsers).

1Eisner (2001, Chapter 2) shows that using flat rules is
linguistically beneficial, “most crucially, a flat lexical entry
corresponds to the local domain of a headword-the word to-
gether with all its semantic arguments and modifiers”. From
the computational perspective, flat rules make trees less deep,
thus avoiding the vanishing gradient problem and capturing
long range dependencies.
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Figure 1: Recursive Neural Network. For simplic-
ity, bias vectors are removed.

To solve these challenges we take inspiration
from two other traditions: the convolutional neu-
ral networks and classic parsing algorithms based
on dynamic programming. Including convolution
in our network provides a direct solution for is-
sue (2), and turns out, somewhat unexpectedly, to
also provide a solution for issue (1). Introduc-
ing the chart representation from classic parsing
into our architecture then allows us to tackle issue
(3). The resulting model, the Forest Convolutional
Network, outperforms all other models on a senti-
ment analysis and question classification task.

2 Background

This section is to introduce the recursive neural
network (RNN) and convolutional neural network
(CNN) models, on which our work is based.

2.1 Recursive Neural Network
A recursive neural network (RNN) (Goller and
Küchler, 1996) is a feed-forward neural network
where, given a tree structure, we recursively ap-
ply the same weight matrices at each inner node
in a bottom-up manner. In order to see how
an RNN works, consider the following exam-
ple. Assume that there is a constituent with parse
tree (S I (V P like it)) (Figure 1), and that
xI ,xlike,xit ∈ Rd are the vectorial representa-
tions of the three words I , like and it, respec-
tively. We use a neural network which consists of
a weight matrix W1 ∈ Rd×d for left children and
a weight matrix W2 ∈ Rd×d for right children to
compute the vector for a parent node in a bottom
up manner. Thus, we compute xV P

xV P = f(W1xlike + W2xit + b) (1)

where b is a bias vector and f is an (non-linear)
activation function. Having computed xV P , we

Figure 2: Convolutional Neural Network (one
convolutional layer and one fully connected layer)
with a window-size-3 kernel.

can then move one level up in the hierarchy and
compute xS

xS = f(W1xI + W2xV P + b)

This process is continued until we reach the root
node.

For classification tasks, we put a softmax layer
on the top of the root node, and compute the prob-
ability of assigning a class c to an input x by

Pr(c|x) = softmax(c) =
eu(c,ytop)∑

c′∈C e
u(c′,ytop)

(2)

where
[
u(c1,ytop), ..., u(c|C|,ytop)

]T =
Wuytop + bu; C is the set of all possible
classes; Wu ∈ R|C|×d,bu ∈ R|C| are a weight
matrix and a bias vector.

Training an RNN uses the gradient descent
method to minimize an objective function J(θ).
The gradient ∂J/∂θ is efficiently computed thanks
to the back-propagation through structure algo-
rithm (Goller and Küchler, 1996).

Departing from the original RNN model, many
extensions have been proposed to enhance its
compositionality (Socher et al., 2013; Irsoy and
Cardie, 2014; Le and Zuidema, 2015) and appli-
cability (Le and Zuidema, 2014b). The model we
are going to propose can be considered as an ex-
tension of RNN with an ability to solve the three
issues introduced in Section 1.

2.2 Convolutional Neural Network
A convolutional neural network (CNN) (LeCun et
al., 1998) is also a feed-forward neural network; it
consists of one or more convolutional layers (of-
ten with a pooling operation) followed by one or
more fully connected layers. This architecture was
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invented for computer vision. It then has been
widely applied to solve natural language process-
ing tasks (Collobert et al., 2011; Kalchbrenner et
al., 2014; Kim, 2014).

To illustrate how a CNN works, the following
example uses a simplified model proposed by Col-
lobert et al. (2011) which consists of one con-
volutional layer with the max pooling operation,
followed by one fully connected layer (Figure 2).
This CNN uses a kernel with window size 3; when
we slide this kernel along the sentence “〈s〉 I like
it very much 〈/s〉”, we get five vectors:

u(1) = W1x<s> + W2xI + W3xlike + bc

u(2) = W1xI + W2xlike + W3xit + bc

...

u(5) = W1xvery + W2xmuch + W3x</s> + bc

where W1,W2,W3 ∈ Rd×m are weight matri-
ces, bc ∈ Rm is a bias vector. The max pooling
operation is then applied to those resulted vectors
in an element-wise manner:

x =
[

max
1≤i≤5

u(i)
1 , ..., max

1≤i≤5
u(i)

j , ...
]T

Finally, a fully connected layer is employed

y = f(Wx + b)

where W, b are a real weight matrix and bias vec-
tor, respectively; f is an activation function.

Intuitively, a window-size-k kernel extracts (lo-
cal) features from k-grams, and is thus able to cap-
ture k-gram composition. The max pooling oper-
ation is for reducing dimension, forcing the net-
work to discriminate important features from oth-
ers by assigning high values to them. For instance,
if the network is used for sentiment analysis, local
features corresponding to k-grams containing the
word “like” should receive high values in order to
be propagated to the top layer.

3 Forest Convolutional Network

We now first propose a solution to the issues (1)
and (2) (i.e., making the composition functions
adaptive and dealing with different branching fac-
tors), called Recursive convolutional neural net-
work (RCNN), and then a solution to the third is-
sue (i.e., dealing with uncertainty about the cor-
rect parse), called Chart Neural Network (ChNN).
A combination of them, Forest Convolutional Net-
work (FCN), will be introduced lastly.

Figure 3: Recursive Convolutional Neural Net-
work with a nonlinear window-size-3 kernel.

3.1 Recursive Convolutional Neural
Network2

Given a subtree p → x1 ... xl, an RCNN (Fig-
ure 3), like a CNN, slides a window-size-k kernel
along the sequence of children (x1, ..., xl) to com-
pute a pool of vectors. The max pooling operation
followed by a fully connected layer is then applied
to this pool to compute a vector for the parent p.

This RCNN differs from the CNN introduced
in Section 2.2 at two points. First, we use a
non-linear kernel: after linearly transforming in-
put vectors, an activation function is applied. Sec-
ond, we put k − 1 padding tokens <b> at the be-
ginning of the children sequence and k−1 padding
tokens <e> at the end. This thus guarantees that
all the children contribute equally to the resulted
vector pool, which now has l + k − 1 vectors.

It is obvious that this RCNN can solve the sec-
ond issue (i.e., dealing with different branching
factors), we now show how it can make the com-
position functions adaptive. We first see what hap-
pens if the window size k is larger than the number
of children l, for instance k = 3 and l = 2. There
are four vectors in the pool

u(1) = f(W1x<b> + W2x<b> + W3x1 + bc)

u(2) = f(W1x<b> + W2x1 + W3x2 + bc)

u(3) = f(W1x1 + W2x2 + W3x<e> + bc)

u(4) = f(W1x2 + W2x<e> + W3x<e> + bc)

where W1,W2,W3 are weight matrices, bc is a
2While finalizing the current paper we discovered a pa-

per by Zhu et al. (2015) proposing a similar model which is
evaluated on syntactic parsing. Our work goes substantially
beyond theirs, however, as it takes a parse forest rather than a
single tree as input.
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Figure 4: Chart Neural Network.

bias vector, f is an activation function. These four
resulted vectors correspond to four ways of com-
posing the two children:

(1) the first child stands alone (e.g., when the in-
formation of the second child is not impor-
tant, it is better to ignore it),

(2,3) the two children are composed with two dif-
ferent weight matrix sets,

(4) the second child stands alone.

Now, imagine that we must handle binary syn-
tactic rules with different head positions such as
S → NP V P (e.g. “Jones runs”) where the
second child is the head and V P → V BD NP
(e.g., “ate spaghetti”) where the first child is the
head. We can set those weight matrices such that
when multiplying W2 by the vector of a head, we
have a vector with high-value entries. And when
multiplying W2 by the vector of a non-head, or
when multiplying W1 or W3 by a vector, the re-
sulted vector has low-value entries. This is possi-
ble thanks to the max pooling operation and that
heads are often more informative than non-heads.

If the window size k is smaller than the number
of children l, the argument above is still valid in
some cases such as head position. However, there
is no longer a direct interaction between any two
children whose distance is larger than k.3 In prac-
tice, this problem is not serious because rules with
a large number of children are very rare.

3.2 Chart Neural Network
Unseen sentences are always parsed by an auto-
matic parser, which is far from perfect and task-
independent. Therefore, a good solution is to give

3An indirect interaction can be set up through pooling.

the system a set of parses and let it decide which
parse is the best or to combine some of them. The
RNN model handles one extreme where this set
contains only one parse. We now consider the
other extreme where the set contains all possible
parses. Because the number of all possible bi-
nary parse trees of a length-n sentence is the n-
th Catalan number, processing individual parses is
not practical. We thus propose a new model work-
ing on charts in the CKY style (Younger, 1967),
called Chart Neural Network (ChNN).

We describe this model by the following exam-
ple. Given a phrase “ate pho with Milos”, a ChNN
will process its parse chart as in Figure 4. Be-
cause any 2-word constituent has only one parse,
the computation for p1, p2, p3 is identical to Equa-
tion 1. For 3-word constituent p4, because there
are two possible productions p4 → ate p2 and
p4 → p1 with, we compute one vector for each
production

u(1) = f(W1xate + W2p2 + b)

u(2) = f(W1p1 + W2xwith + b)
(3)

and then apply the max pooling operation to these
two vectors to compute p4. We do the same to
compute p5. Finally, at the top, there are three
productions p6 → ate p5, p6 → p1 p3 and
p6 → p4 Milos. Similarly, we compute one vec-
tor for each production and employ the max pool-
ing operation to compute p6.

Because this ChNN processes a chart like the
CKY algorithm, its time complexity is O(n2d2 +
n3d) where n and d are the sentence length and
the dimension of vectors, respectively.4 A ChNN
is thus notably more complex than an RNN, whose
complexity is O(nd2). Like chart parsing, the
complexity can be reduced significantly by prun-
ing the chart before applying the ChNN. This will
be discussed right below.

3.3 Forest Convolutional Network
We now introduce the Forest Convolutional Net-
work (FCN) model, which is a combination of the
RCNN and the ChNN. The idea is to use an au-
tomatic parser to prune a chart5, debinarize pro-
ductions (if applicable), and then apply a ChNN

4In each cell, we apply the matrix-vector multiplication
two times and (if the cell is not a leaf) apply the max pooling
to a pool of maximally n d-D vectors.

5Pruning a chart by an automatic parser is also not per-
fect. However, the quality of a pruned chart can get very
close to human annotation. For instance, the chart pruner
proposed by Huang (2008) has a forest oracle of 97.8% F-
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Figure 5: Forest of parses (left) and Forest Convolutional Network (right). ⊗ denotes a convolutional
layer followed by the max pooling operation and a fully connected layer as in Figure 3.

where the computation in Equation 3 is replaced
by a convolutional layer followed by the max pool-
ing operation and a fully connected layer as in the
RCNN.

Figure 5 shows an illustration how the
FCN works on the phrase “ate pho with
Milos”. A forest of parses, given by
an external parser, comprises two parses
(V P ate pho (PP with Milos)) (solid lines)
and (V P ate (NP pho (PP with Milos)))
(dash-dotted lines). The first parse is the preferred
reading if Milos is a person, but the second one
is a possible reading (for instance, if Milos is the
name of a sauce). Instead of forcing the external
parser to decide which one is correct, we let
the FCN network do that because it has more
information about the context and domain, which
are embedded in training data. What the network
should do is depicted in Figure 5-right.

Training Training an FCN is similar to train-
ing an RNN. We use the mini-batch gradient de-
scent method to minimize an objective function J ,
which depends on which task this network is ap-
plied to. For instance, if the task is sentiment anal-
ysis, J is the cross-entropy over the training sen-
tence set D plus an L2-norm regularization term

J(θ) = − 1
|D|

∑
s∈D

∑
p∈s

logPr(cp|p) +
λ

2
||θ||2

where θ is the parameter set, cp is the sentiment
class of phrase p, p is the vector representation
at the node covering p, Pr(cp|p) is computed by

score on section 23 of the Penn Treebank whereas resulted
forests are very compact: the average number of hyperedges
per forest is 123.1.

the softmax function, and λ is the regularization
parameter.

The gradient ∂J/∂θ is computed efficiently
thanks to the back-propagation through structure
(Goller and Küchler, 1996). We use the AdaGrad
method (Duchi et al., 2011) to automatically up-
date the learning rate for each parameter.

4 Experiments

We evaluate the FCN model with two tasks: ques-
tion classification and sentiment analysis. The
evaluation metric is the classification accuracy.

Our networks were initialized with the 300-D
GloVe word embeddings trained on a corpus of
840B words6 (Pennington et al., 2014). The ini-
tial values for a weight matrix were uniformly
sampled from the symmetric interval

[− 1√
n
, 1√

n

]
where n is the number of total input units. In each
experiment, a development set was used to tune
the model. We run the model ten times and chose
the run with the highest performance on the devel-
opment set. We employed early stopping: training
is halted if performance on the development set
does not improve after three consecutive epochs.

4.1 Sentiment Analysis
The Stanford Sentiment Treebank (SST)7 (Socher
et al., 2013) which consists of 5-way fine-grained
sentiment labels (very negative, negative, neu-
tral, positive, very positive) for 215,154 phrases
of 11,855 sentences. We used the standard split-
ting: 8544 sentences for training, 1101 for devel-
opment, and 2210 for testing. The average sen-
tence length is 19.1. In addition, the treebank

6http://nlp.stanford.edu/projects/GloVe/
7http://nlp.stanford.edu/sentiment/treebank.html
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Model Fine-grained Binary
RNTN 45.7 85.4
CNN 48.0 88.1
DCNN 48.5 86.8
PV 48.7 87.8
DRNN 49.8 86.6
LSTM-RNN 49.9 88.0
CT-LSTM 51.0 88.0
FCN (dep.) 50.4 88.2
FCN (const.) 51.0 89.1

Table 1: Accuracies at sentence level on the SST
dataset. FCN (dep.) and FCN (const.) denote the
FCN with dependency forests and with constituent
forests, respectively. The accuracies of RNTN,
CNN, DCNN, PV, DRNN, LSTM-RNN and CT-
LSTM are copied from the corresponding papers
(see text).

also supports binary sentiment (positive, negative)
classification by removing neutral labels, leading
to: 6920 sentences for training, 872 for develop-
ment, and 1821 for testing.

All sentences were parsed by Liang Huang’s de-
pendency parser8 (Huang and Sagae, 2010). We
used this parser because it generates parse forests
and that dependency trees are less deep than con-
stituent trees. In addition, because the SST was
annotated in a constituency manner, we also em-
ployed the Charniak’s constituent parser (Char-
niak and Johnson, 2005) with Huang (2008)’s for-
est pruner. We found that the beam width 16
for the dependency parser and the log probability
beam 10 for the other worked best. Lower values
harmed the system’s performance and higher val-
ues were not beneficial.

Our FCN has the dimension of vectors at inner
nodes 200, a window size for the convolutional
kernel of 7, and the activation function tanh. It
was trained with the learning rate 0.01, the regu-
larization parameter 10−4, and the mini batch size
5. To reduce the average depth of the network, the
fully connected layer following the convolutional
layer was removed (i.e., p = x, see Figure 3).

We compare the FCN against other models:
the Recursive neural tensor network (RNTN)
(Socher et al., 2013), the Convolutional neural net-
work (CNN) (Kim, 2014), the Dynamic convolu-
tional neural network (DCNN) (Kalchbrenner et
al., 2014), the Paragraph vectors (PV) (Le and

8http://acl.cs.qc.edu/∼lhuang/software

Mikolov, 2014), the Deep recursive neural net-
work (DRNN) (Irsoy and Cardie, 2014), the Re-
cursive neural network with Long short term mem-
ory (LSTM-RNN) (Le and Zuidema, 2015) and
the Constituent Tree LSTM (CT-LSTM) (Tai et
al., 2015).9

Table 1 shows the results. Our FCN using con-
stituent forests achieved the highest accuracies in
both fine-grained task and binary task, 51% and
89.1%. Comparing to CT-LSTM, although there
is no difference in the fine-grained task, the dif-
ference in the binary task is significant (1.1%).
Comparing to LSTM-RNN, the differences in both
tasks are all remarkable (1.1% and 1.1%).

Constituent parsing is clearly more helpful than
dependency parsing: the improvements that the
FCN got are 0.6% in the fine-grained task and
0.9% in the binary task. We conjecture that, be-
cause sentences in the treebank were parsed by
a constituent parser (here is the Stanford parser),
training with constituent forests is easier.

4.2 Question Classification

In this task we used the TREC question dataset10

(Li and Roth, 2002) which contains 5952 ques-
tions (5452 questions for training and 500 ques-
tions for testing). The task is to assign a ques-
tion to one in six types: ABBREVIATION, EN-
TITY, DESCRIPTION, HUMAN, LOCATION,
NUMERIC. The average length of the questions
in the training set is 10.2 whereas in the test set
is 7.5. This difference is due to the fact that those
questions are from different sources. All questions
were parsed by Liang Huang’s dependency parser
with the beam width 16.

We randomly picked 5% of the training set (272
questions) for validation. Our FCN has the dimen-
sion of vectors at inner nodes 200, a window size
for the convolutional kernel of 5, and the activa-
tion function tanh. It was trained with the learn-
ing rate 0.01, the regularization parameter 10−4,
and the mini batch size 1. The vectors represent-
ing the two padding tokens <b>, <e> were fixed
to 0.

We compare the FCN against the Convolutional
neural network (CNN) (Kim, 2014), the Dynamic
convolutional neural network (DCNN) (Kalch-

9LSTM-RNN and CT-LSTM are very similar: they are
RNNs using LSTMs for composition. Their difference is that
LSTM-RNN uses one input gate for each child where as CT-
LSTM uses only one input gate for all children.

10http://cogcomp.cs.illinois.edu/Data/QA/QC
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Model Acc. (%)
DCNN 93.0
MaxEntH 93.6
CNN-non-static 93.6
SVMS 95.0
LSTM-RNN 93.4
FCN 94.8

Table 2: Accuracies on the TREC question type
classification dataset. The accuracies of DCNN,
MaxEntH , CNN-non-static, and SVMS are copied
from the corresponding papers (see text).

brenner et al., 2014), MaxEntH (Huang et al.,
2008) (which uses MaxEnt with uni-bi-trigrams,
POS, wh-word, head word, word shape, parser,
hypernyms, WordNet) and the SVMS (Silva et al.,
2011) (which uses SVM with, in addition to fea-
tures used by MaxEntH , 60 hand-coded rules). We
also include the LSTM-RNN (Le and Zuidema,
2015) whose accuracy was computed by running
their published source code11 on binary trees from
the Stanford Parser12 (Klein and Manning, 2003).
This network was also initialized by the 300-D
GloVe word embeddings.

Table 2 shows the results.13 The FCN achieved
the second best accuracy, only lightly lower than
SVMS (0.2%). This is a promising result because
our network used only parse forests, unsupervis-
edly pre-trained word embeddings whereas SVMS

used heavily engineered resources. The differ-
ence between FCN and the third best is remark-
able (1.2%). Interestingly, LSTM-RNN did not
perform well on this dataset. This is likely be-
cause the questions are short and the parse trees
quite shallow, such that the two problems that the
LSTM was invented for (long range dependency
and vanishing gradient) do not play much of a role.

4.3 Visualization

We visualize the charts we obtained in the sen-
timent analysis task as in Figure 6. To identify
how important each cell is for determining the fi-
nal vector at the root, we compute the number of
features of each that are actually propagated all the
way to the root in the successive max pooling op-

11https://github.com/lephong/lstm-rnn
12http://nlp.stanford.edu/software/lex-parser.shtml
13While finalizing the current paper we discovered a paper

by Ma et al. (2015) proposing a convolutional network model
for dependency trees. They report a new state-of-the-art ac-
curacy of 95.6%.

erations. The circles in a graph are proportional
to this number. Here, to make the contribution of
each individual cell clearer, we have set the win-
dow size to 1 to avoid direct interactions between
cells.

At the lexical level, we can see that the FCN
can discriminate important words from the others.
Two words “most” and “incoherent” are the key
of the sentiment of this sentence: if one of them is
replaced by another word (e.g. replacing “most”
by “few” or “incoherent” by “coherent”), the sen-
timent will flip. The punctuation “.” however also
has a high contribution to the root. This happens
to other charts as well. We conjecture that the net-
work uses the vector of “.” to store neutral features
and propagate them to the root whenever it can not
find more useful features in other vectors. Our fu-
ture work is to examine this.

At the phrasal level, the network tends to group
words in grammatical constituents, such as “most
of the action setups”, “are incoherent”. Ill-formed
constituents such as “of the action” and “incoher-
ent .” receive little attention from the network.

Interestingly, we can see that the circle of “inco-
herent” is larger than the circles of any inner cells,
suggesting that the network is able to make use
of parses containing direct links from that word to
the root. This is evidence that the network has an
ability of selecting (or combining) parses that are
beneficial to this sentiment analysis task.

5 Related Work

The idea that a composition function must be able
to change its behaviour on the fly according to in-
put vectors is explored by Socher et al. (2013), Le
and Zuidema (2015), among others. The tensor
in the former is multiplied with the vector repre-
sentations of the phrases it is going to combine
to define a composition function (a matrix) on the
fly, and then multiplies again with these vectors
to yield a compound representation. In the LSTM
architecture of the latter, there is one input gate
for each child in order to control how the vector
of the child affects the composition at the parent
node. Because the input gate is a function of the
vector of the child, the composition function has
an infinite number of behaviours. In this paper, we
instead slide a kernel function along the sequence
of children to generate different ways of composi-
tion. Although the number of behaviours is limited
(and depends on the window size), it simultane-
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Figure 6: Chart of sentence “Most of the action setups are incoherent .” The size of a circle is proposi-
tional to the number of the cell’s features that are propagated to the root.

ously provides us with a solution to handle rules
with different branching sizes.

Some approaches try to overcome the prob-
lem of varying branching sizes. Le and Zuidema
(2014b) use different sets of weight matrices for
different branching sizes, thus requiring a large
number of parameters. Because large branching-
size rules are rare, many parameters are infre-
quently updated during training. Socher et al.
(2014), for dependency trees, use a weight matrix
for each relative position to the head word (e.g.,
first-left, second-right). Le and Zuidema (2014a)
replace relative positions by dependency relations
(e.g., OBJ, SUBJ). These approaches strongly de-
pend on input parse trees and are very sensitive to
parsing errors. The approach presented in this pa-
per, on the other hand, does not need the informa-
tion about the head word position and is less sensi-
tive to parsing errors. Moreover, its number of pa-
rameters is independent from the maximal branch-
ing size.

Convolutional networks have been widely ap-
plied to solve natural language processing tasks.
Collobert et al. (2011), Kalchbrenner et al. (2014),
and Kim (2014) use convolutional networks to
deal with varying length sequences. Recently, Zhu
et al. (2015) and Ma et al. (2015) try to intergrate
syntactic information by employing parse trees.
Ma et al. (2015) extend the work of Kim (2014)
by taking into acount dependency relations so that
long range dependencies could be captured. The
model proposed by Zhu et al. (2015), which is
very similar to our Recursive convolutional neural
network model, is to use a convolutional network

for the composition purpose. Our work, although
also employing a convolutional network and syn-
tactic information, goes beyond them: we address
the issue of how to deal with uncertainty about the
correct parse inside the neural architecture. There-
fore, instead of using a single parse, our proposed
FCN model takes as input a forest of parses.

Related to our FCN is the Gated recursive con-
volutional neural network model proposed by Cho
et al. (2014) which is stacking n−1 convolutional
neural layers using a window-size-2 gated kernel
(where n is the sentence length). Mapping their
network into a chart, each cell is only connected
to the two cells right below it. What makes this
network special is the gated kernel which is a 3-
gate switcher for choosing one of three options:
directly transmit the left/right child’s vector to the
parent node, or compose the vectors of the two
children. Thanks to this, the network can capture
any binary parse trees by setting those gates prop-
erly. However, because only one gate is allowed to
open in a cell, the network is not able to capture an
arbitrary forest. Our FCN is thus more expressive
and flexible than their model.

6 Conclusions

We proposed the Forest Convolutional Network
(FCN) model that addresses the three issues: (1)
how to make the composition functions adaptive,
(2) how to deal with different branching factors of
nodes in the relevant syntactic trees, (3) how to
deal with uncertainty about the correct parse in-
side the neural architecture. The key principle is
to carry out many different ways of computation
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and then choose or combine some of them. For
more details, the two first issues are solved by em-
ploying a convolutional net for composition. To
the third issue, the network takes input as a forest
of parses instead of a single parse as in traditional
approaches.

Our future work is to focus on how to
choose/combine different ways of computation.
For instance, we might replace the max pooling
by different pooling operations such as mean pool-
ing, k-max pooling (Kalchbrenner et al., 2014),
and stochastic pooling (Zeiler and Fergus, 2013).
We can even bias the selection/combination to-
ward grammatical constituents by weighing cells
by their inside probabilities.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, pages 2121–2159.

Jason Eisner. 2001. Smoothing a Probabilistic Lexicon
via Syntactic Transformations. Ph.D. thesis, Univer-
sity of Pennsylvania, July. 318 pages.

Christoph Goller and Andreas Küchler. 1996. Learn-
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