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Abstract

Many state-of-the-art Machine Translation
(MT) evaluation metrics are complex, in-
volve extensive external resources (e.g.
for paraphrasing) and require tuning to
achieve best results. We present a simple
alternative approach based on dense vec-
tor spaces and recurrent neural networks
(RNNs), in particular Long Short Term
Memory (LSTM) networks. For WMT-14,
our new metric scores best for two out of
five language pairs, and overall best and
second best on all language pairs, using
Spearman and Pearson correlation, respec-
tively. We also show how training data is
computed automatically from WMT ranks
data.

1 Introduction

Deep learning approaches have turned out to be
successful in many NLP applications such as para-
phrasing (Mikolov et al., 2013b; Socher et al.,
2011), sentiment analysis (Socher et al., 2013b),
parsing (Socher et al., 2013a) and machine trans-
lation (Mikolov et al., 2013a). While dense vec-
tor space representations such as those obtained
through Deep Neural Networks (DNNs) or RNNs
are able to capture semantic similarity for words
(Mikolov et al., 2013b), segments (Socher et al.,
2011) and documents (Le and Mikolov, 2014)
naturally, traditional MT evaluation metrics can
only achieve this using resources like WordNet
and paraphrase databases. This paper presents a
novel, efficient and compact MT evaluation mea-
sure based on RNNs. Our metric is simple in the
sense that it does not require much machinery and
resources apart from the dense word vectors. This
cannot be said of most of the state-of-the-art MT
evaluation metrics, which tend to be complex and
require extensive feature engineering. Our metric

is based on RNNs and particularly on Tree Long
Short Term Memory (Tree-LSTM) networks (Tai
et al., 2015). LSTM (Hochreiter and Schmidhu-
ber, 1997) is a sequence learning technique which
uses a memory cell to preserve a state over a long
period of time. This enables distributed represen-
tations of sentences using distributed representa-
tions of words. Tree-LSTM is a recent approach,
which is an extension of the simple LSTM frame-
work (Zaremba and Sutskever, 2014). To provide
the required training data, we also show how to
automatically convert the WMT-13 (Bojar et al.,
2013) human evaluation rankings into similarity
scores between the reference and the translation.
Our metric including training data is available at
https://github.com/rohitguptacs/ReVal.

2 Related Work

Many metrics have been proposed for MT eval-
uation. Earlier popular metrics are based on n-
gram counts (e.g. BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002)) or word error rate.
Other popular metrics like METEOR (Denkowski
and Lavie, 2014) and TERp (Snover et al., 2008)
also use external resources like WordNet and para-
phrase databases. However, system-level cor-
relation with human judgements for these met-
rics remains below 0.90 Pearson correlation co-
efficient (as per WMT-14 results, BLEU-0.888,
NIST-0.867, METEOR-0.829, TER-0.826, WER-
0.821).

Recent best-performing metrics in the WMT-14
metric shared task (Machácek and Bojar, 2014)
used a combination of different metrics. The
top performing system DISKOTK-PARTY-TUNED

(Joty et al., 2014) in the WMT-14 task uses five
different discourse metrics and twelve different
metrics from the ASIYA MT evaluation toolkit
(Giménez and Màrquez, 2010). The metric com-
putes the number of common sub-trees between
a reference and a translation using a convolution
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tree kernel (Collins and Duffy, 2001). The basic
version of the metric does not perform well but
in combination with the other 12 metrics from
the ASIYA toolkit obtained the best results for
the WMT-14 metric shared task. Another top
performing metric LAYERED (Gautam and Bhat-
tacharyya, 2014), uses linear interpolation of dif-
ferent metrics. LAYERED uses BLEU and TER
to capture lexical similarity, Hamming score and
Kendall Tau Distance (Birch and Osborne, 2011)
to identify syntactic similarity, and dependency
parsing (De Marneffe et al., 2006) and the Univer-
sal Networking Language1 for semantic similarity.
Recently, Guzmán et al. (2015) presented a metric
based on word embeddings and neural networks.
However, this metric is limited to ranking the
available systems and does not provide an absolute
score.

In this paper we propose a compact MT eval-
uation metric. We hypothesize that our model
learns different notions of similarity (which other
metrics tend to capture using different metrics)
using input, output and forget gates of an LSTM
architecture.

3 LSTMs and Tree-LSTMs

Recurrent Neural Networks allow processing of
arbitrary length sequences, but early RNNs had
the problem of vanishing and exploding gradi-
ents (Bengio et al., 1994). RNNs with LSTM
(Hochreiter and Schmidhuber, 1997) tackle this
problem by introducing a memory cell composed
of a unit called constant error carousel (CEC) with
multiplicative input and output gate units. Input
gates protect against irrelevant inputs and output
gates against current irrelevant memory contents.
This architecture is capable of capturing important
pieces of information seen in a bigger context.
Tree-LSTM is an extension of simple LSTM. A
typical LSTM processes the information sequen-
tially whereas Tree-LSTM architectures enable
sentence representation through a syntactic struc-
ture. Equation (1) represents the composition of
a hidden state vector for an LSTM architecture.
For a simple LSTM, ct represents the memory cell
and ot the output gate at time step t in a sequence.
For Tree-LSTM, ct represents the memory cell
and ot represents the output gate corresponding
to node t in a tree. The structural processing of
Tree-LSTM makes it better suited to representing

1http://www.undl.org/unlsys/unl/unl2005/UW.htm

sentences. For example, dependency tree structure
captures syntactic features and model parameters
the importance of words (content vs. function
words).

ht = ot ⊙ tanh ct (1)

Figure 1 shows simple LSTM and Tree-LSTM
architectures.
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Figure 1: Tree-LSTM (left) and simple LSTM
(right)

4 Evaluation Metric

We represent both the reference (href ) and the
translation (htra) using an LSTM and predict the
similarity score ŷ based on a neural network which
considers both distance and angle between href

and htra:

h× = href ⊙ htra

h+ = |href − htra|
hs = σ

(
W (×)h× + W (+)h+ + b(h)

)
p̂θ = softmax

(
W (p)hs + b(p)

)
ŷ = rT p̂θ

(2)

where, σ is a sigmoid function, p̂θ is the estimated
probability distribution vector and rT = [1 2...K].
The cost function J(θ) is defined over probability
distributions p and p̂θ using regularised Kullback-
Leibler (KL) divergence.

J(θ) =
1
n

n∑
i=1

KL
(
p(i)

∣∣∣∣∣∣p̂(i)
θ

)
+

λ

2
||θ||22 (3)

In Equation 3, i represents the index of each train-
ing pair, n is the number of training pairs and p is
the sparse target distribution such that y = rT p is
defined as follows:

pj =


y − ⌊y⌋, j = ⌊y⌋+ 1
⌊y⌋ − y + 1, j = ⌊y⌋
0 otherwise
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for 1 ≤ j ≤ K, where, y ∈ [1,K] is the similarity
score of a training pair. For example, for y = 2.7,
pT = [0 0.3 0.7 0 0]. In our case, the similarity
score y is a value between 1 and 5.

For our work, we use glove word vectors (Pen-
nington et al., 2014) and the simple LSTM, the
dependency Tree-LSTM and neural network im-
plementations by Tai et al. (2015). 2 The system
uses the scientific computing framework Torch3.
Training is performed on the data computed in
Section 5. The system uses a mini batch size
of 25 with learning rate 0.05 and regularization
strength 0.0001. The compositional parameters
for our Tree-LSTM systems with memory di-
mensions 150 and 300 are 203,400 and 541,800,
respectively. The training is performed for 10
epochs. System-level scores are computed by ag-
gregating and normalising segment-level scores.

5 Computing Similarity Scores from
WMT Rankings

As we do not have access to any dataset which
provides scores to segments on the basis of trans-
lation quality, we used the WMT-13 ranks corpus
to automatically derive training data. This corpus
is a by-product of the manual systems evaluation
carried out in the WMT-13 evaluation. In the eval-
uation, the annotators are presented with a source
segment, the output of five systems and a reference
translation. The annotators are given the following
instructions: “You are shown a source sentence
followed by several candidate translations. Your
task is to rank the translations from best to worst
(ties are allowed)”. Using the WMT-13 ranked
corpus, we derived a corpus where the reference
and corresponding translations are assigned simi-
larity scores. The fact that ties are allowed makes
it more suitable to generate similarity scores. If
all translations are bad, annotators can mark all
as rank 5 and if all translations are accurate, an-
notators can mark all as rank 1. The selection of
the WMT-13 corpus over other WMT workshops
is motivated by the fact that it is the largest among
them. It contains ten times more ranks than WMT-
12 and three to four times more than WMT-14.
This also makes it possible to obtain enough refer-
ence translation pairs which are evaluated several
times.

2The adapted code for MT evaluation scenarios is avail-
able at https://github.com/rohitguptacs/ReVal.

3http://torch.ch

Our hypothesis is that if a translation is given
a certain rank many times, this reflects its simi-
larity score with the reference. A better ranked
translation among many systems will be close to
the reference whereas a worse ranked translation
among many systems will be dissimilar from the
reference. To remove noisy pairs, we collect ref-
erence translation pairs below a certain variance
only. We determined appropriate variance values
using Algorithm 1 below for n = 3, 4, 5, 6, 7 and
≥ 8, separately. The computed variance values are
given in Table 1.

n 3 4 5 6 7 ≥ 8
Var 0.65 1.0 1.2 1.2 1.3 0.85

Table 1: Variances computed using Algorithm 1

Algorithm 1 Variance Computation
1: procedure GETVARIANCE(judgements)
2: V, v ← −1, 0.25 ▷ Initialise N
3: for v ≤ max do
4: prs← pairs with variance below v
5: score← kendall(prs, judgements)
6: if score ≥ 0.78 then
7: V ← v
8: v ← v + 0.05
9: else
10: break
11: Return V ▷ Return variance

In Algorithm 1, the kendall function calculates
Kendall tau correlation using the WMT-13 hu-
man judgements. We select a set for which the
correlation coefficient is greater than 0.78.4 The
correlation is computed using the annotations for
which scores are available in the corpus (prs). In
other words, the corpus acts as a scoring function
for the available reference translation pairs, which
gives a similarity score between a reference and a
translation. We selected pairs below the variance
values obtained for n = 4, 5, 6, 7 and≥ 8. Finally,
all the pairs are merged to obtain a set (L). Apart
from this set, we created three other sets for our
experiments. The last two also use the SICK data
(Marelli et al., 2014) which was developed for
evaluating semantic similarity. All four sets are
described below:

L: contains the set generated by selecting the
pairs ranked four or more times and filtering
the segments based on the variance

LNF: contains the set generated by selecting
the pairs ranked four or more times without
any filtering depending on the variance

4The score was decided so that we obtain around 10K
pairs which are annotated at least four times.
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L+Sick: Added 4500 sentence pairs from
the SICK training set to Set L in the training
set and 500 pairs in the development set.

XL+Sick: Added also the pairs ranked three
times to Set L+Sick.

Train Dev Test
L 9559 1000 1000
LNF 17855 1000 1000
L+Sick 14059 1500 1000
XL+Sick 21356 1500 1000

Table 2: Derived Corpus statistics

Table 2 shows the number of pairs extracted for
each set to train our LSTM based models.5

6 Results

We evaluate our approach trained on the four dif-
ferent datasets obtained from WMT-13 (as given
in Table 2) on WMT-14. Table 3 shows system-
level Pearson correlation obtained on different lan-
guage pairs as well as average Pearson correlation
(PAvg) over all language pairs. The last column
of the table also shows average Spearman corre-
lation (SAvg). The 95% confidence level scores
are obtained using bootstrap resampling as used in
the WMT-2014 metric task evaluation. The scores
in bold show best scores overall and the scores in
bold italic show best scores in our variants.

In Table 3 and Table 4, the first section
(L+Sick(lstm)) shows the results obtained us-
ing simple LSTM (layer 1, hidden dimension
50, memory dimension 150, compositional pa-
rameters 203400). The second section shows
the scores of our Tree-LSTM metric trained
on different training sets and dimensions. Di-
mensions are shown in brackets, e.g L(50,150)
shows the results on set ‘L’ with the hidden
dimension 50 and the memory dimension 150.
L+Sick(mix) shows results of combining the two
systems: L+Sick(50,150) and L+Sick(100,150).
For the sentences longer than 20 words, the sys-
tem uses scores of L+Sick(100,150) and scores
of L+Sick(50,150) for the rest. The third sec-
tion shows the best three overall systems from the
WMT-14 metric task. The fourth section in Table
3 shows the systems from the WMT-14 task which
obtained best results for certain languages but do

5For testing our approach we use WMT-12 and WMT-14
rankings instead of the test sets in this table.

not preform well overall. The last section in Tables
3 and 4 shows systems implementing BLEU (or
variants for the segment level) and METEOR in
the WMT-14 metric task.

Tables 3 and 4 contain a deluge of evaluation
data, mainly to explore the effect of different
training data and model parameter settings for our
models. The main messages can be summarised
as follows: 1. Tree LSTM models significantly
outperform the LSTM model (L+Sick(lstm) and
L+Sick(50,150) have the same data and parameter
settings). 2. For Tree-LSTM models different
parameter settings have only a minor impact on
performance (in fact only for a few language pairs
(e.g. hi-en at system-level, L+Sick(100, 300) and
L+Sick(100,150)) results are statistically signifi-
cantly different). This is reassuring as it indicates
that the metric is not overly sensitive to exten-
sive and delicate parameter tuning. 3. For the
system level evaluation Tree-LSTM models are
fully competitive with the best of the current com-
plex models that combine many different metrics,
substantial external resources and may require a
significant amount of feature engineering and tun-
ing. 4. For the segment level evaluation our met-
ric outperforms BLEU based approaches and the
other three systems6 but lags behind some other
approaches. We investigate this further below.

Tables 3 and 4 show that set L is able to obtain
similar results compared to set LNF even though
we filter out almost half of the pairs. Table 3 shows
that for L+Sick(50, 150) and L+Sick(mix), we ob-
tained an average second best Pearson correlation
and best Spearman correlation coefficient. We also
obtained better results for the Russian-English and
Czech-English language pairs compared to any
other systems in the WMT-14 task.

We also evaluate our setting L-Sick(50,150) on
the WMT-12 task dataset. Our metric performs
best for two out of four language pairs and best
overall at the system level with 0.950 and 0.926
Pearson and Spearman correlation coefficient, re-
spectively. At the segment level, we obtained
0.222 Kendall tau correlation which was better
than seven out of the total ten metrics in the WMT-
12 task.

One of the reasons for the difference in
segment-level and system-level correlations is that
Kendall Tau segment-level correlation is calcu-

6These three systems are not given in this paper. Please
refer (Machácek and Bojar, 2014) for results of these systems.
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Test cs-en de-en fr-en hi-en ru-en PAvg SAvg
L+Sick(lstm) .922± .051 .882± .028 .974± .009 .898± .011 .863± .023 .908± .024 .872± .060
LNF(50,150) .972± .032 .900± .026 .974± .009 .900± .011 .882± .021 .925± .020 .913± .045
L(50,150) .988± .022 .897± .027 .978± .008 .905± .010 .875± .022 .929± .018 .904± .042
L+Sick(50,150) .993± .017 .904± .025 .978± .008 .908± .010 .881± .022 .933± .016 .915± .042
L+Sick(100,300) .993± .018 .907± .025 .973± .009 .866± .012 .890± .020 .926± .017 .902± .050
XL+Sick(100,300) .913± .054 .917± .024 .978± .008 .904± .010 .884± .022 .919± .024 .889± .055
L+Sick(100,150) .994± .016 .911± .025 .975± .009 .923± .010 .870± .022 .935± .016 .904± .049
L+Sick(mix) .994± .017 .906± .025 .979± .008 .918± .010 .881± .022 .935± .016 .919± .045
DISCOTK-PARTY-TUNED .975± .031 .943± .020 .977± .009 .956± .007 .870± .022 .944± .018 .912± .043
LAYERED .941± .045 .893± .026 .973± .009 .976± .006 .854± .023 .927± .022 .894± .047
DISCOTK-PARTY .983± .025 .921± .024 .970± .010 .862± .015 .856± .023 .918± .019 .856± .046
REDSYS .989± .021 .898± .026 .981± .008 .676± .022 .814± .026 .872± .021 .786± .047
REDSYSSENT .993± .018 .910± .024 .980± .008 .644± .023 .807± .027 .867± .020 .771± .043
BLEU .909± 0.54 .832± .034 .952± .012 .956± .007 .789± .027 .888± .027 .833± .058
METEOR .980± .029 .927± .022 .975± .009 .457± .027 .805± .026 .829± .023 .788± .046

Table 3: Results: System-Level Correlations on WMT-14

Test cs-en de-en fr-en hi-en ru-en Average Avg wmt12
L+Sick(lstm) .204± .015 .232± .014 .289± .013 .319± .013 .236± .012 .256± .013 .254± .013
NFL(50,150) .228± .015 .288± .014 .318± .014 .341± .014 .271± .012 .289± .014 .287± .014
L(50,150) .225± .015 .272± .014 .328± .013 .346± .013 .280± .011 .290± .013 .287± .013
L+Sick(50,150) .243± .016 .274± .013 .333± .013 .360± .014 .278± .011 .298± .013 .295± .014
L+Sick(100,300) .233± .014 .286± .014 .343± .014 .358± .013 .281± .011 .300± .013 .297± .013
XL+Sick(100,300) .252± .014 .279± .014 .347± .013 .367± .013 .274± .011 .304± .013 .301± .013
L+Sick(100,150) .243± .016 .274± .014 .329± .013 .368± .012 .276± .011 .298± .013 .295± .013
L+Sick(mix) .243± .016 .276± .013 .338± .013 .358± .013 .273± .011 .298± .013 .295± .013
DISCOTK-PARTY-TUNED .328± .014 .380± .014 .433± .013 .434± .013 .355± .010 .386± .013 .386± .013
BEER .284± .015 .337± .014 .417± .013 .438± .014 .333± .011 .362± .013 .358± .013
REDCOMBSENT .284± .015 .338± .013 .406± .012 .417± .014 .336± .011 .356± .013 .346± .013
METEOR .282± .015 .334± .014 .406± .012 ..420± .013 .329± .010 .354± .013 .341± .013
BLEU NRC .226± .014 .272± .014 .382± .013 .322± .013 .269± .011 .294± .013 .267± .013
SENTBLEU .213± .016 .271± .014 .378± .013 .300± .013 .263± .011 .285± .013 .258± .014

Table 4: Results: Segment-Level Correlations on WMT-14

lated based on rankings and does not consider
the amount of difference between scores. Here is
an example similar to that given in (Hopkins and
May, 2013). Suppose four systems produce the
translations T0, T1, T2 and T3. Suppose we have
two metrics M1 and M2 and they produce scores
and rankings as follows. GS represents the correct
ranking and scores; Scores are in a scale [0, 1]
with a higher score indicating a better translation:

M1: T0 (0.10), T3 (0.71), T1 (0.72), T2 (0.73)

M2: T1 (0.71), T0 (0.72), T2 (0.73), T3 (0.74)

GS: T0 (0.10), T1 (0.71), T2 (0.72), T3 (0.73)

Certainly, M1 produces better scores and rank-
ing than M2. But, Kendall Tau segment-level
correlation is higher for M2. (There are four
concordant pairs in the M1 rank and five in the
M2 rank.) Therefore, if a metric does not scale
well as per the quality of translations, it may still
obtain a good Kendall Tau segment-level corre-
lation and a better metric may end up getting a
low correlation. Another reason for the discrep-
ancy between segment and system-level scores
may be a low agreement on annotations. For
the WMT-14 dataset, inter-annotator and intra-
annotator agreement were 0.367 and 0.522. These

problems should not occur with Pearson corre-
lation at the system level because system-level
scores are calculated using more sophisticated ap-
proaches (Koehn, 2012; Hopkins and May, 2013;
Sakaguchi et al., 2014). For example, Hopkins and
May (2013) model the differences among annota-
tors by adding random Gaussian noise.

7 Conclusion

We conclude that our dense-vector-space-based
ReVal metric is simple, elegant and effective with
state-of-the-art results. ReVal is fully competitive
with the best of the current complex alternative
approaches that involve system combination, ex-
tensive external resources, feature engineering and
tuning.

Acknowledgement

The research leading to these results has received
funding from the People Programme (Marie Curie
Actions) of the European Unions Seventh Frame-
work Programme FP7/2007-2013/ under REA
grant agreement no. 317471 and the EC- funded
project QT21 under Horizon 2020, ICT 17, grant
agreement no. 645452.

1070



References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gra-
dient descent is difficult. IEEE Transactions on
Neural Networks, 5(2):157–166.

Alexandra Birch and Miles Osborne. 2011. Reorder-
ing metrics for MT. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 1027–1035. Association for Computational
Linguistics.
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